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Abstract

The rapid growth of digital textual data has made it increasingly important to
develop statistical methods for the analysis of such data with theoretical guarantees.
In this paper, we focus on supervised topic modeling within the framework of general-
ized linear models (GLMs) and probabilistic latent semantic indexing (pLSI) models.
One of the major challenges of the analysis is that the covariates are unobservable.
We propose a novel bias-adjusted estimator of the covariates and use it to estimate
the regression vector. We establish minimax optimal rates of convergence and show
that the proposed estimator is rate-optimal up to a logarithmic factor. In addition,
we consider statistical inference for individual regression coefficients and construct
confidence intervals based on an asymptotically unbiased and normally distributed
estimator. The effectiveness of our proposed algorithms is demonstrated through
simulation studies and applications to the analysis of a movie review dataset.

Keywords: Supervised topic modeling, high-dimensional regression, sparsity, minimax op-
timality, confidence intervals



1 Introduction

Statistical analysis of textual data has gained significant importance due to the vast amount
of digital textual data being generated from various sources such as news platforms, social
media, and the medical field. In particular, topic modeling has gained significant atten-
tion in recent years as a research area in statistics and machine learning, with numerous
applications in various fields such as business, genetics, sociology, and medicine (Bravo
Gonzalez-Blas et al., 2019; Ke et al., 2019; Duan et al., 2019; DiMaggio et al., 2013).
The early focus has been on the unsupervised setting, where the goal is to identify the
latent topic structures in the documents to provide important descriptive features. Since
the invention of the Latent Dirichlet Allocation method (Blei et al., 2003), unsupervised
topic modeling has gained increasing attention in natural language processing and other
fields. In addition to text mining, it has been successfully applied to other areas including
computer vision (Fei-Fei and Perona, 2005; Luo et al., 2015; Masone and Caputo, 2021),
bioinformatics (Liu et al., 2016; Kim et al., 2020), and social networks (Jiang et al., 2015a;
Buenano-Fernandez et al., 2020). Among the many approaches, the probabilistic latent
semantic indexing (pLSI) model introduced in Hofmann (1999) has gained prominence for
unsupervised topic modeling, and it has been used in many applications such as document
classification, information retrieval, and scene recognition (Blei, 2012; Yan et al., 2018; Ai
et al., 2016; Daniels and Metaxas, 2018; Xue et al., 2020).

In many applications, documents are accompanied by responses or labels, such as prod-
uct ratings or document categories. In such cases, supervised topic modeling can be useful
for discovering the latent topics that will most accurately predict responses for future un-
labeled documents. This method involves jointly modeling both the documents and the
responses to find the underlying relationships between them. This can be useful for a va-
riety of applications where the goal is to predict responses for new documents based on

their content. See, for example, Blei and McAuliffe (2007); Chong et al. (2009); Lacoste-



Julien et al. (2008); Zhu et al. (2012, 2014). Supervised topic modeling has been applied
in a number of areas, including population genetics (Pritchard et al., 2000), document net-
works (Chang and Blei, 2010), and image classification and annotation (Chong et al., 2009).
Despite the increasing interest in supervised topic modeling, there are few methods that
come with theoretical guarantees. In this paper, we aim to address this gap by presenting
a theoretical framework for the analysis of supervised topic modeling and introducing algo-
rithms for parameter estimation and inference that have optimality guarantees. Our goal

is to provide a solid foundation for the application of these methods in various settings.

1.1 Problem Formulation

A collection of n documents is observed and represented by the relative word frequency
matrix D € RP*" where p denotes the vocabulary size in the dictionary and n is the number
of documents. Here the i-th column D, of the matrix D is the vector representation of the
relative word frequency for the i-th document. In addition, we denote the response vector
as y € R™ with its i-th element y; being the response/label of the i-th document.

We assume that the document-response pairs (D;,;), i = 1,...,n, are drawn indepen-

dently and the word frequency D); follows a scaled multinomial distribution

N,;D; ~ multi(N;; D)

where N; is the length (total word count) of the i-th document and Dy is a probability
vector. Without loss of generality, we assume that NN,’s are of the same order, that is,
N; < N for all i. The expected relative frequency matrix E[D] := D* = [D5,--- , D]

is assumed to be a low-rank matrix and can be decomposed into the product of two low-



dimensional matrices, that is,

D* =AW,

where A € RP*E is the word-topic matrix and W € REX*" is the topic-document matrix.
Here K is the number of topics, which is typically small relative to p and n.

In particular, one can interpret each column Ay of the matrix A as a word probability
distribution vector associated with the topic k for k € [K]. It is assumed that there
exists a K x K diagonal submatrix in A up to a column permutation. This assumption
on A is implied by the anchor-word assumption in topic modeling, which serves as an
identifiability condition (Donoho and Stodden, 2004; Arora et al., 2012, 2013; Ke and
Wang, 2017; Bing et al., 2018, 2020; Wu et al., 2022). Each topic is assumed to have at
least one anchor word, where anchor words are the words that only occur in a certain topic.
If the occurrence of such a word is observed, then it is guaranteed that the document must
cover the corresponding topic. The interpretation of W is similar. Each column W; of
the matrix W represents the topic distribution of the document ¢ for i € [n]. It is sparse
when the document only covers a small number of topics. All columns of A and W are
nonnegative and sum up to one, and therefore are interpreted as probability vectors. So
are the columns of D.

The topic-document matrix W contains the essential features of the expected relative
frequency matrix D*. Indeed, the expected vector representation of each document 7, which
originally is a p-dimensional word frequency D, can be reduced to its K-dimensional topic
proportion W;. Therefore, one can model the relationship between the response y and the
low-dimensional matrix W, instead of the high-dimensional D* (Blei and McAuliffe, 2007;
Ramage et al., 2009; Lacoste-Julien et al., 2008).

In this article, we consider the generalized linear models (GLMs) to describe a more gen-

eralized relationship between the response y and the essential features. However, unlike the
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GLM considered in Blei and McAuliffe (2007), we take X = log(W) in the model, instead
of W itself. This is due to the ¢; constraint on the columns of W. Since Zszl Wi =1
for each i € [n], the K components of each topic distribution cannot vary freely; therefore
traditional methods often require the omission of certain components to ensure identifia-
bility, and so encounters intrinsic difficulties in providing sensible interpretations for the
regression parameters. To overcome the identifiability issue, we use the log-contrast model
(Aitchison, 1982; Aitchison and Bacon-Shone, 1984) to account for the compositional na-
ture of the topic distribution by considering X = log(W) instead of W.

Suppose for the moment that W is given. Set X = log(W') on the support of W and
set other elements of X as 0. We use the GLMs for the relationship between y; and Xj;.

More specifically, the conditional density of the response y; given W; is assumed to follow

Fali W) = i) exp (FH22

subject to 1,8 =0,

where o, is the standard deviation of noise € in the GLMs, h(-), ¢(), ¢(-) are the log-
partition function, nuisance scale function, the cumulant generating function respectively,

and 3 € R¥ is the regression coefficient vector. For instance, in linear regression, c¢(o.) =

2.

€)

oZ; and in logistic regression, multinomial regression, and Poisson regression, c(o.) = 1.
In addition, the GLM (1.1) is subject to the linear constraint 1,3 = 0 on 3. This is due
to the fact that by the log transformation, the ¢; constraint of W is converted into the
sum-to-zero constraint on the coefficient vector 8 (Lin et al., 2014; Lu et al., 2019; Shi
et al., 2016, 2021).

A distinct feature, also a major difficulty, of the present GLM framework is that the

topic-document matrix W, and thus the covariate X; in the model (1.1), is unobservable.

It is necessary to obtain an accurate estimator W from the observations (D,y). Provided



a good estimator W, simply substituting W with W in the term log(W') would not lead to
a good estimator for X = log(W') and hence an additional bias correction step is needed.
Given a suitable estimator of X, we recover the regression vector 3 in the constrained GLM
(1.1) by regressing the response y on the estimated X, and then we can further consider

the statistical inference for 3.

1.2 Methods, Main Results, and Our Contribution

In this paper, we develop a new algorithm for the estimation of the regression coefficients
B in the context of supervised topic models. The algorithm begins with the estimation of
X =log(W). The vanilla estimator of log(W) is biased and an additional bias-adjustment
step is needed. We propose a debiased estimator of X = log(W). Its construction is
essential in the algorithm. A penalized and constrained maximum likelihood estimator
(MLE) is then introduced to estimate the high-dimensional regression vector 3.

By establishing both the minimax upper bound and matching lower bound, the proposed
estimator is shown to be rate-optimal up to a logarithmic factor. To the best of our
knowledge, this is the first optimality result in the supervised topic modeling literature.
The estimation risk can be viewed as the sum of two parts, one is due to the noise term
in the GLMs, which is consistent with the results from the standard GLMs where the
covariates X are observed, while the other is due to the error in estimating X which can
be traced back to the uncertainty in w.

In addition, we also consider statistical inference for the individual components of the
regression vector 3. Due to the ¢; regularization in the estimation method, the proposed
estimator ,3 is biased. We first propose an algorithm for constructing a de-bias estimator
and establish its asymptotic normality. The results are then used to construct confidence
intervals with guaranteed coverage probability.

The key ideas behind our methodology and analysis can be of independent interest.



They can be applied to a range of problems where the data has compositional nature and
low-rank structure including analysis of single-cell RNA-seq data (Bravo Gonzalez-Blas
et al., 2019), image annotation or classification (Bosch et al., 2006; Fei-Fei and Perona,
2005; Chong et al., 2009), and the microbiome data analysis (Shi et al., 2021). See further
discussions in Section 6.

Simulation studies are carried out to investigate the numerical performance of the pro-
posed methods. They are shown to provide more accurate estimates and predictions than
directly fit the response y using the observed word frequency matrix D. In addition,
the merits of the proposed procedures are further illustrated by the analyses of two real
datasets. The first dataset is a movie review dataset (Pang and Lee, 2005). Our method
interestingly finds that the comedies for kids and teenagers are more likely to have positive
scores while the movie remakes are hard to obtain positive reviews. We also analyze a gut
microbiome dataset (Lewis et al., 2015) in the Supplement by implementing the proposed
algorithm with logistic regression. The results also return more accurate predictions under

several settings than those by regressing directly on the word frequency matrix D.

1.3 Related Work

Our work is clearly related to estimation and statistical inference for high-dimensional
GLMs in the conventional setting where the covariates are directly observed. In such
a setting, estimation for high-dimensional GLMs has been well-studied in the literature
(van de Geer, 2008; Meier et al., 2008; Negahban et al., 2012; Bach, 2010; Huang and
Zhang, 2012; Plan and Vershynin, 2013). Most of aforementioned papers focus on the
logistic regression. For statistical inference, van de Geer et al. (2014) proposed a debiasing
procedure by computing the correction score via another Lasso on the Hessian matrix and
Cai et al. (2022) developed a unified inference framework for high-dimensional GLMs with

general link functions in both unknown and known design distribution settings. Cai et al.



(2022) proposed a two-step weighted bias-correction method for constructing confidence
intervals and simultaneous hypothesis tests for individual components of the regression
vector.

Another closely related model is the compositional data regression model (Lin et al.,
2014; Li, 2015; Shi et al., 2016, 2021; Lu et al., 2019). In particular, Lin et al. (2014)
and Shi et al. (2016) proposed variable selection methods for linear regression under linear
constraints, which was further extended in Lu et al. (2019) to the generalized linear models.
Shi et al. (2021) considered an errors-in-variables model and proposed a method to account
for the measurement errors. Despite the same usage of the log transformation, our model is
essentially different from the aforementioned compositional data regression models, where
the response y is regressed on the observed log(D). Here D records the relative abundance
of the components (e.g., bacterial gene or taxon) in the different samples. In contrast,
under our GLMs framework, the covariate X = log(W) is not observable, which creates
additional difficulties.

The setting considered in the present paper is also related to the errors-in-variables
model where the covariates are observed with measurement errors. In linear regression, it is
common to correct the measurement errors using penalized regression (Loh and Wainwright,
2012; Ma and Li, 2010). Belloni et al. (2017) proposed a new estimator attaining the
minimax efficiency bound for high-dimensional errors-in-variables linear model.

The first step of our method is to construct a good estimator of the topic-document
matrix W based on the observed relative word frequency matrix D. This falls in the
domain of unsupervised topic modeling, which has been well studied in the literature.
Besides the empirical successes, recent studies also developed theoretical guarantees for the
unsupervised topic models. Ke and Wang (2017) provided the first minimax optimality
results for the estimation of the word-topic matrix A under the pLSI model, which was

then extended in Bing et al. (2018) to the unknown K case, and subsequently Bing et al.



(2020) obtained the minimax optimal rate for the sparse pLSI under a strong signal-to-
noise ratio condition. Wu et al. (2022) proposed novel and computationally fast algorithms
for estimation and statistical inference for both A and W and established the minimax
optimal rates under the sparse pLSI model. In sharp contrast to other inference problems in
high-dimensional statistics including high-dimensional sparse linear/logistic regression and
low-rank matrix completion, Wu et al. (2022) uncovered an interesting phenomenon that
debiasing is not needed for the construction of the confidence intervals under the sparse

pLSI model.

1.4 Organization

The rest of the paper is organized as follows. We introduce an algorithm for the estimation
of the regression vector 3 in Section 2, and then provide its risk upper bounds as well as
matched minimax lower bounds in Section 3. Following that, we consider the construction
of confidence intervals with theoretical guarantees in Section 4. Numerical experiments,
including simulation results and real-data analysis for the linear regression, are provided

in Section 5. We conclude with the discussion and future work in Section 6.

1.5 Notation

Throughout the paper, for a vector @ = (ay, ...,a,)" € R", we define the ¢, norm |lal|, =
(>r, af)l/p, and the (o norm ||a||. = max;<j<, |a;|. a_; € R"! stands for the subvector
of a without the j-th component. For vectors a,b € R", we denote their inner product
(a,b)y =>""  a;b;. We also use e; to denote the k-th canonical basis where only the k-th
entry equal to 1 and the rest are all 0. For a matrix A € RP*9 \;(A) stands for the i-th
largest singular value of A and Apax(A) = M(A), Amin(A) = Apng(A). ||All1 denotes the

matrix ¢ norm, ||A||. = max;;|A;;|, and cond(A) means the condition number of A. In

addition, A_; ; € RP~D*@=1) stands for the submatrix of A without the i th row and
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j-th column. For any positive integer p, we denote [p] = {1,...,p}. For a set S C [p]
and a symmetric matrix X € RP*P| Xg denotes the symmetric submatrix containing rows
and columns in S. Furthermore, for sequences {a,} and {b,}, we write a, = o(b,) if
lim, a, /b, = 0, and write a,, = O(b,), a, < b, or b, = a, if there exists a constant C'
such that a, < Cb, for all n. We write a, < b, if a, < b, and b, < a,. We also write
a, = Op(b,) if there exists a constant C' such that liminf, ., P(|a,/b,] < C) = 1, and
an = 0p(by) if ap /b, 2 0. A generalized inverse of a matrix X is defined as X . In addition,
1, is defined to be a k x 1 vector with all entries being 1. When its dimension is clear,

we can omit the subscript. We use C, Cs and C5 to denote generic constants, which may

vary from place to place.

2 Estimation

In this section, we present the estimation algorithm for the regression coefficient vector 3
in the GLM (1.1). As mentioned earlier, a major difficulty of the present problem is that
the covariates X; in the model (1.1) is unobservable and a good estimator of X = log(W)
needs to be constructed based on the observations (D, y).

The algorithm for estimating the regression vector 3 consists of three major steps:

Step 1. Obtaining asymptotically unbiased and normal estimators A and W by adapting the
method proposed in Wu et al. (2022);

Step 2. Constructing a debiased estimator of log(W) based on A and W;

Step 3. Solving the high-dimensional GLM (1.1) under the linear constraint 173 = 0 via the

constrained and ¢; penalized maximum likelihood.

We now give a detailed description of the three steps.
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2.1 Estimation of A and W

The first step is to construct asymptotically unbiased and normally distributed estimators
for the individual entries of the word-topic matrix A and then the topic-document matrix
W. This can be accomplished by modifying the methods introduced in the recent paper
Wu et al. (2022), which studied unsupervised topic modeling under the sparse pLSI model.

It begins with the sample splitting. We split the data D into D™ and D® where both
samples consist of N/2 words. Then apply the algorithm on D™ to figure out the detection
of anchor words, which consists of four main steps. Recall that each row represents a word
and the row sums correspond to frequency of words in the collection. Since some words
occur much less frequently than others, which makes the detection of anchor words much
harder, we first normalize the rows of D to ensure the row sums do not vary significantly.
Following that, we apply singular value decomposition to this normalized matrix and obtain
the matrix = consisting of the top K left singular vectors. We then project the rows of =
to a unit sphere to have a unit ¢, norm. By implementing the one-class Support Vector
Machine, we are able to obtain an estimator P for the set of the anchor words.

After the recovery of anchor word set, we solve A row by row. By minimizing the
negative log-likelihood function with the sum-to-zero constraint, the estimator for each row
of A is the non-negative constrained maximum likelihood estimator (MLE). The optimal
estimator A can be obtained by normalizing the columns to have unit ¢;-norm.

After obtaining the estimator A, in Wu et al. (2022) we treat the recovery of W as a

2 and A, with the non-negativity and unit ¢;-norm

multinomial regression problem on D
constraints, and solve it column by column. The estimator W is shown to be minimax
rate optimal, and asymptotically unbiased and normal for each non-zero entry. Since A
and W are assumed to be independent, by utilizing splitted sample D®) we reduce the

dependence between A and W for the ease of technical analysis.

It is noteworthy that after obtaining W, A can be estimated again using the recovered
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anchor word set P as well as D and W. By adding this optional step, we attain a more

precise estimate of A in order to compute a more accurate bias correction term.

2.2 Debiased Estimator of log(1V)

Although the estimator W obtained in Section 2.1 has desirable properties and in particu-
lar, it is asymptotically unbiased for each individual entry, simply substituting W with W
in the term log(W') would create a significant bias for the estimation, which would lead to
additional inaccuracy in recovering B under the GLM (1.1). It is necessary to construct a
debiased estimator of X = log(W). In the following, we derive an appropriate correction
term Z and such that X = log(W +Z ) can accurately approximate X = log(W'), where
the value of Z depends on the estimators A and W. For any ¢ and k, (i, k)-th entry of X

is defined as
Xik = log(VVik + sz) (2.1)

In order to determine the value of Z, in the following, we introduce Z as a generic

correction term in the analysis. It is proved in Wu et al. (2022) that for minpy o Dy >

log(np) - < [J\(f:zip) Vv ’]’V—I§>, with probability 1 —o(1), we have supp(W) = supp(W'). When

Wi # 0, by the Taylor’s expansion of log(Wix + Z;x) at Wi up to the second order,

A

; E[Wi| + Zi — Wi Var(Wig) + 2Z3E[Wip — Wy] + 22
Efllog(Wix + Ziy)] = log(Wix) + Wl W k ko (W) I;V[EQ k ] k
i ik
Var(Wik) + 2sz]E[Wzk — V[/zk] + ka
+o0
Wi,
Z; Var(Wzk) + sz Var(Wzk) + ng:
=1 W, _ ] i :
og(Wix) + W) ZVVZQk +0 VVsz
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where last equality holds due to the following result derived in Wu et al. (2022), that is,

A

W follows an asymptotic normal distribution as specified below:

R 1 . . 1
ik — N iks - i 14T i Dz TA -1 — .
Wi (Wk, Nek( diag(D;)'A) ek> + op <\/N)

. . . ) Var WZ +272 .
From the expansion above, we aim to reduce the bias term 5/—”; — W Inspired
z ik

by the lemma below, we take Zi; := Va;éi/Wm).
ik

Lemma 1. Suppose minpy 2o Dj; > log(np) - ( 1[\(127/12/\;7) Vv ’]’\/—Ig) For each Wy, # 0, by

VaT(Wik) . e; (ATdiag(Di)JfA)_le;C
2Wis AINW;

setting Zi, = , with probability 1 — o(1), the bias of the

. N2
estimator Xy, given in (2.1) equals to % (%) +0 (\/—IN)
ik

Given the covariates &; = (Xj1,..., Xix), we can then estimate 3 by minimizing a

regularized negative log-likelihhod function, which will be discussed in details in the next

section.

2.3 Estimation of

After computing the correction term Z and obtaining the estimator X = log(W +Z )
for X = log(W), we are ready to estimate 8 in the high-dimensional GLM (1.1) via
constrained and /; penalized maximum likelihood estimation. More specifically, we aim to

minimize
L(B) = S (0(@] B) ~ yi- 2] B} (22
=1

which is the negative log-likelihood function. In particular, for the linear regression, we
have L(8) = L]y — XA

To guarantee the sparsity recovery, analogous to Lasso, we also impose the ¢, regular-
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ization term in the loss function. Recall that due to the log-transformation of W the model
(1.1) is subject to the linear constraint 1,3 = 0.
Derived from the above analysis, we propose to estimate the sparse regression vector 3

by minimizing L(3) + A||3||: under the constraint 13 = 0 with

B = argmin{L(8) + |81}, (2.3)
1).8=0
where A > 0 is a tuning parameter.
The whole procedure for estimating (3 is summarized in the following Algorithm 1,

where the tuning parameter A can be chosen by standard methods such as cross-validation.

Algorithm 1 Supervised Topic Model

Input: The document data D € RP*", response vector y € R", tuning parameter A.
Output: The regression coefficients estimator 3.

Randomly split D into two subsamples With equal size, say D and D®.
Obtain estimators of A and W from D, denoted as A and W, respectively.
Obtain an updated estimator of A using D(Q) and W, denoted as A.

Add the bias adjustment Z, using A, to W and compute X = log(W + Z)
Solve for B in the optimization problem (2.3)

e Wy e

N

B = argmin L(8) + A[|B]x,

1}.8=0

where L(8) = 23" {¢(2B) — y; - &/ B}, and output the result 8.

3 Estimation Optimality

In this section, we aim to investigate the properties of the proposed estimator ,é given in

(2.3) and establish its minimax optimality. Recall that X = log(W) and X = log(W +Z).
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Throughout this section, we consider the following parameter space:

Bicpn(s, B) = {(B, A, W) : B e RF, 173 =0,[|Bllo < 5, |18l < B,
A c RPE ||A; |l = 1,cond(A) < C,
W e R ||W; ||y = 1,cond(WW T)g,) < C for all i € [p],

c|Pz|® < | X Pz||* < C|| P||*},

where S; is the support of A;. for i € [p].

Assumption 1. For alli and k, the estimator Wik required in Step 3 of Algorithm 1 satisfy

P(Wiy, < t|A) — P(Z, < t]A)‘ = op (\/Lﬁ) where Zy | A is normally distributed as

sup,

N (Wk %e,j(ATdiag(Dj)TA)_lek).

Remark 1. We remark here that W obtained in Step 1 of Algorithm 1 satisfies Assumption
1. That is, given A and D the condition

- 1 A P 1
Wi, = N (Wk Fer (Al diag (Df)) A) 1ek) +op (\/—N)

can be achieved by using the estimator proposed in Wu et al. (2022).

The following theorem establishes the convergence rate of the proposed estimator B

Define i to be the harmonic mean of the nonzero entries of W, that is,

B Z” 1{Wij # 0}
= 1
ZWij;ﬁO,iE[K],jG[n] WZ]

and define 0 = max; , ﬁeg(ATdiag(D;“)TA)flek‘

Theorem 3.1. Under Assumption 1, by choosing \ < \/g(c(ae)ﬂlmgﬂ/”z)1OgK in (2.3), and

n
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assuming n > (c(o.) + ||B]|302/u?) - slog K, we have that

sup E||B—BI° <O

BK,p,n(S:B)

(slog(K ) - c(oe) M) ,

2
Bl 2

for some constant C.
In particular, assume that +e} (A"diag(D;)TA) e, < = for alli € [n], k € [K],
that is 02 = = and p = 2 for some small value Cs, which holds when Dy = O(1/p) and

Wi = O(1/K) for all i € [n],j € [p], k € [K], we have

(1 - A1) < ¢y (HUELA gy o KhslID))

The choice of the tuning parameter A\ in practice will be discussed in Section 5. The

assumption e, (A'diag(D;)TA) e, < % can be achieved if we consider the entries of
W having the same order.

The condition on the entry-wise bounds of W;; in the above theorem implies that
once a topic is detected in a document, it should appear at a non-negligible proportion.
Technically, this condition is mainly used to control the deviation of Wij and therefore yield
the minimax-optimal rate of convergence of Algorithm 1. Such a condition is standard in
the errors-in-variables (EIV) literature, such as the EIV linear regression (Shi et al., 2021),
Poisson matrix completion (Cao and Xie, 2015; Jiang et al., 2015b), composition matrix
estimation from sparse count data (Cao et al., 2017).

Further, we derive the following lower bound result, which matches the upper bound

derived in Theorem 3.1, and hence it concludes that the algorithm is rate-optimal up to

logarithm factors.

Theorem 3.2. Suppose that we have s < K/3, n > Cslog K for some large C, and
sgK*log(K/sz) < Nn. Forthe GLM (1.1) and B € Bk (s, B) there exists some constant
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C1 > 0 such that

inf sup E <||,[§ — B||2) > (- <
)

slog(K/s) - c(o) B sKl@g(K/s))
B BBk p.n(s,B '

n Nn

It is worth noting that this optimal rate consists of two parts. The first term %ns)'c(ae)

is due to the noise of generalized linear model, which is consistent with the result in GLMs
(Negahban et al., 2012). The second term B- %ﬁf{/s) comes from the error of not directly
observing the true W. Shi et al. (2021) also obtained a similar result for the Dirichlet-
multinomial distribution. The above result shows that the estimation error decreases with
longer document length N, larger sample size n, smaller sparsity level s, or smaller signal
amplitude ||B]|2.

Leveraging c(o.) = o2, the lower bound in the linear regression setting is a special case

of the above theorem, as stated in Corollary 1 below.

Corollary 1. Under the conditions of Theorem 3.1, for the linear regression with ey, ..., €, &

N(0,02%), a special case of model (1.1) with ¢(c.) = o2, there exists a constant Cy such that

. 5 slog(K/s) - o sKlog(K/s
wf s B (15 pIF) 2 ¢y (TEELL . SRR
B BK,p,n(SvB) n n

These lower bound results can be obtained by the Fano’s lemma, and the details of the

proofs are deferred to the Supplement.

4 Statistical Inference in Supervised Topic Modeling

In this section, we consider statistical inference for the individual coordinates of 3. As
usual, we need to begin with a nearly unbiased estimator of 3 for inference. Due to the

¢y regularization in solving 8 by (2.3), the proposed B is a necessarily biased estimator
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of . In order to obtain an asymptotically unbiased estimator 3“, we propose to take an
additional debiasing step using the ideas introduced in Javanmard and Montanari (2014)
for the case of conventional high-dimensional linear regression. The detailed procedure is
as follows.

Let the projection matrix P = Iy — 151} /K. Without loss of generality, we assume
the total sample size n is even, and let ny = n/2. We first randomly split the dataset (y, X)

into two halves, denoted as {y;, @;};2;, {¥i i }i_,, 1, and use the first half to compute an

estimate of the Fisher information matrix corresponding to the GLM,
1
- o TA T
S5 = - ;w(wi PB)Pi;(Px;)". (4.1)
For k € [K], we then solve for my, which is the solution to the following convex program:
minimize |m||; subject to \|f]ﬁm — Pei|loo <7, (4.2)

for some tuning parameter v > 0.
After obtaining 1y, we then use the second half of the sample to define the following

de-biased estimator

. N T PA
Bg _ Bk n Zi:nlJrl z; Py — (2, PB)}7 ke [K]. (4.3)

ni

It will be shown that this B}J is asymptotically normal with mean (.
To construct a confidence interval for (i, we need to further estimated the variance
of ﬁA}j For the GLM with ¢(o.) = 1, which includes logistic, multinomial, Poisson, and

log-linear models, we let 62 = 2/1(:%?,3), and define the following variance estimate of B}j:

~ ] e - .
V= > {&]m}67. (4.4)

i=1
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For the GLM with c(o.) = o2 such as the linear regression setting, we let Vi = o2 =

Ly — X 3|2 for all k € [K], which serves as an estimator of ¢2, the noise variance.

We then have the following results for asymptotic normality of B};

Theorem 4.1. Under the same conditions of Theorem 3.1, assuming s < (c(o‘e)+||ﬁ||\§<i/u2)-logK’
then for k € [K],
V(B = Br)
Vi

Remark 2. In our current procedure, a sample splitting step is performed in the beginning.

—N(0,1), asn — oo.

This step is added to avoid the dependence between iﬁ given in (4.1) and B We note
here that this sample splitting step can be avoided in two cases: 1) The linear regression
setting, where instead of using the Fisher information matrix 5 ;4 considered previously, we
compute the sample covariance matrix Syx = %Z?:l Pz,(Pz;)" = %PXTXP, which
is independent of 3 given D. 2) The GLMs setting with ¢(o.) = 02, and assume the j-th
column of 251 has at most s; nonzero elements such that (s;logp)? = o(n) and N > nlogn,

where X5 = E[¢)(&] PB)Pz;(P;)T]. In this case, one can estimate X' consistently and

is able to control control the error induced by the dependence between 3 5 and B

Derived from Theorem 4.1, we can construct the confidence interval with a prespecified

guaranteed coverage probability, as stated in the corollary below.

Corollary 2. Under the assumptions of Theorem 4.1, the (1 — «)-level confidence interval

for the individual coordinate B is constructed as

I, = {B}: — Za/2 Vk/m B;? + Zaj2 -/ Vk/n} ;

where zq )2 s the o /2-th quantile of a standard normal distribution.

From the above, the procedure of establishing a confidence interval at level a for each

coordinate of the regression coefficient can be summarized as follows in Algorithm 2.
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Algorithm 2 The Confidence Interval for the Regression Coefficient (3
Input: The document data X e REX" response vector y € R™.
Output: Confidence Interval of 55 with guaranteed coverage.
1: Randomly split (v, X ) into two subsamples with equal size mn;, say

{yza i’l}? 1 {y27 iz}? ni+1°
2: Use {y;, &}, to compute an estimate of the Fisher information matrix.

1 <. . R
= —) (& PB)P&;(P;) .
(L3 S

3: For each k € [K], obtain an approximate inverse of EA]B by solving

minimize ||m|[; subject to Hiﬂm — Peyllo < 7.

4: Use {y;, ®;}i_,, 41 to define the de-biased estimator
o o & Py — (@] PP
ﬁ]qj _ 5]{ + sznl‘f'l (2 ,Z{y w( 1 IB)}’ k e [K]
1

5: Compute the variance estimator as
Z{ i (@] )%,

6: The confidence interval at level « is constructed as

I = [55 — Zag2 - A Vi/1, B+ Zagz - Vk/n] :

5 Numerical Experiments

The estimation and inference procedures proposed in Sections 2 and 4 are easy to imple-
ment. We investigate in this section the numerical performance of the proposed methods
through simulation studies for the linear regression as well as the analyses of real dataset —

movie reviews (Pang and Lee, 2005; Blei and McAuliffe, 2007). Due to the space limit, we
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leave the case of logistic regression and antoher real dataset analysis — the gut microbiome

studies (Lewis et al., 2015) to the Supplement.

5.1 Numerical Results for Linear Regression
5.1.1 Data Generating Mechanism

We generate A by first randomly generating a p x K matrix where each entry follows a
uniform distribution U(0,1). For each column k, we keep the [(k — 1) x p/100 + 1]-th
to k x p/100-th entry and set any other entries on the top (p/100) x K rows to zero to
construct anchor words. Lastly, each column is normalized to guarantee the column sum
being one. For W, we first randomly generate a K x n matrix where each entry follows
a uniform distribution U(0, 1). Secondly, for each column, we uniformly pick sy integers
from [K] as the indices of the support. Note that these sy, integers can be repetitive. We
keep the entries within the support and set the remaining ones to zero. Last, we normalize
each column to sum to one.

After generating A and W, the expected frequency matrix D* can be simply com-
puted by the matrix product D* = AW. The generation of every column D; follows
a multinomial distribution multi(N;, D}) divided by the document length N;. To sim-
plify the procedure, we set all the documents N; are of equal length N in the simula-
tions. The response vector y is generated as y; = Zszl log(Wy;) Bk + €, where B =
(0.8,0.6,—0.2,—1.2,0,...,0) € R¥ is the deterministic coefficient vector with s = 4 and ¢;

are i.i.d. noise generated from N(0,0.5?).

5.1.2 Simulation Results

We consider two possible values of p € {100,200} with K = 10 and sy = 5. The tuning

parameter \ can be determined by cross-validation. The performance are evaluated by
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comparing the ¢; estimation error, prediction error, and lengths and coverage probabilities
of the confidence intervals. Two hundred replications are used for each setting. For different
document size n € {100, 200, 500, 1000}, we record the ¢; estimation errors of our proposed
estimator ,(; with and without the adjustment term in Figure 1. It shows that the adjusted
estimator performs slightly better than the non-adjusted one when N = 1000. As n
increases, the estimation error becomes larger.

The prediction results are compared in Figure 3. Here, we compare the prediction error
with the results obtained by directly regressing y on the observed log(D). We note that
the performance on log(W) and log(W + Z) are almost the same, which is much better
than that of log(D).

In addition, the coverage probabilities and lengths of the confidence intervals for each
element of 3 are also reported by boxplots, as shown in Figures 4 and 5, respectively. From
Figure 5, we can see that the adjusted and non-adjusted estimators perform comparably
well. The lengths of confidence intervals decreases as the sample size increases or as the
number of words p increases. Regarding the coverage probability, the confidence interval
using the adjusted estimator is slightly better with higher coverage probabilities in several

settings.

Estimation Error, p=100,K=10 Estimation Error, p=200,K=10
T T T T T T T T

T T T T T T
—+— Adjusted W —+— Adjusted W
— 4— Nonadjusted W —#— Nonadjusted W

Estimation Error
Estimation Error

0.2 L L L L L L L L 0.2 L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Figure 1: Estimation error of ,[;' in the linear regression with K = 10 and N = 1000. Left:
p = 100; Right: p = 200.
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Figure 2: Estimation error of ,é in the linear regression with K = 10 and N = 2000. Left:
p = 100; Right: p = 200.

Prediction Error, p=200,K=10
T T T

Prediction Error, p=100,K=10
55 T T T T T T 6 T T T
—+— Adjusted W —+— Adjusted W
— & Nonadjusted W | | — & Nonadjusted W

D1

2]
T

Fel
)
T

L

IS
T

@
w o
T T
L L

N
o

T

I
Prediction Error

Prediction Error

N
T
L

o
T
L

1k 4
oL 4 —

——
05 ! ! n hd T T * T 0 L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

n n

Figure 3: Prediction error in the linear regression with K = 10 and N = 1000. Left:
p = 100; Right: p = 200.

5.2 Real Data Applications

We now further illustrate the merits of our proposed methods from the real application

perspective. The proposed methods are used to analyze the movie review dataset.
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Confidence Interval Coverage Probabilities, p=100,K=10

Confidence Interval Coverage Probabilities, p=200,K=10

1
o
b - ‘
095 - — ¥ — M-+ -~~~ 7l7777 7777777 095 —— 4 — —§— —F§ —F — — 7‘l’77 - 77‘»7
VO ¥ i I Fi &3 -
= - = !
5 o9rf Y438 o9or ° 1
3 E .
° o ¢
a o
) )
& o085 1 Soss 1
3 ]
2 2
3 3
o o
08 1 08 1
075 075
3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = ] =
3 ) 3 ) 3 k) 3 ) 3 k) 3 g 3 3 3 g 3 3 3 g
3 < 3 < g < 3 < 3 < ] b3 3 < 3 5 ] < 3 <
£ < E < S < ) < ) < ) < 2 < Y < s < S <
35 5 ) 5 5 5 ) 5 ) 5 2 s 5 s b s 5 5 5 §
< z < z < z < z < z < z < z < z < z < z
3 3
3 3 3 3 8 3 3 3 3 8
8 8 8 8 8 8 g 8 g 8
2 8 2 8 2 2 8 3 8 2
i i i i i i i i i i
4 4 4 4 4 4 4 4 a L

Figure 4: Coverage probabilities

of confidence intervals for

B in the linear regression with

nominal level 0.95, K = 10 and N = 1000. Left: p = 100; Right: p = 200.
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Figure 5: Length of confidence intervals for B in the linear regression with K = 10 and

N = 1000. Left: p = 100; Right:

5.2.1 Movie Reviews

p = 200.

The first dataset we considered in this section is the publicly available movie review dataset

introduced in Pang and Lee (2005). It collected Internet movie reviews in English from four

critics, who wrote 1770, 902, 1307, or 1027 documents respectively. Each movie reviews is

paired with the number of stars given. This dataset have been studied in Pang and Lee

(2005) and Blei and McAuliffe (2007) to address the “sentiment analysis” problem of movie

reviews.

In this paper, we analyze the three-class scaled version of the dataset, where the label of
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each review comes from a 0-2 rating scale. Here three categories 0, 1, and 2 correspond to
“negative”, “neutral”, and “positive” respectively, and hence we apply the linear regression
to this dataset. In order to analyze the dataset better, we aim to choose an appropriate
selection of words, hence we removing words occur in fewer than 50 documents and those
occur in more than 25% of documents. After removing these words, the collection of
documents consists of 5006 documents with 2349 words.

In Figure 7, we plot the word cloud of each topic, which consists of top 50 words with
the largest probabilities. We align the top 8 words of each topic by the corresponding
coefficient 3; in Figure 8. We can see that most of topics are pretty neutral, as top words
have no obvious subjectivity and their corresponding coefficients j3; are close to 0. For
instance, the 3rd topic, which is about the film noir, and the 8th topic, which is about the
action movie.

There are two topics, the 2nd and 5th, with large positive coefficients 3;. It shows that
the reviews with positive words such as “love”, “emotional”, “powerful” are more likely to
have high score. In addition, the comedy, which is the main focus of topic 2, is more likely
to have positive scores, especially those suitable for kids and teenagers.

The topic with large negative coefficient is the 6th one, whose top words consist of
“remake”, “version”, “conventional” and “original”. This topic is mainly about the remake
movie. It is observed that the remake of movie are more likely to have negative reviews,
which is intuitive. The remake of the movie is usually due to the success of the original
version, however, it is usually hard to achieve better results.

The prediction error of proposed methods with varying K is reported in Figure 6,
compared with the corresponding results of non-adjusted W and D. It is obvious that
the estimator with bias adjustment performs better than the non-adjusted one. While
the result of regression on log(D) is independent on the number of topic K, the green

line remains horizontal with varying K. For this dataset, we can see that the adjusted
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estimator performs better than non-adjusted one, while both work better than directly
regression on log(D). The lengths of confidence intervals are ploted on the right panel of
Figure 6. Although lengths of adjusted estimators are longer than that of non-adjusted

ones, they both are of order 10~* which is already pretty small.
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Figure 6: Results of movie reviews under varying number of topics. Left: prediction error;
Right: length of confidence intervals.

6 Discussion

This paper introduced a GLM and pLSI framework for supervised topic modeling, where
the design matrix X = log W is not directly observable. A novel bias-adjusted estimator X
was proposed and implemented in the constrained and penalized MLE to obtain a minimax
rate-optimal estimator of the regression vector 3. In addition, an asymptotically unbiased
and normally distributed estimator B“ is introduced and is then used for the construction
of confidence intervals for individual coordinates of 3.

As mentioned in the introduction, the key ideas behind our methodology can be applied

to problems where the data has compositional nature and low-rank structure. Examples
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include analysis of single-cell RNA-seq data (Bravo Gonzalez-Blas et al., 2019), image
annotation or classification (Bosch et al., 2006; Fei-Fei and Perona, 2005; Chong et al.,
2009), and the microbiome data analysis (Shi et al., 2021). In analysis of single-cell RNA-
seq data, the gene expressions of single cells can be recorded by a count matrix, where
each cell is regarded as a single document and the different gene expressions are words.
Implementing the proposed methods with possibly some modifications on the count matrix
and classified cell-type can provide a solution to the cell-type prediction problem. For
image annotation, each image is formed by a collection of local patches where each patch
is represented by a codeword from a dictionary of visual words. The whole picture is also
classified by a categorical label, such as the natural scene of the image, or a binary vector
label summarizing the caption. The label is regarded as the response. Prediction of the
label of a new image can be achieved by studying the frequency of the visual words and
learning image topics that are predictive. Some of these problems including semi-supervised
topic modeling discussed below are important and we will study them in future projects.
Unlike the supervised topic modeling considered in this paper, where all the documents
are labeled, in many applications there are a large number of unlabeled documents in
addition to the labeled ones. This is the setting for semi-supervised topic modeling. By
incorporating the unlabeled documents in the analysis, one is expected to have a more
accurate estimator for the latent topics of the underlying data and then makes use of the
albeit incomplete labels to guide the model learning and improve document classification.
One limitation of our regression method is on the determination of the topic numbers. It
is observed from the real-data applications that the prediction error fluctuates with varying
K. Although we considered the case that the number of topics is growing, it is required
to be prespecified in practice. Drawing scree plots can sometimes be inadequate especially
when there is no significant gaps among singular values. Developing an algorithm that

explicitly incorporates the uncertainty of K and computes the regression coefficient 3 is
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worth exploring in the future.
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