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Abstract

The rapid growth of digital textual data has made it increasingly important to
develop statistical methods for the analysis of such data with theoretical guarantees.
In this paper, we focus on supervised topic modeling within the framework of general-
ized linear models (GLMs) and probabilistic latent semantic indexing (pLSI) models.
One of the major challenges of the analysis is that the covariates are unobservable.
We propose a novel bias-adjusted estimator of the covariates and use it to estimate
the regression vector. We establish minimax optimal rates of convergence and show
that the proposed estimator is rate-optimal up to a logarithmic factor. In addition,
we consider statistical inference for individual regression coefficients and construct
confidence intervals based on an asymptotically unbiased and normally distributed
estimator. The effectiveness of our proposed algorithms is demonstrated through
simulation studies and applications to the analysis of a movie review dataset.

Keywords: Supervised topic modeling, high-dimensional regression, sparsity, minimax op-
timality, confidence intervals
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1 Introduction

Statistical analysis of textual data has gained significant importance due to the vast amount

of digital textual data being generated from various sources such as news platforms, social

media, and the medical field. In particular, topic modeling has gained significant atten-

tion in recent years as a research area in statistics and machine learning, with numerous

applications in various fields such as business, genetics, sociology, and medicine (Bravo

González-Blas et al., 2019; Ke et al., 2019; Duan et al., 2019; DiMaggio et al., 2013).

The early focus has been on the unsupervised setting, where the goal is to identify the

latent topic structures in the documents to provide important descriptive features. Since

the invention of the Latent Dirichlet Allocation method (Blei et al., 2003), unsupervised

topic modeling has gained increasing attention in natural language processing and other

fields. In addition to text mining, it has been successfully applied to other areas including

computer vision (Fei-Fei and Perona, 2005; Luo et al., 2015; Masone and Caputo, 2021),

bioinformatics (Liu et al., 2016; Kim et al., 2020), and social networks (Jiang et al., 2015a;

Buenaño-Fernandez et al., 2020). Among the many approaches, the probabilistic latent

semantic indexing (pLSI) model introduced in Hofmann (1999) has gained prominence for

unsupervised topic modeling, and it has been used in many applications such as document

classification, information retrieval, and scene recognition (Blei, 2012; Yan et al., 2018; Ai

et al., 2016; Daniels and Metaxas, 2018; Xue et al., 2020).

In many applications, documents are accompanied by responses or labels, such as prod-

uct ratings or document categories. In such cases, supervised topic modeling can be useful

for discovering the latent topics that will most accurately predict responses for future un-

labeled documents. This method involves jointly modeling both the documents and the

responses to find the underlying relationships between them. This can be useful for a va-

riety of applications where the goal is to predict responses for new documents based on

their content. See, for example, Blei and McAuliffe (2007); Chong et al. (2009); Lacoste-
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Julien et al. (2008); Zhu et al. (2012, 2014). Supervised topic modeling has been applied

in a number of areas, including population genetics (Pritchard et al., 2000), document net-

works (Chang and Blei, 2010), and image classification and annotation (Chong et al., 2009).

Despite the increasing interest in supervised topic modeling, there are few methods that

come with theoretical guarantees. In this paper, we aim to address this gap by presenting

a theoretical framework for the analysis of supervised topic modeling and introducing algo-

rithms for parameter estimation and inference that have optimality guarantees. Our goal

is to provide a solid foundation for the application of these methods in various settings.

1.1 Problem Formulation

A collection of n documents is observed and represented by the relative word frequency

matrixD ∈ Rp×n, where p denotes the vocabulary size in the dictionary and n is the number

of documents. Here the i-th column Di of the matrix D is the vector representation of the

relative word frequency for the i-th document. In addition, we denote the response vector

as y ∈ Rn with its i-th element yi being the response/label of the i-th document.

We assume that the document-response pairs (Di, yi), i = 1, ..., n, are drawn indepen-

dently and the word frequency Di follows a scaled multinomial distribution

NiDi ∼ multi(Ni;D
∗
i )

where Ni is the length (total word count) of the i-th document and D∗
i is a probability

vector. Without loss of generality, we assume that Ni’s are of the same order, that is,

Ni ≍ N for all i. The expected relative frequency matrix E[D] := D∗ = [D∗
1, · · · ,D∗

n]

is assumed to be a low-rank matrix and can be decomposed into the product of two low-
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dimensional matrices, that is,

D∗ = AW ,

where A ∈ Rp×K is the word-topic matrix and W ∈ RK×n is the topic-document matrix.

Here K is the number of topics, which is typically small relative to p and n.

In particular, one can interpret each column Ak of the matrix A as a word probability

distribution vector associated with the topic k for k ∈ [K]. It is assumed that there

exists a K × K diagonal submatrix in A up to a column permutation. This assumption

on A is implied by the anchor-word assumption in topic modeling, which serves as an

identifiability condition (Donoho and Stodden, 2004; Arora et al., 2012, 2013; Ke and

Wang, 2017; Bing et al., 2018, 2020; Wu et al., 2022). Each topic is assumed to have at

least one anchor word, where anchor words are the words that only occur in a certain topic.

If the occurrence of such a word is observed, then it is guaranteed that the document must

cover the corresponding topic. The interpretation of W is similar. Each column Wi of

the matrix W represents the topic distribution of the document i for i ∈ [n]. It is sparse

when the document only covers a small number of topics. All columns of A and W are

nonnegative and sum up to one, and therefore are interpreted as probability vectors. So

are the columns of D.

The topic-document matrix W contains the essential features of the expected relative

frequency matrixD∗. Indeed, the expected vector representation of each document i, which

originally is a p-dimensional word frequency D∗
i , can be reduced to its K-dimensional topic

proportion Wi. Therefore, one can model the relationship between the response y and the

low-dimensional matrix W , instead of the high-dimensional D∗ (Blei and McAuliffe, 2007;

Ramage et al., 2009; Lacoste-Julien et al., 2008).

In this article, we consider the generalized linear models (GLMs) to describe a more gen-

eralized relationship between the response y and the essential features. However, unlike the

4



GLM considered in Blei and McAuliffe (2007), we take X = log(W ) in the model, instead

of W itself. This is due to the ℓ1 constraint on the columns of W . Since
∑K

k=1Wki = 1

for each i ∈ [n], the K components of each topic distribution cannot vary freely; therefore

traditional methods often require the omission of certain components to ensure identifia-

bility, and so encounters intrinsic difficulties in providing sensible interpretations for the

regression parameters. To overcome the identifiability issue, we use the log-contrast model

(Aitchison, 1982; Aitchison and Bacon-Shone, 1984) to account for the compositional na-

ture of the topic distribution by considering X = log(W ) instead of W .

Suppose for the moment that W is given. Set X = log(W ) on the support of W and

set other elements of X as 0. We use the GLMs for the relationship between yi and Xi.

More specifically, the conditional density of the response yi given Wi is assumed to follow

fβ(yi|Wi) = h(yi, σϵ) exp

(
X⊤

i β · yi − ψ(X⊤
i β)

c(σϵ)

)
, (1.1)

subject to 1⊤
Kβ = 0,

where σϵ is the standard deviation of noise ϵ in the GLMs, h(·), c(·), ψ(·) are the log-

partition function, nuisance scale function, the cumulant generating function respectively,

and β ∈ RK is the regression coefficient vector. For instance, in linear regression, c(σϵ) =

σ2
ϵ ; and in logistic regression, multinomial regression, and Poisson regression, c(σϵ) = 1.

In addition, the GLM (1.1) is subject to the linear constraint 1⊤
Kβ = 0 on β. This is due

to the fact that by the log transformation, the ℓ1 constraint of W is converted into the

sum-to-zero constraint on the coefficient vector β (Lin et al., 2014; Lu et al., 2019; Shi

et al., 2016, 2021).

A distinct feature, also a major difficulty, of the present GLM framework is that the

topic-document matrix W , and thus the covariate Xi in the model (1.1), is unobservable.

It is necessary to obtain an accurate estimator Ŵ from the observations (D,y). Provided
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a good estimator Ŵ , simply substituting W with Ŵ in the term log(W ) would not lead to

a good estimator for X = log(W ) and hence an additional bias correction step is needed.

Given a suitable estimator ofX, we recover the regression vector β in the constrained GLM

(1.1) by regressing the response y on the estimated X, and then we can further consider

the statistical inference for β.

1.2 Methods, Main Results, and Our Contribution

In this paper, we develop a new algorithm for the estimation of the regression coefficients

β in the context of supervised topic models. The algorithm begins with the estimation of

X = log(W ). The vanilla estimator of log(W ) is biased and an additional bias-adjustment

step is needed. We propose a debiased estimator of X = log(W ). Its construction is

essential in the algorithm. A penalized and constrained maximum likelihood estimator

(MLE) is then introduced to estimate the high-dimensional regression vector β.

By establishing both the minimax upper bound and matching lower bound, the proposed

estimator is shown to be rate-optimal up to a logarithmic factor. To the best of our

knowledge, this is the first optimality result in the supervised topic modeling literature.

The estimation risk can be viewed as the sum of two parts, one is due to the noise term

in the GLMs, which is consistent with the results from the standard GLMs where the

covariates X are observed, while the other is due to the error in estimating X which can

be traced back to the uncertainty in Ŵ .

In addition, we also consider statistical inference for the individual components of the

regression vector β. Due to the ℓ1 regularization in the estimation method, the proposed

estimator β̂ is biased. We first propose an algorithm for constructing a de-bias estimator

and establish its asymptotic normality. The results are then used to construct confidence

intervals with guaranteed coverage probability.

The key ideas behind our methodology and analysis can be of independent interest.
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They can be applied to a range of problems where the data has compositional nature and

low-rank structure including analysis of single-cell RNA-seq data (Bravo González-Blas

et al., 2019), image annotation or classification (Bosch et al., 2006; Fei-Fei and Perona,

2005; Chong et al., 2009), and the microbiome data analysis (Shi et al., 2021). See further

discussions in Section 6.

Simulation studies are carried out to investigate the numerical performance of the pro-

posed methods. They are shown to provide more accurate estimates and predictions than

directly fit the response y using the observed word frequency matrix D. In addition,

the merits of the proposed procedures are further illustrated by the analyses of two real

datasets. The first dataset is a movie review dataset (Pang and Lee, 2005). Our method

interestingly finds that the comedies for kids and teenagers are more likely to have positive

scores while the movie remakes are hard to obtain positive reviews. We also analyze a gut

microbiome dataset (Lewis et al., 2015) in the Supplement by implementing the proposed

algorithm with logistic regression. The results also return more accurate predictions under

several settings than those by regressing directly on the word frequency matrix D.

1.3 Related Work

Our work is clearly related to estimation and statistical inference for high-dimensional

GLMs in the conventional setting where the covariates are directly observed. In such

a setting, estimation for high-dimensional GLMs has been well-studied in the literature

(van de Geer, 2008; Meier et al., 2008; Negahban et al., 2012; Bach, 2010; Huang and

Zhang, 2012; Plan and Vershynin, 2013). Most of aforementioned papers focus on the

logistic regression. For statistical inference, van de Geer et al. (2014) proposed a debiasing

procedure by computing the correction score via another Lasso on the Hessian matrix and

Cai et al. (2022) developed a unified inference framework for high-dimensional GLMs with

general link functions in both unknown and known design distribution settings. Cai et al.
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(2022) proposed a two-step weighted bias-correction method for constructing confidence

intervals and simultaneous hypothesis tests for individual components of the regression

vector.

Another closely related model is the compositional data regression model (Lin et al.,

2014; Li, 2015; Shi et al., 2016, 2021; Lu et al., 2019). In particular, Lin et al. (2014)

and Shi et al. (2016) proposed variable selection methods for linear regression under linear

constraints, which was further extended in Lu et al. (2019) to the generalized linear models.

Shi et al. (2021) considered an errors-in-variables model and proposed a method to account

for the measurement errors. Despite the same usage of the log transformation, our model is

essentially different from the aforementioned compositional data regression models, where

the response y is regressed on the observed log(D). Here D records the relative abundance

of the components (e.g., bacterial gene or taxon) in the different samples. In contrast,

under our GLMs framework, the covariate X = log(W ) is not observable, which creates

additional difficulties.

The setting considered in the present paper is also related to the errors-in-variables

model where the covariates are observed with measurement errors. In linear regression, it is

common to correct the measurement errors using penalized regression (Loh andWainwright,

2012; Ma and Li, 2010). Belloni et al. (2017) proposed a new estimator attaining the

minimax efficiency bound for high-dimensional errors-in-variables linear model.

The first step of our method is to construct a good estimator of the topic-document

matrix W based on the observed relative word frequency matrix D. This falls in the

domain of unsupervised topic modeling, which has been well studied in the literature.

Besides the empirical successes, recent studies also developed theoretical guarantees for the

unsupervised topic models. Ke and Wang (2017) provided the first minimax optimality

results for the estimation of the word-topic matrix A under the pLSI model, which was

then extended in Bing et al. (2018) to the unknown K case, and subsequently Bing et al.
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(2020) obtained the minimax optimal rate for the sparse pLSI under a strong signal-to-

noise ratio condition. Wu et al. (2022) proposed novel and computationally fast algorithms

for estimation and statistical inference for both A and W and established the minimax

optimal rates under the sparse pLSI model. In sharp contrast to other inference problems in

high-dimensional statistics including high-dimensional sparse linear/logistic regression and

low-rank matrix completion, Wu et al. (2022) uncovered an interesting phenomenon that

debiasing is not needed for the construction of the confidence intervals under the sparse

pLSI model.

1.4 Organization

The rest of the paper is organized as follows. We introduce an algorithm for the estimation

of the regression vector β in Section 2, and then provide its risk upper bounds as well as

matched minimax lower bounds in Section 3. Following that, we consider the construction

of confidence intervals with theoretical guarantees in Section 4. Numerical experiments,

including simulation results and real-data analysis for the linear regression, are provided

in Section 5. We conclude with the discussion and future work in Section 6.

1.5 Notation

Throughout the paper, for a vector a = (a1, ..., an)
⊤ ∈ Rn, we define the ℓp norm ∥a∥p =(∑n

i=1 a
p
i

)1/p
, and the ℓ∞ norm ∥a∥∞ = max1≤j≤n |ai|. a−j ∈ Rn−1 stands for the subvector

of a without the j-th component. For vectors a, b ∈ Rn, we denote their inner product

⟨a, b⟩ =
∑n

i=1 aibi. We also use ek to denote the k-th canonical basis where only the k-th

entry equal to 1 and the rest are all 0. For a matrix A ∈ Rp×q, λi(A) stands for the i-th

largest singular value of A and λmax(A) = λ1(A), λmin(A) = λp∧q(A). ∥A∥1 denotes the

matrix ℓ1 norm, ∥A∥∞ = maxi,j |Aij|, and cond(A) means the condition number of A. In

addition, A−i,−j ∈ R(p−1)×(q−1) stands for the submatrix of A without the i th row and
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j-th column. For any positive integer p, we denote [p] = {1, ..., p}. For a set S ⊂ [p]

and a symmetric matrix X ∈ Rp×p, XS denotes the symmetric submatrix containing rows

and columns in S. Furthermore, for sequences {an} and {bn}, we write an = o(bn) if

limn an/bn = 0, and write an = O(bn), an ≲ bn or bn ≳ an if there exists a constant C

such that an ≤ Cbn for all n. We write an ≍ bn if an ≲ bn and bn ≲ an. We also write

an = OP (bn) if there exists a constant C such that lim infn→∞ P(|an/bn| ≤ C) = 1, and

an = oP (bn) if an/bn
p→ 0. A generalized inverse of a matrix X is defined as X†. In addition,

1k is defined to be a k × 1 vector with all entries being 1. When its dimension is clear,

we can omit the subscript. We use C1, C2 and C3 to denote generic constants, which may

vary from place to place.

2 Estimation

In this section, we present the estimation algorithm for the regression coefficient vector β

in the GLM (1.1). As mentioned earlier, a major difficulty of the present problem is that

the covariates Xi in the model (1.1) is unobservable and a good estimator of X = log(W )

needs to be constructed based on the observations (D,y).

The algorithm for estimating the regression vector β consists of three major steps:

Step 1. Obtaining asymptotically unbiased and normal estimators Â and Ŵ by adapting the

method proposed in Wu et al. (2022);

Step 2. Constructing a debiased estimator of log(W ) based on Â and Ŵ ;

Step 3. Solving the high-dimensional GLM (1.1) under the linear constraint 1⊤β = 0 via the

constrained and ℓ1 penalized maximum likelihood.

We now give a detailed description of the three steps.

10



2.1 Estimation of A and W

The first step is to construct asymptotically unbiased and normally distributed estimators

for the individual entries of the word-topic matrix A and then the topic-document matrix

W . This can be accomplished by modifying the methods introduced in the recent paper

Wu et al. (2022), which studied unsupervised topic modeling under the sparse pLSI model.

It begins with the sample splitting. We split the data D into D(1) and D(2) where both

samples consist of N/2 words. Then apply the algorithm on D(1) to figure out the detection

of anchor words, which consists of four main steps. Recall that each row represents a word

and the row sums correspond to frequency of words in the collection. Since some words

occur much less frequently than others, which makes the detection of anchor words much

harder, we first normalize the rows of D to ensure the row sums do not vary significantly.

Following that, we apply singular value decomposition to this normalized matrix and obtain

the matrix Ξ consisting of the top K left singular vectors. We then project the rows of Ξ

to a unit sphere to have a unit ℓ2 norm. By implementing the one-class Support Vector

Machine, we are able to obtain an estimator P̂ for the set of the anchor words.

After the recovery of anchor word set, we solve A row by row. By minimizing the

negative log-likelihood function with the sum-to-zero constraint, the estimator for each row

of A is the non-negative constrained maximum likelihood estimator (MLE). The optimal

estimator Â can be obtained by normalizing the columns to have unit ℓ1-norm.

After obtaining the estimator Â, in Wu et al. (2022) we treat the recovery of W as a

multinomial regression problem on D(2) and Â, with the non-negativity and unit ℓ1-norm

constraints, and solve it column by column. The estimator Ŵ is shown to be minimax

rate optimal, and asymptotically unbiased and normal for each non-zero entry. Since A

and W are assumed to be independent, by utilizing splitted sample D(2), we reduce the

dependence between Â and Ŵ for the ease of technical analysis.

It is noteworthy that after obtaining Ŵ , A can be estimated again using the recovered
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anchor word set P̂ as well as D and Ŵ . By adding this optional step, we attain a more

precise estimate of A in order to compute a more accurate bias correction term.

2.2 Debiased Estimator of log(W )

Although the estimator Ŵ obtained in Section 2.1 has desirable properties and in particu-

lar, it is asymptotically unbiased for each individual entry, simply substituting W with Ŵ

in the term log(W ) would create a significant bias for the estimation, which would lead to

additional inaccuracy in recovering β under the GLM (1.1). It is necessary to construct a

debiased estimator of X = log(W ). In the following, we derive an appropriate correction

term Ẑ and such that X̂ = log(Ŵ + Ẑ) can accurately approximate X = log(W ), where

the value of Ẑ depends on the estimators Â and Ŵ . For any i and k, (i, k)-th entry of X̂

is defined as

X̂ik = log(Ŵik + Ẑik). (2.1)

In order to determine the value of Ẑ, in the following, we introduce Z as a generic

correction term in the analysis. It is proved in Wu et al. (2022) that for minD∗
ij ̸=0D

∗
ij ≫

log(np) ·
(

K3/2√
N(n∧p)

∨ pK
N2

)
, with probability 1−o(1), we have supp(Ŵ ) = supp(W ). When

Wik ̸= 0, by the Taylor’s expansion of log(Ŵik + Zik) at Wik up to the second order,

E[log(Ŵik + Zik)] = log(Wik) +
E[Ŵik] + Zik −Wik

Wik

− Var(Ŵik) + 2ZikE[Ŵik −Wik] + Z2
ik

2W 2
ik

+ o

(
Var(Ŵik) + 2ZikE[Ŵik −Wik] + Z2

ik

W 2
ik

)

= log(Wik) +
Zik

Wik

− Var(Ŵik) + Z2
ik

2W 2
ik

+ o

(
Var(Ŵik) + Z2

ik

W 2
ik

)
,
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where last equality holds due to the following result derived in Wu et al. (2022), that is,

Ŵik follows an asymptotic normal distribution as specified below:

Ŵik = N

(
Wik,

1

N
e⊤
k (Â

⊤diag(Di)
†Â)−1ek

)
+ oP

(
1√
N

)
.

From the expansion above, we aim to reduce the bias term Zik

Wik
− Var(Ŵik)+Z2

ik

2W 2
ik

. Inspired

by the lemma below, we take Ẑik :=
Var(Ŵik)

2Ŵik
.

Lemma 1. Suppose minD∗
ij ̸=0D

∗
ij ≫ log(np) ·

(
K3/2√
N(n∧p)

∨ pK
N2

)
. For each Wik ̸= 0, by

setting Ẑik = Var(Ŵik)

2Ŵik
=

e⊤k (Â⊤diag(Di)
†Â)−1ek

2NŴik
, with probability 1 − o(1), the bias of the

estimator X̂ik given in (2.1) equals to 1
2

(
Var(Ŵik)

2W 2
ik

)2
+O

(
1√
N

)
.

Given the covariates x̂i = (X̂i1, ..., X̂iK), we can then estimate β by minimizing a

regularized negative log-likelihhod function, which will be discussed in details in the next

section.

2.3 Estimation of β

After computing the correction term Ẑ and obtaining the estimator X̂ = log(Ŵ + Ẑ)

for X = log(W ), we are ready to estimate β in the high-dimensional GLM (1.1) via

constrained and ℓ1 penalized maximum likelihood estimation. More specifically, we aim to

minimize

L(β) =
1

n

n∑
i=1

{ψ(x̂⊤
i β)− yi · x̂⊤

i β}, (2.2)

which is the negative log-likelihood function. In particular, for the linear regression, we

have L(β) = 1
n
∥y − X̂β∥2.

To guarantee the sparsity recovery, analogous to Lasso, we also impose the ℓ1 regular-
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ization term in the loss function. Recall that due to the log-transformation of W the model

(1.1) is subject to the linear constraint 1⊤
Kβ = 0.

Derived from the above analysis, we propose to estimate the sparse regression vector β

by minimizing L(β) + λ∥β∥1 under the constraint 1⊤
Kβ = 0 with

β̂ = argmin
1⊤
Kβ=0

{L(β) + λ∥β∥1}, (2.3)

where λ > 0 is a tuning parameter.

The whole procedure for estimating β is summarized in the following Algorithm 1,

where the tuning parameter λ can be chosen by standard methods such as cross-validation.

Algorithm 1 Supervised Topic Model

Input: The document data D ∈ Rp×n, response vector y ∈ Rn, tuning parameter λ.
Output: The regression coefficients estimator β̂.

1: Randomly split D into two subsamples with equal size, say D(1) and D(2).
2: Obtain estimators of A and W from D(1), denoted as Â and Ŵ , respectively.
3: Obtain an updated estimator of A using D(2) and Ŵ , denoted as Ã.
4: Add the bias adjustment Ẑ, using Ã, to Ŵ and compute X̂ = log(Ŵ + Ẑ).
5: Solve for β in the optimization problem (2.3)

β̂ = argmin
1⊤
Kβ=0

L(β) + λ∥β∥1,

where L(β) = 1
n

∑n
i=1{ψ(x̂⊤

i β)− yi · x̂⊤
i β}, and output the result β̂.

3 Estimation Optimality

In this section, we aim to investigate the properties of the proposed estimator β̂ given in

(2.3) and establish its minimax optimality. Recall thatX = log(W ) and X̂ = log(Ŵ+Ẑ).
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Throughout this section, we consider the following parameter space:

BK,p,n(s, B) = {(β,A,W ) : β ∈ RK ,1⊤β = 0, ∥β∥0 ≤ s, ∥β∥22 ≤ B,

A ∈ Rp×K , ∥Ai·∥1 = 1, cond(A) ≤ C,

W ∈ RK×n, ∥Wj·∥1 = 1, cond((WW⊤)Si
) ≤ C for all i ∈ [p],

c∥Px∥2 ≤ ∥XPx∥2 ≤ C∥Px∥2},

where Si is the support of Ai· for i ∈ [p].

Assumption 1. For all i and k, the estimator Ŵik required in Step 3 of Algorithm 1 satisfy

supt

∣∣∣P(Ŵik < t|Â)− P(Z0 < t|Â)
∣∣∣ = oP

(
1√
N

)
where Z0 | Â is normally distributed as

N
(
Wik,

1
N
e⊤
k (Â

⊤diag(D∗
i )

†Â)−1ek

)
.

Remark 1. We remark here that Ŵ obtained in Step 1 of Algorithm 1 satisfies Assumption

1. That is, given Â and D the condition

Ŵik = N

(
Wik,

1

N
e⊤
k (Â

⊤diag
(
D

(2)
i

)†
Â)−1ek

)
+ oP

(
1√
N

)

can be achieved by using the estimator proposed in Wu et al. (2022).

The following theorem establishes the convergence rate of the proposed estimator β̂.

Define µ to be the harmonic mean of the nonzero entries of W , that is,

µ =

∑
i,j 1{Wij ̸= 0}∑

Wij ̸=0,i∈[K],j∈[n]W
−1
ij

and define σ2 = maxi,k
1
Ni
e⊤
k (A

⊤diag(D∗
i )

†A)−1ek.

Theorem 3.1. Under Assumption 1, by choosing λ ≍
√

2(c(σϵ)+∥β∥22σ2/µ2) logK

n
in (2.3), and
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assuming n≫ (c(σϵ) + ∥β∥22σ2/µ2) · s logK, we have that

sup
BK,p,n(s,B)

E∥β̂ − β∥2 ≤ C1 ·
(
s log(K) · c(σϵ)

n
+ ∥β∥22 ·

s log(K) · σ2

nµ2

)
,

for some constant C1.

In particular, assume that 1
N
e⊤
k (A

⊤diag(D∗
i )

†A)−1ek ≤ 1
NK

for all i ∈ [n], k ∈ [K],

that is σ2 = 1
NK

and µ = C2

K
for some small value C2, which holds when Dji = O(1/p) and

Wki = O(1/K) for all i ∈ [n], j ∈ [p], k ∈ [K], we have

E
(
∥β̂ − β∥2

)
≤ C3 ·

(
s log(K) · c(σϵ)

n
+ ∥β∥22 ·

s ·K log(K)

nN

)
.

The choice of the tuning parameter λ in practice will be discussed in Section 5. The

assumption 1
N
e⊤
k (A

⊤diag(D∗
i )

†A)−1ek ≤ 1
NK

can be achieved if we consider the entries of

W having the same order.

The condition on the entry-wise bounds of Wij in the above theorem implies that

once a topic is detected in a document, it should appear at a non-negligible proportion.

Technically, this condition is mainly used to control the deviation of Ŵij and therefore yield

the minimax-optimal rate of convergence of Algorithm 1. Such a condition is standard in

the errors-in-variables (EIV) literature, such as the EIV linear regression (Shi et al., 2021),

Poisson matrix completion (Cao and Xie, 2015; Jiang et al., 2015b), composition matrix

estimation from sparse count data (Cao et al., 2017).

Further, we derive the following lower bound result, which matches the upper bound

derived in Theorem 3.1, and hence it concludes that the algorithm is rate-optimal up to

logarithm factors.

Theorem 3.2. Suppose that we have s ≤ K/3, n ≥ Cs logK for some large C, and

sβK
2 log(K/sβ) ≪ Nn. For the GLM (1.1) and β ∈ BK,p,n(s, B) there exists some constant
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C1 > 0 such that

inf
β̂

sup
β∈BK,p,n(s,B)

E
(
∥β̂ − β∥2

)
≥ C1 ·

(
s log(K/s) · c(σϵ)

n
+B · sK log(K/s)

Nn

)
.

It is worth noting that this optimal rate consists of two parts. The first term s log(K/s)·c(σϵ)
n

is due to the noise of generalized linear model, which is consistent with the result in GLMs

(Negahban et al., 2012). The second term B · sK log(K/s)
Nn

comes from the error of not directly

observing the true W . Shi et al. (2021) also obtained a similar result for the Dirichlet-

multinomial distribution. The above result shows that the estimation error decreases with

longer document length N , larger sample size n, smaller sparsity level s, or smaller signal

amplitude ∥β∥2.

Leveraging c(σϵ) = σ2
ϵ , the lower bound in the linear regression setting is a special case

of the above theorem, as stated in Corollary 1 below.

Corollary 1. Under the conditions of Theorem 3.1, for the linear regression with ϵ1, ..., ϵn
iid∼

N(0, σ2
ϵ ), a special case of model (1.1) with c(σϵ) = σ2

ϵ , there exists a constant C1 such that

inf
β̂

sup
BK,p,n(s,B)

E
(
∥β̂ − β∥2

)
≥ C1 ·

(
s log(K/s) · σ2

ϵ

n
+B · sK log(K/s)

Nn

)
.

These lower bound results can be obtained by the Fano’s lemma, and the details of the

proofs are deferred to the Supplement.

4 Statistical Inference in Supervised Topic Modeling

In this section, we consider statistical inference for the individual coordinates of β. As

usual, we need to begin with a nearly unbiased estimator of β for inference. Due to the

ℓ1 regularization in solving β by (2.3), the proposed β̂ is a necessarily biased estimator
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of β. In order to obtain an asymptotically unbiased estimator β̂u, we propose to take an

additional debiasing step using the ideas introduced in Javanmard and Montanari (2014)

for the case of conventional high-dimensional linear regression. The detailed procedure is

as follows.

Let the projection matrix P = IK − 1K1
⊤
K/K. Without loss of generality, we assume

the total sample size n is even, and let n1 = n/2. We first randomly split the dataset (y, X̂)

into two halves, denoted as {yi, x̂i}n1
i=1, {yi, x̂i}ni=n1+1, and use the first half to compute an

estimate of the Fisher information matrix corresponding to the GLM,

Σ̂β̂ =
1

n1

n1∑
i=1

ψ̈(x̂⊤
i P β̂)P x̂i(P x̂i)

⊤. (4.1)

For k ∈ [K], we then solve for m̂k, which is the solution to the following convex program:

minimize ∥m∥1 subject to ∥Σ̂β̂m− Pek∥∞ ≤ γ, (4.2)

for some tuning parameter γ > 0.

After obtaining m̂k, we then use the second half of the sample to define the following

de-biased estimator

β̂u
k = β̂k +

∑n
i=n1+1 x̂

⊤
i Pm̂k{yi − ψ̇(x̂⊤

i P β̂)}
n1

, k ∈ [K]. (4.3)

It will be shown that this β̂u
k is asymptotically normal with mean βk.

To construct a confidence interval for βk, we need to further estimated the variance

of β̂u
k . For the GLM with c(σϵ) = 1, which includes logistic, multinomial, Poisson, and

log-linear models, we let σ̂2
i = ψ̈(x̂⊤

i β̂), and define the following variance estimate of β̂u
k :

V̂k =
1

n

n∑
i=1

{x̂⊤
i m̂k}2σ̂2

i . (4.4)
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For the GLM with c(σϵ) = σ2
ϵ such as the linear regression setting, we let V̂k = σ̂2

ϵ =

1
n
∥y − X̂β̂∥2 for all k ∈ [K], which serves as an estimator of σ2

ϵ , the noise variance.

We then have the following results for asymptotic normality of β̂u
k .

Theorem 4.1. Under the same conditions of Theorem 3.1, assuming s≪
√
n

(c(σϵ)+∥β∥22σ2/µ2)·logK ,

then for k ∈ [K], √
n(β̂u

k − βk)√
V̂k

→N(0, 1), as n→ ∞.

Remark 2. In our current procedure, a sample splitting step is performed in the beginning.

This step is added to avoid the dependence between Σ̂β̂ given in (4.1) and β̂. We note

here that this sample splitting step can be avoided in two cases: 1) The linear regression

setting, where instead of using the Fisher information matrix Σ̂β̂ considered previously, we

compute the sample covariance matrix Σ̂XX = 1
n

∑n
i=1P x̂i(P x̂i)

⊤ = 1
n
PX̂⊤X̂P , which

is independent of β̂ given D. 2) The GLMs setting with c(σϵ) = σ2
ϵ , and assume the j-th

column of Σ−1
β has at most sj nonzero elements such that (sj log p)

2 = o(n) and N ≳ n log n,

where Σβ = E[ψ̈(x̂⊤
i Pβ)P x̂i(P x̂i)

⊤]. In this case, one can estimate Σ−1
β consistently and

is able to control control the error induced by the dependence between Σ̂β̂ and β̂.

Derived from Theorem 4.1, we can construct the confidence interval with a prespecified

guaranteed coverage probability, as stated in the corollary below.

Corollary 2. Under the assumptions of Theorem 4.1, the (1−α)-level confidence interval

for the individual coordinate βk is constructed as

Ik =

[
β̂u
k − zα/2 ·

√
V̂k/n, β̂u

k + zα/2 ·
√
V̂k/n

]
,

where zα/2 is the α/2-th quantile of a standard normal distribution.

From the above, the procedure of establishing a confidence interval at level α for each

coordinate of the regression coefficient can be summarized as follows in Algorithm 2.
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Algorithm 2 The Confidence Interval for the Regression Coefficient βk

Input: The document data X̂ ∈ RK×n, response vector y ∈ Rn.
Output: Confidence Interval of βk with guaranteed coverage.

1: Randomly split (y, X̂) into two subsamples with equal size n1, say
{yi, x̂i}n1

i=1, {yi, x̂i}ni=n1+1.
2: Use {yi, x̂i}n1

i=1 to compute an estimate of the Fisher information matrix.

Σ̂β̂ =
1

n1

n1∑
i=1

ψ̈(x̂⊤
i P β̂)P x̂i(P x̂i)

⊤.

3: For each k ∈ [K], obtain an approximate inverse of Σ̂β̂ by solving

minimize ∥m∥1 subject to ∥Σ̂β̂m− Pek∥∞ ≤ γ.

4: Use {yi, x̂i}ni=n1+1 to define the de-biased estimator

β̂u
k = β̂k +

∑n
i=n1+1 x̂

⊤
i Pm̂k{yi − ψ̇(x̂⊤

i P β̂)}
n1

, k ∈ [K].

5: Compute the variance estimator as

V̂k =
1

n

n∑
i=1

{x̂⊤
i m̂k}2ψ̈(x̂⊤

i β̂)
2.

6: The confidence interval at level α is constructed as

Ik =

[
β̂u
k − zα/2 ·

√
V̂k/n, β̂

u
k + zα/2 ·

√
V̂k/n

]
.

5 Numerical Experiments

The estimation and inference procedures proposed in Sections 2 and 4 are easy to imple-

ment. We investigate in this section the numerical performance of the proposed methods

through simulation studies for the linear regression as well as the analyses of real dataset –

movie reviews (Pang and Lee, 2005; Blei and McAuliffe, 2007). Due to the space limit, we
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leave the case of logistic regression and antoher real dataset analysis – the gut microbiome

studies (Lewis et al., 2015) to the Supplement.

5.1 Numerical Results for Linear Regression

5.1.1 Data Generating Mechanism

We generate A by first randomly generating a p × K matrix where each entry follows a

uniform distribution U(0, 1). For each column k, we keep the [(k − 1) × p/100 + 1]-th

to k × p/100-th entry and set any other entries on the top (p/100) × K rows to zero to

construct anchor words. Lastly, each column is normalized to guarantee the column sum

being one. For W , we first randomly generate a K × n matrix where each entry follows

a uniform distribution U(0, 1). Secondly, for each column, we uniformly pick sW integers

from [K] as the indices of the support. Note that these sW integers can be repetitive. We

keep the entries within the support and set the remaining ones to zero. Last, we normalize

each column to sum to one.

After generating A and W , the expected frequency matrix D∗ can be simply com-

puted by the matrix product D∗ = AW . The generation of every column Di follows

a multinomial distribution multi(Ni,D
∗
i ) divided by the document length Ni. To sim-

plify the procedure, we set all the documents Ni are of equal length N in the simula-

tions. The response vector y is generated as yj =
∑K

k=1 log(Wkj)βk + ϵk, where β =

(0.8, 0.6,−0.2,−1.2, 0, ..., 0) ∈ RK is the deterministic coefficient vector with s = 4 and ϵi

are i.i.d. noise generated from N(0, 0.52).

5.1.2 Simulation Results

We consider two possible values of p ∈ {100, 200} with K = 10 and sW = 5. The tuning

parameter λ can be determined by cross-validation. The performance are evaluated by
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comparing the ℓ1 estimation error, prediction error, and lengths and coverage probabilities

of the confidence intervals. Two hundred replications are used for each setting. For different

document size n ∈ {100, 200, 500, 1000}, we record the ℓ1 estimation errors of our proposed

estimator β̂ with and without the adjustment term in Figure 1. It shows that the adjusted

estimator performs slightly better than the non-adjusted one when N = 1000. As n

increases, the estimation error becomes larger.

The prediction results are compared in Figure 3. Here, we compare the prediction error

with the results obtained by directly regressing y on the observed log(D). We note that

the performance on log(Ŵ ) and log(Ŵ + Ẑ) are almost the same, which is much better

than that of log(D).

In addition, the coverage probabilities and lengths of the confidence intervals for each

element of β are also reported by boxplots, as shown in Figures 4 and 5, respectively. From

Figure 5, we can see that the adjusted and non-adjusted estimators perform comparably

well. The lengths of confidence intervals decreases as the sample size increases or as the

number of words p increases. Regarding the coverage probability, the confidence interval

using the adjusted estimator is slightly better with higher coverage probabilities in several

settings.
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Figure 1: Estimation error of β̂ in the linear regression with K = 10 and N = 1000. Left:
p = 100; Right: p = 200.
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Figure 2: Estimation error of β̂ in the linear regression with K = 10 and N = 2000. Left:
p = 100; Right: p = 200.
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Figure 3: Prediction error in the linear regression with K = 10 and N = 1000. Left:
p = 100; Right: p = 200.

5.2 Real Data Applications

We now further illustrate the merits of our proposed methods from the real application

perspective. The proposed methods are used to analyze the movie review dataset.
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Figure 4: Coverage probabilities of confidence intervals for β in the linear regression with
nominal level 0.95, K = 10 and N = 1000. Left: p = 100; Right: p = 200.
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Figure 5: Length of confidence intervals for β in the linear regression with K = 10 and
N = 1000. Left: p = 100; Right: p = 200.

5.2.1 Movie Reviews

The first dataset we considered in this section is the publicly available movie review dataset

introduced in Pang and Lee (2005). It collected Internet movie reviews in English from four

critics, who wrote 1770, 902, 1307, or 1027 documents respectively. Each movie reviews is

paired with the number of stars given. This dataset have been studied in Pang and Lee

(2005) and Blei and McAuliffe (2007) to address the “sentiment analysis” problem of movie

reviews.

In this paper, we analyze the three-class scaled version of the dataset, where the label of
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each review comes from a 0-2 rating scale. Here three categories 0, 1, and 2 correspond to

“negative”, “neutral”, and “positive” respectively, and hence we apply the linear regression

to this dataset. In order to analyze the dataset better, we aim to choose an appropriate

selection of words, hence we removing words occur in fewer than 50 documents and those

occur in more than 25% of documents. After removing these words, the collection of

documents consists of 5006 documents with 2349 words.

In Figure 7, we plot the word cloud of each topic, which consists of top 50 words with

the largest probabilities. We align the top 8 words of each topic by the corresponding

coefficient βj in Figure 8. We can see that most of topics are pretty neutral, as top words

have no obvious subjectivity and their corresponding coefficients βj are close to 0. For

instance, the 3rd topic, which is about the film noir, and the 8th topic, which is about the

action movie.

There are two topics, the 2nd and 5th, with large positive coefficients βj. It shows that

the reviews with positive words such as “love”, “emotional”, “powerful” are more likely to

have high score. In addition, the comedy, which is the main focus of topic 2, is more likely

to have positive scores, especially those suitable for kids and teenagers.

The topic with large negative coefficient is the 6th one, whose top words consist of

“remake”, “version”, “conventional” and “original”. This topic is mainly about the remake

movie. It is observed that the remake of movie are more likely to have negative reviews,

which is intuitive. The remake of the movie is usually due to the success of the original

version, however, it is usually hard to achieve better results.

The prediction error of proposed methods with varying K is reported in Figure 6,

compared with the corresponding results of non-adjusted W and D. It is obvious that

the estimator with bias adjustment performs better than the non-adjusted one. While

the result of regression on log(D) is independent on the number of topic K, the green

line remains horizontal with varying K. For this dataset, we can see that the adjusted
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estimator performs better than non-adjusted one, while both work better than directly

regression on log(D). The lengths of confidence intervals are ploted on the right panel of

Figure 6. Although lengths of adjusted estimators are longer than that of non-adjusted

ones, they both are of order 10−4 which is already pretty small.
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Figure 6: Results of movie reviews under varying number of topics. Left: prediction error;
Right: length of confidence intervals.

6 Discussion

This paper introduced a GLM and pLSI framework for supervised topic modeling, where

the design matrixX = logW is not directly observable. A novel bias-adjusted estimator X̂

was proposed and implemented in the constrained and penalized MLE to obtain a minimax

rate-optimal estimator of the regression vector β. In addition, an asymptotically unbiased

and normally distributed estimator β̂u is introduced and is then used for the construction

of confidence intervals for individual coordinates of β.

As mentioned in the introduction, the key ideas behind our methodology can be applied

to problems where the data has compositional nature and low-rank structure. Examples
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Figure 7: Results of movie reviews under varying number of topics
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include analysis of single-cell RNA-seq data (Bravo González-Blas et al., 2019), image

annotation or classification (Bosch et al., 2006; Fei-Fei and Perona, 2005; Chong et al.,

2009), and the microbiome data analysis (Shi et al., 2021). In analysis of single-cell RNA-

seq data, the gene expressions of single cells can be recorded by a count matrix, where

each cell is regarded as a single document and the different gene expressions are words.

Implementing the proposed methods with possibly some modifications on the count matrix

and classified cell-type can provide a solution to the cell-type prediction problem. For

image annotation, each image is formed by a collection of local patches where each patch

is represented by a codeword from a dictionary of visual words. The whole picture is also

classified by a categorical label, such as the natural scene of the image, or a binary vector

label summarizing the caption. The label is regarded as the response. Prediction of the

label of a new image can be achieved by studying the frequency of the visual words and

learning image topics that are predictive. Some of these problems including semi-supervised

topic modeling discussed below are important and we will study them in future projects.

Unlike the supervised topic modeling considered in this paper, where all the documents

are labeled, in many applications there are a large number of unlabeled documents in

addition to the labeled ones. This is the setting for semi-supervised topic modeling. By

incorporating the unlabeled documents in the analysis, one is expected to have a more

accurate estimator for the latent topics of the underlying data and then makes use of the

albeit incomplete labels to guide the model learning and improve document classification.

One limitation of our regression method is on the determination of the topic numbers. It

is observed from the real-data applications that the prediction error fluctuates with varying

K. Although we considered the case that the number of topics is growing, it is required

to be prespecified in practice. Drawing scree plots can sometimes be inadequate especially

when there is no significant gaps among singular values. Developing an algorithm that

explicitly incorporates the uncertainty of K and computes the regression coefficient β is
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worth exploring in the future.
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