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COMPUTATIONAL AND STATISTICAL BOUNDARIES FOR
SUBMATRIX LOCALIZATION IN A LARGE NOISY MATRIX

BY T. TONY CAI', TENGYUAN LIANG AND ALEXANDER RAKHLIN?

University of Pennsylvania

We study in this paper computational and statistical boundaries for subma-
trix localization. Given one observation of (one or multiple nonoverlapping)
signal submatrix (of magnitude A and size k;;, X k) embedded in a large noise
matrix (of size m x n), the goal is to optimal identify the support of the signal
submatrix computationally and statistically.

Two transition thresholds for the signal-to-noise ratio A /o are established
in terms of m, n, k;; and k. The first threshold, SNRc, corresponds to the
computational boundary. We introduce a new linear time spectral algorithm
that identifies the submatrix with high probability when the signal strength is
above the threshold SNRc. Below this threshold, it is shown that no polyno-
mial time algorithm can succeed in identifying the submatrix, under the hid-
den clique hypothesis. The second threshold, SNRs, captures the statistical
boundary, below which no method can succeed in localization with probabil-
ity going to one in the minimax sense. The exhaustive search method success-
fully finds the submatrix above this threshold. In marked contrast to subma-
trix detection and sparse PCA, the results show an interesting phenomenon
that SNR¢ is always significantly larger than SNRg under the sub-Gaussian
error model, which implies an essential gap between statistical optimality and
computational efficiency for submatrix localization.

1. Introduction. The “signal + noise” model
(1.1) X=M+7Z,

where M is the signal of interest and Z is noise, is ubiquitous in statistics and is
used in a wide range of applications. Such a “signal 4 noise”” model has been well
studied in statistics in a number of settings, including nonparametric regression
where M is a function, and the Gaussian sequence model where M is a finite or an
infinite dimensional vector. See, for example, [28, 36] and the references therein.
In nonparametric regression, the structural knowledge on M is typically character-
ized by smoothness, and in the sequence model the structural knowledge on M is
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often described by sparsity. Fundamental statistical properties such as the minimax
estimation rates and the signal detection boundaries have been established under
these structural assumptions.

For a range of contemporary applications in statistical learning and signal pro-
cessing, M and Z in the “signal + noise” model (1.1) are high-dimensional ma-
trices [13, 16, 20, 23, 38]. In this setting, many new interesting problems arise
under a variety of structural assumptions on M and the distribution of Z. Exam-
ples include sparse principal component analysis (PCA) [6, 7, 10, 11, 42], low-rank
matrix de-noising [20], matrix factorization and decomposition [1, 13, 16], non-
negative PCA [33, 45], submatrix detection and localization [8, 9], synchronization
and planted partition [18, 27], among many others. In the conventional statistical
framework, the goal is developing optimal statistical procedures (for estimation,
testing, etc.), where optimality is understood with respect to the sample size and
parameter space.

When the dimensionality of the data becomes large as in many contemporary
applications, the computational concerns associated with the statistical procedures
come to the forefront. After all, statistical methods are useful in practice only if
they can be computed within a reasonable amount of time. A fundamental question
is: Is there a price to pay for statistical performance if one only considers com-
putable (polynomial-time) procedures? This question is particularly relevant for
nonconvex problems with combinatorial structures. These problems pose a signif-
icant computational challenge because naive methods based on exhaustive search
are typically not computationally efficient. Trade-off between computational effi-
ciency and statistical accuracy in high-dimensional inference has drawn increasing
attention in the literature. In particular, [15] and [43] considered a general class of
linear inverse problems, with different emphasis on geometry of convex relaxation
and decomposition of statistical and computational errors. Chandrasekaran and
Jordan [14] studied an approach for trading off computational demands with sta-
tistical accuracy via relaxation hierarchies. Berthet and Rigollet [5], Ma and Wu
[31], Zhang, Wainwright and Jordan [46] focused on computational difficulties for
various statistical problems, such as detection and regression.

In the present paper, we study the interplay between computational efficiency
and statistical accuracy in submatrix localization based on a noisy observation of
a large matrix. The problem considered in this paper is formalized as follows.

1.1. Problem formulation. Consider the matrix X of the form

(1.2) X=M+2Z  where M=) 1g,1{

and 1z, € R™ denotes a binary vector with 1 on the index set R, and zero
otherwise. Here, the entries Z;; of the noise matrix are i.i.d. zero-mean sub-
Gaussian random variables with parameter o [defined formally in equation (1.5)].
Given the parameters m,n, k;,,, k,, A/o, the set of all distributions described
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above—for all possible choices of R, and C,—forms the submatrix model
Mm,n, ky, ky, AJ0).
This model can be further extended to multiple submatrices where

)
(1.3) M=) a1,

s=1

where |Rs| = k™ and |Cy] = k" denote the support set of the sth submatrix. For
simplicity, we first focus on the single submatrix and then extend the analysis to
the model (1.3) in Section 2.5.

There are two fundamental questions associated with the submatrix model (1.2).
One is the detection problem: given one observation of the X matrix, decide
whether it is generated from a distribution in the submatrix model or from the pure
noise model. Precisely, the detection problem considers testing of the hypotheses

Hy: M =0 vs. Hy:MeM@m,n, ky,ky,1/o).

The other is the localization problem, where the goal is to exactly recover the
signal index sets R, and C, (the support of the mean matrix M). It is clear that
the localization problem is at least as hard (both computationally and statistically)
as the detection problem. The focus of the current paper is on the localization
problem. As we will show in this paper, the localization problem requires larger
signal-to-noise ratio, as well as novel algorithm and analysis to exploit the subma-
trix structure.

1.2. Main results. To state our main results, let us first define a hierarchy of
algorithms in terms of their worst-case running time on instances of the submatrix
localization problem:

LinAlg C PolyAlg C ExpoAlg C AllAlg.

The set LinAlg contains algorithms A that produce an answer (in our case, the local-
ization subset Ié,;‘l‘, C “A) in time linear in m x n (the minimal computation required
to read the matrix). The classes PolyAlg and ExpoAlg of algorithms, respectively,
terminate in polynomial and exponential time, while AllAlg has no restriction.

Combining Theorems 3 and 4 in Section 2 and Theorem 5 in Section 3, the
statistical and computational boundaries for submatrix localization can be summa-
rized as follows. The notation /-, X, < are formally defined in Section 1.5.

THEOREM 1 (Computational and statistical boundaries). Consider the sub-
matrix localization problem under the model (1.2). The computational boundary
SNRc for the dense case when min{k,,, k,} 7~ max{m'/2, n'/2} is

mvn logn logm
SNR¢ < + \% ,
kmkn km ky
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in the sense that

Iim 2 A A
li inf P(RA+# Ry or CA#C,) =0  if == SNR
’”,nvk;g}flnﬁoerlgnAlg A;lel,l/z/t ( m 7 R or n # n) lfU Z c»
(1.4)
i inf sup B(RA# Ry or GA£C) >0 if > SSNR,
1,10, Koy ey — 00 AEPOIVAIG 7€ A4 o

where (1.4) holds under the hidden clique hypothesis HC, (see Section 2.1). For the
sparse case when max{k,,, k,} = min{m'/?,n'/2}, the computational boundary is
SNR¢; = ©*(1), more precisely

mvn
1 ZSNR. = [lo .
~ ¢~ g ko ke
The statistical boundary SNRg is
logn logm
SNRg < g \% g )
km kn
in the sense that
lim inf  sup P(R2# Ry, or CA#£C,) =0 if& ~ SNRs,
m,n,ky ky—00 ACEXpOAIg p7c A mn n o™
. . HA ~A ] & =<
lim inf sup P(R;, #RyorC;#Cy)>0  if — 2SNRs
m,n,km,kn—>ooA€A”AlgMeM o

under the minimal assumption max{k,,, k,} =< min{m, n}.

If we parametrize the submatrix model as m = n, k,, < k,, < k = @*(n%),
Ao = @*(n_/g ), for some 0 < o, B < 1, we can summarize the results of The-
orem 1 in a phase diagram, as illustrated in Figure 1.

To explain the diagram, consider the following cases. First, the statistical bound-
ary is

lo 1
en y ogm,
kim kn
which gives the line separating the red and the blue regions. For the dense regime
o > 1/2, the computational boundary given by Theorem 1 is

\% 1 1
mvn n ogn ogm,
kikn kim kn
which corresponds to the line separating the blue and the green regions. For
the sparse regime « < 1/2, the computational boundary is ©(1) =< SNR; =

O(, /log ]’{”‘nd:’) which is the horizontal line connecting (¢« = 0,8 =0) to (@ =

1/2, B =0).
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FI1G. 1. Phase diagram for submatrix localization. Red region (C): statistically impossible, where
even without computational budget, the problem is hard. Blue region (B): statistically possible but
computationally expensive (under the hidden clique hypothesis), where the problem is hard to all
polynomial time algorithm but easy with exponential time algorithm. Green region (A): statistically
possible and computationally easy, where a fast polynomial time algorithm will solve the problem.

As a key part of Theorem 1, we provide linear time spectral algorithm that will
succeed in localizing the submatrix with high probability in the regime above the
computational threshold. Furthermore, the method is data-driven and adaptive: it
does not require the prior knowledge on the size of the submatrix. This should be
contrasted with the method of [17] which requires the prior knowledge of &, k,;
furthermore, the running time of their SDP-based method is superlinear in nm. Un-
der the hidden clique hypothesis, we prove that below the computational threshold
there is no polynomial time algorithm that can succeed in localizing the submatrix.
We remark that the computational lower bound for localization requires distinct
new techniques compared to the lower bound for detection; the latter has been
resolved in [31].

Beyond localization of one single submatrix, we generalize both the computa-
tional and statistical story to a growing number of submatrices in Section 2.5. As
mentioned earlier, the statistical boundary for one single submatrix localization
has been investigated by [9] in the Gaussian case. Our result focuses on the com-
putational intrinsic difficulty of localization for a growing number of submatrices,
at the expense of not providing the exact constants for the thresholds.

The phase transition diagram in Figure 1 for localization should be contrasted
with the corresponding result for detection, as shown in [8, 31]. For a large enough
submatrix size (as quantified by « > 2/3), the computationally-intractable-but-
statistically-possible region collapses for the detection problem, but not for local-
ization. In plain words, detecting the presence of a large submatrix becomes both
computationally and statistically easy beyond a certain size, while for localization
there is always a gap between statistically possible and computationally feasible
regions. This phenomenon also appears to be distinct to that of other problems like
estimation of sparse principal components [10], where computational and statisti-
cal easiness coincide with each other over a large region of the parameter spaces.
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1.3. Prior work. There is a growing body of work in statistical literature on
submatrix problems. Arias-Castro et al. [2] studied the detection problem for a
cluster inside a large matrix. Butucea and Ingster [8], Butucea, Ingster and Suslina
[9] formulated the submatrix detection and localization problems under Gaus-
sian noise and determined sharp statistical transition boundaries. For the detection
problem, [31] provided a computational lower bound result under the assumption
that hidden clique detection is computationally difficult.

Shabalin et al. [35] provided a fast iterative maximization algorithm to heuristi-
cally solve the submatrix localization problem. Balakrishnan et al. [3], Kolar et al.
[29] focused on statistical and computational trade-offs for the submatrix localiza-
tion problem. Under the sparse regime k,, =< m'/? and k, < n'/2, the entry-wise
thresholding turns out to be the “near optimal” polynomial-time algorithm (which
we will show to be a de-noised spectral algorithm that perform slightly better
in Section 2.4). However, for the dense regime when k,, >~ m'/? and k, = n'/?,
the algorithms provided in [29] are not optimal in the sense that there are other
polynomial-time algorithm that can succeed in finding the submatrix with smaller
SNR. Concurrently with our work, [17] provided a convex relaxation algorithm
that improves the SNR boundary of [29] in the dense regime. On the computational
downside, the implementation of the method requires a full SVD on each iteration
and, therefore, does not scale well with the dimensionality of the problem. Fur-
thermore, there is no computational lower bound in the literature to guarantee the
optimality of the SNR boundary achieved in [17]. A problem similar to submatrix
localization is that of clique finding in random graph. Deshpande and Montanari
[19] presented an iterative approximate message passing algorithm to solve the
latter problem with sharp boundaries on SNR.

We would like to emphasize on the differences between the localization and the
detection problems. In terms of the theoretical results, unlike detection, there is
always a gap between statistically optimal and computationally feasible regions
for localization. This nonvanishing computational-to-statistical-gap phenomenon
also appears in the community detection literature with a growing number of com-
munities [18]. In terms of the methodology, for detection, combining the results
in [21, 31], there is no loss in treating M in model (1.2) as a vector and apply-
ing the higher criticism method [21] to the vectorized matrix for the problem of
submatrix detection, in the computationally efficient region. In fact, the procedure
achieves sharper constants in the Gaussian setting. However, in contrast, we will
show that for localization, it is crucial to utilize the matrix structure, even in the
computationally efficient region.

1.4. Organization of the paper. The paper is organized as follows. Section 2
establishes the computational boundary, with the computational lower bounds
given in Section 2.1 and upper bound results in Sections 2.2-2.4. An extension
to the case of multiple submatrices is presented in Section 2.5. The upper and
lower bounds for statistical boundary for multiple submatrices are discussed in
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Section 3. A short discussion is given in Section 4. Technical proofs are deferred
to Section 5. Additional proofs are deferred to Appendix A [12]. In addition to the
spectral method, Appendix B [12] contains a new analysis of a known method that
is based on a convex relaxation [17]. Comparison of computational lower bounds
for localization and detection is included in Appendix C [12].

1.5. Notation. Let [m] denote the index set {1,2,...,m}. For a matrix X €
R™>" - X;. € R" denotes its ith row and X.; € R™ denotes its jth column. For
any I C [m], J C [n], X1; denotes the submatrix corresponding to the index set
I x J.ForavectorveR", [[vl¢, = (e Vi |P)1/P and for a matrix M € R™*",
IMlle, = sup,zo lIMvlle,/llvile,. When p =2, the latter is the usual spectral
norm, abbreviated as || M ||2. The nuclear norm of a matrix M is convex surrogate
for the rank, with the notation to be || M ||.. The Frobenius norm of a matrix M is
defined as |M||F = 1/Zl~, j Ml%-. The inner product associated with the Frobenius
norm is defined as (A, B) =tr(AT B).

Denote the asymptotic notation a(n) = ®@(b(n)) if there exist two univer-
sal constants ¢y, ¢, such that ¢; <lim, , a(n)/b(n) < ﬁn_moa(n)/b(n) <cy.
®* is asymptotic equivalence hiding logarithmic factors in the following sense:
a(n) = @*(b(n)) iff there exists ¢ > 0 such that a(n) = © (b(n) log® n). Addition-
ally, we use the notation a(n) =< b(n) as equivalent to a(n) = © (b(n)), a(n) - b(n)
iff lim,,— o0 a(n)/b(n) = 0o and a(n) = b(n) iff lim,—, oc a(n)/b(n) = 0.

We define the zero-mean sub-Gaussian random variable z with sub-Gaussian
parameter o in terms of its Laplacian

(1.5) Ee** <exp(o?2?/2)  forall A > 0,
then we have
P(|z| > ot) <2-exp(—t>/2).
We call a random vector Z € R" isotropic with parameter o if
T 7\2 201,12
E(v’ Z)" =0, for all v € R".

Clearly, Gaussian and Bernoulli measures, and more general product measures of
zero-mean sub-Gaussian random variables satisfy this isotropic definition up to a
constant scalar factor.

2. Computational boundary. We characterize in this section the computa-
tional boundaries for the submatrix localization problem. Sections 2.1 and 2.2 con-
sider respectively the computational lower bound and upper bound. The computa-
tional lower bound given in Theorem 2 is based on the hidden clique hypothesis.
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2.1. Algorithmic reduction and computational lower bound. Theoretical com-
puter science identifies a range of problems which are believed to be “hard,” in the
sense that in the worst-case the required computation grows exponentially with
the size of the problem. Faced with a new computational problem, one might try
to reduce any of the “hard” problems to the new problem and, therefore, claim
that the new problem is as hard as the rest in this family. Since statistical pro-
cedures typically deal with a random (rather than worst-case) input, it is natural
to seek token problems that are believed to be computationally difficult on aver-
age with respect to some distribution on instances. The hidden clique problem is
one such example (for recent results on this problem, see [19, 24]). While there ex-
ists a quasi-polynomial algorithm, no polynomial-time method (for the appropriate
regime, described below) is known. Following several other works on reductions
for statistical problems, we work under the hypothesis that no polynomial-time
method exists.

Let us make the discussion more precise. Consider the hidden clique model
G(N, k) where N is the total number of nodes and « is the number of clique nodes.
In the hidden clique model, a random graph instance is generated in the following
way. Choose « clique nodes uniformly at random from all the possible choices,
and connect all the edges within the clique. For all the other edges, connect with
probability 1/2.

Hidden clique hypothesis for localization (HC,). Consider the random instance
of hidden clique model G(N, «). For any sequence « (N) such that x (N) < N for
some 0 < B < 1/2, there is no randomized polynomial time algorithm that can find
the planted clique with probability tending to 1 as N — co. Mathematically, define
the randomized polynomial time algorithm class PolyAlg as the class of algorithms
A that satisfies

lim sup  EciquePg(w.x)(Clique (runtime of A not polynomial in N) = 0.
N,k (N)—00 AePolyAlg
Then
lim inf  EciiquePg(n,«)|clique (clique set returned by A not correct) > 0,

N,K(N_)—>oo AePolyAlg

where Pg(n «)|Clique 18 the (possibly more detailed due to randomness of algorithm)
o -field conditioned on the clique location and Ecjigue 18 with respect to uniform
distribution over all possible clique locations.

Hidden clique hypothesis for detection (HCq). Consider the hidden clique model
G(N, k). For any sequence of « (N) such that k (N) < NP for some 0 < B <1/2,
there is no randomized polynomial time algorithm that can distinguish between

Ho:Per Vvs. Hg:Puc

with probability going to 1 as N — oco. Here, PgR is the Erd6s—Rényi model,
while Py is the hidden clique model with uniform distribution on all the possible
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locations of the clique. More precisely,

lim inf  EciquelPg(n,«)|clique (detection decision returned by .A wrong)
N,K(N)—)ooAEPOIVAlg
>0,

where Pg(n «)|clique and Eciique are the same as defined in HC;.

The hidden clique hypothesis has been used recently by several authors to claim
computational intractability of certain statistical problems. In particular, [5, 31]
assumed the hypothesis HCq4 and [44] used HC,. Localization is harder than de-
tection, in the sense that if an algorithm A solves the localization problem with
high probability, it also correctly solves the detection problem. Assuming that no
polynomial time algorithm can solve the detection problem implies impossibility
results in localization as well. In plain language, HC; is a milder hypothesis than
HCyg.

We will provide a computational lower bound result for localization in Theo-
rem 2. In Appendix C, we contrast the difference of lower bound constructions
between localization and detection. The detection computational lower bound was
proved in [31]. For the localization computational lower bound, to the best of our
knowledge, there is no proof in the literature. Theorem 2 ensures the upper bound
in Lemma 1 being sharp.

THEOREM 2 (Computational lower bound for localization). Consider the sub-
matrix model (1.2) with parameter tuple (m = n, k,, < k, < n*, Ajo = n=h),
where % <o <1, B > 0. Under the computational assumption HCy, if

< __
Nk T Prem3

A m+n 1
o

it is not possible to localize the true support of the submatrix with probability going
to 1 within polynomial time.

Our algorithmic reduction for localization relies on a bootstrapping idea based
on the matrix structure and a cleaning-up procedure introduced in Lemma 12 given
in Section 5. These two key ideas offer new insights in addition to the usual compu-
tational lower bound arguments. Bootstrapping introduces an additional random-
ness on top of the randomness in the hidden clique. Careful examination of these
two o -fields allows us to write the resulting object into mixture of submatrix mod-
els. For submatrix localization, we need to transform back the submatrix support to
the original hidden clique support exactly, with high probability. In plain language,
even though we lose track of the exact location of the support when reducing the
hidden clique to the submatrix model, we can still recover the exact location of the
hidden clique with high probability. For technical details of the proof, please refer
to Section 5.
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Algorithm 1: Vanilla spectral projection algorithm for dense regime

Input: X € R™*”" the data matrix.

Output: A subset of the row indexes Iém and a subset of column indexes én
as the localization sets of the submatrix.

1. Compute top left and top right singular vectors U.; and V., respectively

(these correspond tothe SVD X =UXZVT);

2. To compute Cp, calculate the inner products U 1 XjeR,1<j=<n.

These values form two data-driven clusters, and a cut at the largest gap

between consecutive values returns the subsets C, and [n] \ Cp. Similarly, for

the Rm, calculate X;. V.1 € R, 1 <i <m and obtain two separated clusters.

2.2. Adaptive spectral algorithm and upper bound. In this section, we intro-
duce a linear time algorithm that solves the submatrix localization problem above
the computational boundary SNR¢. Our proposed localization Algorithms 1 and 2
are motivated by the spectral algorithm in random graphs [32, 34].

The proposed algorithm has several advantages over the localization algorithms
that appeared in literature. First, it is a linear time algorithm [i.e., ®(mn) time
complexity]. The top singular vectors can be evaluated using fast iterative power
methods, which are efficient both in terms of space and time. Second, this algo-
rithm does not require the prior knowledge of k,, and k, and automatically adapts
to the true submatrix size.

Lemma 1 below justifies the effectiveness of the spectral algorithm.

LEMMA 1 (Guarantee for spectral algorithm). Consider the submatrix model
(1.2), Algorithm 1 and assume min{k,,, k,} 7= max{m'/%, n'/2}. There exist a uni-

Algorithm 2: De-noised spectral algorithm for sparse regime

Input: X € R™*" the data matrix, a thresholding level t = © (o . /log mv”)

Output: A subset of the row indexes R, and a subset of column indexes C,,
as the localization sets of the submatrix.

1. Soft-threshold each entry of the matrix X at level ¢, denote the resulting

matrix as 1y (X);

2. Compute top left and top right singular vectors U.; and V.| of matrix

N (X), respectwely [these correspond to the SVD Th X)=UxVT];

3. To compute C,, calculate the inner products UT 1 (X)), 1<j=<n.

These values form two clusters. Similarly, for the Rm, calculate

n:(X;.) - V1,1 <i <m and obtain two separated clusters A simple

thresholding procedure returns the subsets C, and R,,
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versal C > 0 such that when

A ( mvn logn logm )

- Z C : + \% )

o kmkn km kn
the spectral method succeeds in the sense that Iém =Ry, én = C,, with probability
atleast 1 —m~—¢ —n=¢ —2exp(—c(m + n)).

REMARK 2.1. The theory and algorithm remain the same if the signal matrix
M is more general in the following sense: M has rank one, its left and right singular
vectors are sparse and the nonzero entries of the singular vectors are of the same
order. Mathematically, M = Ay/k,,k, - uv”, where u, v are unit singular vectors
with k,,,, k, nonzero entries, and |u|max/|#|min < ¢ and |V|max/|V|min < ¢ for some
constant ¢ > 1. Here, for a vector w, |w|max and |w|min denote respectively the
largest and smallest magnitudes among the nonzero coordinates. When ¢ = 1, the
algorithm is fully data-driven and does not require the knowledge of A, o, ky,, k.
When c is large but finite, one may require in addition the knowledge of &, and &,

to perform the final cut to obtain C ,» and Iém.

2.3. Dense regime. We are now ready to state the SNR boundary for
polynomial-time algorithms (under an appropriate computational assumption),
thus excluding the exhaustive search procedure. The results hold under the dense
regime when k >~ n'/2.

THEOREM 3 (Computational boundary for dense regime). Consider the sub-
matrix model (1.2) and assume min{k,, k,} - max{m!/?,
ical rate

n'/2}. There exists a crit-

mvn logn logm
SNR; < + \%
kmkn km ky

for the signal-to-noise ratio SNR; such that for )/o 7~ SNRg, the adaptive linear
time Algorithm 1 will succeed in submatrix localization, that is, Iém = Ry, én =
Cp, with high probability. For 1./o = SNRg, there is no polynomial time algorithm
that will work under the hidden clique hypothesis HC;.

The proof of the above theorem is based on the theoretical justification of the
spectral Algorithm 1, and the new computational lower bound result for localiza-
tion in Theorem 2. We remark that the analyses can be extended to a multiple,
even growing number of the submatrices case. We postpone a proof of this fact to
Section 2.5 for simplicity and focus on the case of a single submatrix.
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2.4. Sparse regime. Under the sparse regime when k < n'/2, a naive plug-in of
Lemma 1 requires the SNR; to be larger than @ (n'/2/k) = \/Togn, which implies
the vanilla spectral Algorithm 1 is outperformed by simple entrywise thresholding.
However, a modified version with entrywise soft-thresholding as a preprocessing
de-noising step turns out to provide near optimal performance in the sparse regime.
Before we introduce the formal algorithm, let us define the soft-thresholding func-
tion at level 7 to be

2.1) i (y) = sign(y)(|y| — 1) .

Soft-thresholding as a de-noising step achieving optimal bias-and-variance trade-
off has been widely understood in the wavelet literature, for example, see Donoho
and Johnstone [22].

Now we are ready to state the following de-noised spectral Algorithm 2 to lo-
calize the submatrix under the sparse regime when k < n!/2.

Lemma 2 below provides the theoretical guarantee for the above algorithm when
k<nl/2.

LEMMA 2 (Guarantee for de-noised spectral algorithm). Consider the subma-
trix model (1.2), soft-thresholded spectral Algorithm 2 with thresholded level o't,
and assume min{k,,, k,} = max{m'/?2 n'/?}. There exist a universal C > 0 such

that when
A mvn logn logm ey )
—>C. \Y . t),
o (|:\/ kmkn +\/ km kn ] ¢ *

the spectral method succeeds in the sense that Ii’m =Ry, C w = Cp, with probability
C mvn

—2exp(—c(m +n)). Further, if we choose © (o, /log Eokr

as the optimal thresholding level, we have de-noised spectral algorithm works

when
& = log my n‘
o kiky

Combining the hidden clique hypothesis HC; together with Lemma 2, the fol-
lowing theorem holds under the sparse regime when k < n'/2,

atleast1 —m=—¢—n—

THEOREM 4 (Computational boundary for sparse regime). Consider the sub-
matrix model (1.2) and assume max{ky,, k,} 2 min{m'/2, n'/2}. There exists a crit-
ical rate for the signal-to-noise ratio SNR¢ between

mvn

1 ZSNR; = . /log
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Algorithm 3: Spectral algorithm for multiple submatrices

Input: X € R™*" the data matrix. A pre-specified number of submatrices r.

Output: A subset of the row indexes {Ié;;, 1 <s <r} and a subset of column
indexes {CA‘;, 1 <s <r} as the localization of the submatrices.

1. Calculate top r left and right singular vectors in the SVD X = U V7.

Denote these vectors as U, € R"*" and V. € R"*", respectively;

2. For the CA‘,sl 1 <s <r, calculate the projection

U,(UTU)~'UT X, 1 < j <n, run k-means clustering algorithm (with

k =r + 1) for these n vectors in R”. For the 1%;1, 1 <s <r, calculate

Vr(V,T V,)_1 V,T X lT , 1 <i <m, run k-means clustering algorithm (with

k =r + 1) for these m vectors in R” (while the effective dimension is R").

such that for AJo 7 /log Z:,,vk’,: , the linear time Algorithm 2 will succeed in subma-

trix localization, that is, R,, = Ry, én = Cy,, with high probability. For AJo 31,
there is no polynomial time algorithm that will work under the hidden clique hy-
pothesis HC,.

REMARK 4.1. The upper bound achieved by the de-noised spectral Algo-
rithm 2 is optimal in the two boundary cases: k = 1 and k < n'/2. When k = 1,
both the information theoretic and computational boundary meet at 4/logn. When
k =< n'/?, the computational lower bound and upper bound match in Theorem 4,
thus suggesting the near optimality of Algorithm 2 within the polynomial time al-
gorithm class. The potential logarithmic gap is due to the crudeness of the hid-
den clique hypothesis. Precisely, for k = 2, hidden clique is not only hard for
G(n, p) with p = 1/2, but also hard for G(n, p) with p = 1/logn. Similarly for
k =n%, o < 1/2, hidden clique is not only hard for G (n, p) with p = 1/2, but also
for some 0 < p < 1/2.

2.5. Extension to growing number of submatrices. The computational bound-
aries established in the previous sections for a single submatrix can be extended to
nonoverlapping multiple submatrices model (1.3). The non-overlapping assump-
tion corresponds to that forany 1 <s#¢t <r, RRNR, = and C;, N C; = .
Algorithm 3 is an extension of the spectral projection Algorithm 1 to address the
multiple submatrices localization problem.

We emphasize that the following Proposition 3 holds even when the number of
submatrices r grows with m, n.

LEMMA 3 (Spectral algorithm for nonoverlapping submatrices case). Con-
sider the nonoverlapping multiple submatrices model (1.3) and Algorithm 3. As-
sume

K <k, kW <k, Ay A
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forall 1 <s <r and min{k,,, k,} 7~ max{m'/2, n'/2}. There exist a universal C >
0 such that when

(2.2) fzc.( T IOg”V logm+ m\/n)’
o ki Nk, ky, k, Kk

the spectral method succeeds in the sense that Ié,(,f ) = R,Sf ), C ,(,S) =C y(,s), 1<s<r
with probability at least 1 — m~—¢ — n=¢ — 2exp(—c(m + n)).

REMARK 4.2. Under the nonoverlapping assumption, rk,, = m, rk, = n hold
in most cases. Thus, the first term in equation (2.2) is dominated by the latter two
terms. Thus, a growing number r does not affect the bound in equation (2.2) as
long as the nonoverlapping assumption holds.

3. Statistical boundary. In this section, we study the statistical boundary. As
mentioned in the Introduction, in the Gaussian noise setting, the statistical bound-
ary for a single submatrix localization has been established in [9]. In this section,
we generalize to localization of a growing number of submatrices, as well as sub-
Gaussian noise, at the expense of having nonexact constants for the threshold.

3.1. Information theoretic bound. We begin with the information theoretic
lower bound for the localization accuracy.

LEMMA 4 (Information theoretic lower bound). Consider the submatrix
model (1.2) with Gaussian noise Z;j ~ N(0, 62). For any fixed 0 < a < 1, there
exist a universal constant Cy, such that if

3.1) b _c, . [logn/kn)  log(n/ki)
o ky knm
any algorithm A will fail to localize the submatrix with probability at least 1 —

o — log2 in the following minimax sense:
ki log(m [ k) ~+ky log(n/ ky) ’

inf P(R;} # Ry or C;
adBing o8 Ko 7 Fom 0 G Co)

log?2

>1—a-— .
km log(m/ k) + knlog(n/ky)

3.2. Combinatorial search for growing number of submatrices. Combinato-
rial search over all submatrices of size &, X k, finds the location with the strongest
aggregate signal and is statistically optimal [8, 9]. Unfortunately, it requires com-
putational complexity ©((;" ) + (;)), which is exponential in k;, k,. The search
Algorithm 4 was introduced and analyzed under the Gaussian setting for a sin-
gle submatrix in [8], which can be used iteratively to solve multiple submatrices

localization.
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Algorithm 4: Combinatorial search algorithm

Input: X € R™*" the data matrix.

Output: A subset of the row indexes Iém and a subset of column indexes C "
as the localization of the submatrix.

For all index subsets I x J with |I| =k, and |J| = k,, calculate the sum of

the entries in the submatrix X ;. Report the index subset R X C with the

largest sum.

For the case of multiple submatrices, the submatrices can be extracted with the
largest sum in a greedy fashion.

Lemma 5 below provides a theoretical guarantee for Algorithm 4 to achieve the
information theoretic lower bound.

LEMMA 5 (Guarantee for search algorithm). Consider the nonoverlapping
multiple submatrices model (1.3) and iterative application of Algorithm 4 in a
greedy fashion for r times. Assume

K <k, kW <k, Ay A

forall 1 <s <r and max{ky,, k,} = min{m, n}. There exists a universal constant
C > 0 such that if

b o [oetem k) ogten/k)
o kn kﬂ’l

then Algorithm 4 will succeed in returning the correct location of the submatrix
with probability at least 1 — Zk’"f

To complete Theorem 1, we include the following Theorem 5 capturing the sta-
tistical boundary. It is proved by exhibiting the information-theoretic lower bound
Lemma 4 and analyzing Algorithm 4.

THEOREM 5 (Statistical boundary). Consider the submatrix model (1.2).
There exists a critical rate

logn logm

SNR, = v
s kn, ky,

for the signal-to-noise ratio, such that for any problem with X/o 7~ SNRg, the
statistical search Algorithm 4 will succeed in submatrix localization, that is,
Ry = Ry, Cn = Cy, with high probability. On the other hand, if ./o = SNRs,
no algorithm will work (in the minimax sense) with probability tending to 1.
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4. Discussion. Submatrix localization versus detection. As pointed out in
Section 1.2, for any k = n%, 0 < « < 1, there is an intrinsic SNR gap between com-
putational and statistical boundaries for submatrix localization. Unlike the subma-
trix detection problem where for the regime 2/3 < « < 1, there is no gap between
what is computationally possible and what is statistical possible, the inevitable gap
in submatrix localization is due to the combinatorial structure of the problem. This
phenomenon is also seen in some network related problems, for instance, stochas-
tic block models with a growing number of communities [18]. Compared to the
submatrix detection problem, the algorithm to solve the localization problem is
more complicated and the techniques required for the analysis are much more in-
volved.

Detection for growing number of submatrices. The current paper solves local-
ization of a growing number of submatrices. In comparison, for detection, the only
known results are for the case of a single submatrix as considered in [8] for the
statistical boundary and in [31] for the computational boundary. The detection
problem in the setting of a growing number of submatrices is of significant inter-
est. In particular, it is interesting to understand the computational and statistical
trade-offs in such a setting. This will need further investigation.

Estimation of the noise level o . Although Algorithms 1 and 3 do not require the
noise level o as an input, Algorithm 2 does require the knowledge of o. The noise
level o can be estimated robustly. In the Gaussian case, a simple robust estimator
of o is the following median absolute deviation (MAD) estimator due to the fact
that M is sparse k2/m? < 0.25:

& = median;;| X;; — median;; (X;;)|/®~'(0.75)
~ 1.4826 x median;;|X;; — median;; (X;;)|.
5. Proofs. We prove in this section the main results given in the paper. We

first collect and prove a few important technical lemmas that will be used in the
proofs of the main results.

5.1. Prerequisite lemmas. We start with the following version of the Wedin’s
theorem.

LEMMA 6 (Davis—Kahan—Wedin-type perturbation bound). It holds that

V2IEllF
)

JIsin@|2 + | sin@|2 <

and also the following holds for 2-norm (or any unitary invariant norm):

E
max{[[sin @, 1sin @]} < 112,
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We will then introduce some concentration inequalities. Lemmas 7 and 8 are
concentration of measure results from random matrix theory.

LEMMA 7 ([39], Theorem 39). Let Z € R™*" be a matrix whose rows Z;. are
independent sub-Gaussian isotropic random vectors in R" with parameter o . Then
for every t > 0, with probability at least 1 — 2exp(—ct?) one has

1Z]l2 <o (v/m+Cy/n+t),

where C, ¢ > 0 are some universal constants.

LEMMA 8 ([26], Projection lemma). Assume Z € R" is an isotropic sub-
Gaussian vector with i.i.d. entries and parameter . P is a projection operator
to a subspace of dimension r, then we have the following concentration inequality:

P(IPZIIF, = 0> (r +23/rt +21)) < exp(—ct),

where ¢ > 0 is a universal constant.

The proof of this lemma is a simple application of Theorem 2.1 in [26] for the
case that P is a rank r positive semidefinite projection matrix.

The following two are standard Chernoff-type bounds for bounded random vari-
ables.

LEMMA 9 ([25], Hoeffding’s inequality). Let X;,1 <i <n be independent
random variables. Assume a; < X; <b;, 1 <i <n. Then for S, =" | X;

(5.1) P(|S, — ES,| > u) <2 ( 2u° )
. — >U X e e B
" " =oexp " (bi —a;)?

LEMMA 10 ([4], Bernstein’s inequality). Let X;,1 <i < n be independent
zero-mean random variables. Suppose | X;| <M, 1 <i <n. Then

(5.2) P(Xn: X; > u) < exp(— w/2 >

P " \EX? + Mu/3

We will end this section stating the Fano’s information inequality, which plays
a key role in many information theoretic lower bounds.

LEMMA 11 ([36], Corollary 2.6). Let Po, P1, ..., Py be probability mea-
sures on the same probability space (®, F), M > 2. If for some 0 <o < 1

5.3)

M
—— > dg L (Pi||P) <a-logM,
M—i-lg KL(PilP) < -log
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where
_ 1 M
P=—- iy
M+1 Z:P’
i=0
then
_ log(M +1) —log2
(5.4) Pet = Pot > — S

log M

where p. y is the minimax error for the multiple testing problem.
5.2. Main proofs.

PROOF OF LEMMA 1. Recall the matrix form of the submatrix model, with
the SVD decomposition of the mean signal matrix M

X = Wknk,UVT + Z.

The largest singular value of AU VT is Aknky, and all the other singular values
are 0’s. Davis—Kahan—Wedin’s perturbation bound tells us how close the singular
space of X is to the singular space of M. Let us apply the derived Lemma 6 to
X = A/kuk,UVT 4 Z. Denote the top left and right singular vector of X as U
and V. One can see that E||Z||> < o (/m + /n) under very mild finite fourth
moment conditions through a result in [30]. Lemma 7 provides a more explicit
probabilisitic bound for the concentration of the largest singular value of i.i.d. sub-
Gaussian random matrix. Because the rows Z;. are sampled from product measure
of mean zero sub-Gaussians, they naturally satisfy the isotropic condition. Hence,
with probability at least 1 — 2 exp(—c(m + n)), via Lemma 7, we reach

(5.5) 1Zl2 < C-o(Vm+/n).
Using Weyl’s interlacing inequality, we have
|01(X) — i (M)| < 1 Z]2
and thus
a1(X) = Whknkn — 1 Z |12,
02(X) = I Z]l2.

Applying Lemma 6, we have

. - Co (Jm + /n)
LV = e — Co £ v
RVENG
W/

max/{|sin Z(U, U)

El
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In addition,

~ - 1 -
U —=Ull, =\/2—2COSA(U, U)y=2 sinié(U, U)

’

which means

~ ~ o (y/m+ /n)
max{[|U = Ulle,, |V =V} <C- ——F——.
M kpky
And according to the definition of the canonical angles, we have
o(Jm+ /n)

max{|UUT —UUT

VYT 0P <

Ikmkn

Now let us assume we have two observations of X. We use the first obser-
vation X to solve for the singular vectors U , \7; we use the second observa-
tion X to project to the singular vectors U, V. We can use Tsybakov’s sample
cloning argument ([37], Lemma 2.1) to create two independent observations of
X when noise is Gaussian as follows. Create a pure Gaussian matrix Z’ and de-
fine X1 =X+Z' =M+ Z+Z)and X=X —Z' =M + (Z — Z’), making
X1, X7 independent with the variance being doubled. This step is not essential be-
cause we can perform random subsampling as in [41]; having two observations
instead of one does not change the picture statistically or computationally. Recall
X=M+Z=/knkaUVT + Z.

Define the projection operator to be P; we start the analysis by decomposing

(5.6)  NPyX.j— Mjlle, < [Py (X; — M.pl,, + |(Pg — DM,

forl <j<n.

For the first term of (5.6), note that X.; — M.; = Z.; € R™ is an i.i.d. isotropic
sub-Gaussian vector, and thus we have through Lemma 8, for t = (1 + 1/c) logn,
ZjeR", 1<j<nandr=1

IP’<||7’0(X-j -Mpl,

logn logn
(5.7) zgﬁJ1+2,/1+1/c.,/T+2(1+1/c)-7)

—c—1

<n

We invoke the union bound for all 1 < j <n to obtain

(5.8 max [Pg(X;— M|, sovr+ V2 +1/0) -0\ flogn
=Jj=n

(5.9 <o+ C-o,/logn
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c

with probability at least 1 —n™¢. 3
For the second term M.; = X.; — Z.; of (5.6), there are two ways of upper
bounding it. The first approach is to split

(5.10) [Py = DM|, <[Py = DX|, + [Py = DZ], <211 ZIa.
The first term of (5.10) is 02(5() < op(M) + ||Z 2 through Weyl’s interlac-
ing inequality, while the second term is bounded by ||Z|>. We also know that

| Zll2 < C3 - o (/m + +/n). Recall the definition of the induced £ norm of a ma-
trix (P — M:

|(Pg = DMV le,
1Vie,
= Vka|(Pg = DM,

In the second approach, the second term of (5.6) can be handled through perturba-
tion Sin Theta Theorem 6:

|(Pg — DM, = |(Ps —PuIM|,, < |UTT —UUT|,- 1M,

|Pg — DM, = = |(Pg = DknknU|,,

ovmtn, -
PN

This second approach will be used in the multiple submatrices analysis.
Combining all the above, we have with probability at least 1 —n=¢ —m™¢, for
alll<j<n

V
(5.11) ||7?L~,X.J-—M.J-||g25c-(o logn + o mk ">
n

Similarly, we have forall 1 <i <m

T T mvn
(5.12) Py Xi. — M|, <C- <a,/logm +o ™ )

Clearly, we know that for i € R, and i’ € [m]\ R,

| M — ml ”ez = kn
and for j € C, and j' € [n]\ Cp,

IM.j — M. jlle, =AvVkn-

Thus, if
Vv
(5.13) ko > 6C - <a,/1ogn Yo mkn ”),
Vv
(5.14) A\/EZ6C-<G‘/logm+a mkm”)
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hold, we have
2 max [Py X[ —PpXi|<  min  [PyX[ —PyXi].

i,i’€Ry, i€Ry,i'€[m\ Ry,
Therefore, we have got d; = X;. VeR (a one-dimensional line along direction \7)
such that on this line, data forms two data-driven clusters in the sense that

2 max |d; —dy| < min |d; —d;|.
i,i'€Rm i€ Ry, i’ €[m]\Rm

In this case, the largest adjacent gap in d;, i € [m] (data-driven) suggests the cut-off
(without requiring the knowledge of A, o, k;;). And the simple cut-off clustering
recovers the nodes exactly.

In summary, if
logn logm m+n
A>C- ,
= "(/ o +/ n +\/kmkn>

the spectral algorithm succeeds with probability at least

1 —m™¢—n"¢—2exp(—c(m + n)). O

PROOF OF THEOREM 2. Computational lower bound for localization (sup-
port recovery) is of different nature than the computational lower bound for de-
tection (two point testing). The idea is to design a randomized polynomial time
algorithmic reduction to relate an instance of hidden clique problem to our subma-
trix localization problem. The proof proceeds in the following way: we will con-
struct a randomized polynomial time transformation 7 to map a random instance
of G(N, k) to a random instance of our submatrix M(m =n, k,, <k, <k, A/o)
[abbreviated as M(n, k, A/o)]. Then we will provide a quantitative computational
lower bound by showing that if there is a polynomial time algorithm that pushes
below the hypothesized computational boundary for localization in the submatrix
model, there will be a polynomial time algorithm that solves hidden clique local-
ization with high probability (a contradiction to HC)).

Denote the randomized polynomial time transformation as

T:G(N,k(N))—> M(n,k=n"1/c :n_ﬂ).

There are several stages for the construction of the algorithmic reduction. First, we
define a graph G¢(N, xk(N)) that is stochastically equivalent to the hidden clique
graph G(N, «(N)), but is easier for theoretical analysis. G¢ has the property: each
node independently has the probability x(N)/N to be a clique node, and with
the remaining probability a nonclique node. Using Bernstein’s inequality and the
inequality (5.20) proved below, with probability at least 1 — 2N ! the number of
clique nodes ¢ in G¢

Alog N Alog N
(5.15) K<1— % )5K€5K<1+ °8 ) = K=k
K K
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as long as k 7~ log N.

Consider a hidden clique graph G°(2N, 2« (N)) with N =n and «(N) = «.
Denote the set of clique nodes for G¢(2N, 2k (N)) to be Cy . Represent the hid-
den clique graph using the symmetric adjacency matrix G € {—1, 1}?V*2N where
Gij=1ifi, j € Cy i, otherwise with equal probability to be either —1 or 1. As re-
marked before, with probability at least 1 — 2N —1, we have planted 2« (1 £ o(1))
clique nodes in graph G¢ with 2N nodes. Take out the upper-right submatrix of
G, denote as Gy g where U is the index set 1 <i < N and R is the index set
N +1<j <2N.Now Gyr has independent entries.

The construction of 7  employs the bootstrapping idea. Generate [> (with
[ <nf 0 <pB < 1/2) matrices through bootstrap subsampling as follows. Gen-
erate [ — 1 independent index vectors w(s ) e R", 1 <s < I, where each element
W(S)(i), 1 <i <n is a random draw with replacement from the row indices [n].
Denote vector ¥ ?) (i) =i, 1 <i < n as the original index set. Similarly, we can
define independently the column index vectors ¢, 1 <t < [. We remark that
these bootstrap samples can be generated in polynomial time $2(/?>1%). The trans-
formation is a weighted average of /> matrices of size n x n generated based on
the original adjacency matrix Gyg:

1 -
(5.16) T:Mij=1 Y. (Gurdywapngy 1 <ij<n.

0<s,t<l

Recall that Cy . stands for the clique set of the hidden clique graph. We define the
row candidate set R; :={i e [n]: 30 <s <[, w(“)(i) € Cn «} and column candi-
date set C;:={je[n]:30<t <, qb(t)(j) € Cp «}. Observe that R; x C; are the
indices where the matrix M contains a signal.

There are two cases for M;;, given the candidate set R; x C;. If i € R; and
j € C;, namely when (i, j) is a clique edge in at least one of the /> matrices, then
E[M;;|G°] > 1 —1 where the expectation is taken over the bootstrap o-field con-
ditioned on the candidate set R; x C; and the original o-field of G¢. Otherwise,

E[M;j1G¢] = (325 — 1) for (i, j) ¢ Ri x C;, where |E| is a Binomial(N? —

«2,1/2). With high probability, E[M;;|G¢] =< ﬁ = L = 6(7). Thus, the
mean separation between the signal position and nonsignal position is % - - x %
Note in the submatrix model, it does not matter if the noise has mean zero or not
(since we can subtract the mean)—only the signal separation matters.

Now let us discuss the independence issue in M through our bootstrapping con-
struction. Clearly, due to sampling with replacement and bootstrapping, condition
on G¢, we have independence among samples for the same location (i, j)

(GUR)w(S)(i)¢(f)(j) 1 (GUR)w(s’)(,')d,(t/)(j)-
For the independence among entries in one bootstrapped matrix, clearly

(GUR)I/,(S)(,‘)(p(t)(j) 1 (GUR)¢(s)(i/)¢(t)(j/)-
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The only case where there might be a weak dependence is between

(GUR)I/,(S)(,')(p(t)(j), (GUR)¢(s)(i)¢(f)(j/)

and (GUR)¢(5)(i)¢<f)(j), (GUR)w<S>(i)¢<t’>(j)- The way to eliminate the weak de-
pendence is through Vu’s result on universality of random discrete graphs. Vu
[40] showed that random regular graph G(n,n/2) shares many similarities with
Erd6s—Rényi random graph G(n, 1/2): for instance, top and second eigenvalues
(n/2 and \/n, resp.), limiting spectral distribution, sandwich conjecture, determi-
nant, etc. Let us consider the case where the upper-right of the adjacency ma-
trix G consists of random bi-regular graph with a planted clique. We assume
that the hidden clique hypothesis for k < /n is still valid for the following ran-
dom graph: for a n x n adjacency matrix G, first find a clique/principal subma-
trix of size k uniformly randomly and connect density, for the remaining part
of the matrix, sample a random regular graph of G(n — k, "5~ k) and a random
bi-regular graph of size k x (n — k) with left regular degree n/2 — k and right
regular degree k/2 (here degree test will not work in this graph and spectral bar-
rier still suggests k X +/n is hard due to the universality result of random dis-
crete graphs). In the bootstrapping step, conditionally on the row ¥ ) (i) being
not a clique, (GuRr)y o) (1Hp®(j) L (GUR)y® ()0 j/)lw(“)(i), and each one is a
Rademacher random variable [regardless of the choice of ) (i)], which implies
(GUR)W(‘)(1)¢(’)(J) L (GUR)IZ,(Y)(ZW([)(],) holds unconditionally. Thus in the boot-
strapping procedure, we have independence among entries within the matrix un-
conditionally.

Let us move to verify the sub-Gaussianity of M matrix. Note that for the in-
dex i, j that is not a clique for any of the matrices, M;; is sub-Gaussian, due to
Hoeffding’s inequality

(5.17) P(|M;; —EM;;| > u) < 2exp(—u?/2).

For the index i, j being a clique in at least one of the matrices, we claim the number
of matrices has (i, j) being clique is O*(1). Due to Bernstein’s inequality, we have
max; {0 <s <I: w(s)(i) e Cyi}l < %’ + glogn with probability at least 1 —
n~!. This further implies there are at least /> — (’% + % logn)? many independent
Rademacher random variables in each i, j position, thus

(5.18)  P(IM;; — EM;j| > u) < 2exp(—(1 — C - (kn™" + 17" logn)*)u?/2).

Up to now, we have proved that when i, j is a signal node for M, then
o*(HI~! > EM;; > 7. Thus, the sub-Gaussian parameter is o = 1 — o(1) be-
cause k7 -1 N logn are both o(1). The constructed M (n, k, A /o) matrix satisfies
the submatrlx model with /o =< [~! and sub-Gaussian parameter o = 1 — o(1).

Let us estimate the corresponding k in the submatrix model. We need to bound
the order of the cardinality of R;, denoted as |R;|. The total number of positions
with signal (at least one clique node inside) is

EIR|=E[{l <i<n:ieR}|=n[1-(1-«/n)]
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Thus, we have the two-sided bound
Kl
Kl(l — —> <E|R;| <«l,
2n

which is of the order k := «!. Let us provide a high probability bound on | R;|. By
Bernstein’s inequality,

u*/2 >
kl+u/3)
Thus, if we take u = /4« logn, as long as logn = o(kl),

(5.20) P(||R;| — E|R;|| > /4xllogn) <2n~'.

So with probability at least 1 — 2n~!, the number of positions that contain signal
nodes is bounded as

[ 41 41
KZ(I—K—)(I— Ogn)<|R1|<Kl<1+ ogn)
n Kkl Kl

= |R/| =kl

(5.19) P(||R| — E|R;|| >u)§26xp<—

(5.21)

Equation (5.21) implies that with high probability
kl(1—o(1)) <|Ri| <«l(1+o(1)),
kl(1—o(1)) <1Ci| <kl(1+0(D)).

The above means, in the submatrix parametrization, k,, < k, < kIl < n%*, AJo =<
I=! < n=#, which implies k < n*~#.

Suppose there exists a polynomial time algorithm A4, that pushes below the
computational boundary. In other words,

O L S SO (E. V. T SV
o kimks, 2

with the last inequality having a slack ¢ > 0. More precisely, .4, returns two es-
timated index sets Ién and é‘n corresponding to the location of the submatrix (and
correct with probability going to 1) under the regime § = o — 1/2+ €. Suppose un-
der some conditions, this algorithm .4, can be modified to a randomized polyno-
mial time algorithm 4g that correctly identifies the hidden clique nodes with high
probability. It means in the corresponding hidden clique graph G(2N, 2«), Ag also
pushes below the computational boundary of hidden clique by the amount &:

K(N) =2k = 2n)@ B = nl/2=¢ <12 < N2

In summary, the quantitative computational lower bound implies that if the com-
putational boundary for submatrix localization is pushed below by an amount ¢ in
the power, the hidden clique boundary is correspondingly improved by ¢.
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Now let us show that any algorithm .4, that localizes the submatrix introduces
arandomized algorithm that finds the hidden clique nodes with probability tending
to 1. The algorithm relies on the following simple lemma.

LEMMA 12. For the hidden clique model G(N, k), suppose an algorithm pro-
vides a candidate set S of size k that contains the true clique subset. If

k> C,/klogN

then by looking at the adjacency matrix restricted to S we can recover the clique
subset exactly with high probability.

The proof of Lemma 12 is immediate. If i is a clique node, then
min; 3 ;cc Gij > k — C/2 - JklogN. If i is not a clique node, then
max; > jec Gij < C/2 - /klog N. The proof is completed.

Algorithm Ay, provides candidate sets R;, C; of size k, inside which « are cor-
rect clique nodes, and thus exact recovery can be completed through Lemma 12
since k >~ (klog N)'/? (since « < n'/>7¢ = k!/2 < n®/? when ¢ is small). The
algorithm Ay, induces another randomized polynomial time algorithm Ag that
solves the hidden clique problem G(2N,2«) with k X N'/2. The algorithm Ag
returns the support c N.« that coincides with the true support Cy , with probabil-
ity going to 1 (a contradiction to the hidden clique hypothesis HC;). We conclude

that, under the hypothesis, there is no polynomial time algorithm A, that can push

m+n
Tk - [

below the computational boundary A =

The proof of Theorem 3 is a direct result of Lemma 1 and Theorem 2. The proof
of Theorem 4 is obvious based on Lemma 2 and the hidden clique hypothesis HC;.
The proof of Theorem 5 combines the result of Lemmas 5 and 4.

SUPPLEMENTARY MATERIAL

Supplement to ‘“Computational and statistical boundaries for submatrix
localization in a large noisy matrix” (DOI: 10.1214/16-A0S1488SUPP; .pdf).
Due to space constraints, we have relegated remaining proofs to the supplement.
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