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dimensional covariance matrices
T. TONY CAI* and ZONGMING MA**

Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA.
E-mail: *tcai@wharton.upenn.edu; **zongming@wharton.upenn.edu

This paper considers testing a covariance matrix � in the high dimensional setting where the dimension p

can be comparable or much larger than the sample size n. The problem of testing the hypothesis H0 :� = �0
for a given covariance matrix �0 is studied from a minimax point of view. We first characterize the boundary
that separates the testable region from the non-testable region by the Frobenius norm when the ratio between
the dimension p over the sample size n is bounded. A test based on a U -statistic is introduced and is shown
to be rate optimal over this asymptotic regime. Furthermore, it is shown that the power of this test uniformly
dominates that of the corrected likelihood ratio test (CLRT) over the entire asymptotic regime under which
the CLRT is applicable. The power of the U -statistic based test is also analyzed when p/n is unbounded.

Keywords: correlation matrix; covariance matrix; high-dimensional data; likelihood ratio test; minimax
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1. Introduction

Covariance structure plays a fundamental role in multivariate analysis and testing the covariance
matrix is an important problem. Let X1, . . . ,Xn be n independent and identically distributed p-
vectors following a multivariate normal distribution Np(0,�). A hypothesis testing problem of
significant interest is testing

H0: � = I. (1)

Note that any null hypothesis H0: � = �0 with a given positive definite covariance matrix �0

is equivalent to (1), since one can always transform Xi to X̃i = �
−1/2
0 Xi and then test (1) based

on the transformed data.
This testing problem has been well studied in the classical setting of small p and large n.

See, for example, Anderson [1] and Muirhead [13]. In particular, the likelihood ratio test (LRT)
is commonly used. Driven by a wide range of contemporary scientific applications, analysis of
high dimensional data is of significant current interest. In the high dimensional setting, where
the dimension can be comparable to or even much larger than the sample size, the conventional
testing procedures such as the LRT perform poorly or are not even well defined. Several testing
procedures designed for the high-dimensional setting have been proposed. Let S = 1

n

∑n
i=1 XiX

′
i

be the sample covariance matrix. The existing tests for (1) in the literature can be categorized as
the following according to the asymptotic regime under which they are suitable:

• p fixed and n → ∞. In this classical asymptotic regime, conventional tests for (1) include
the likelihood ratio test (LRT) [1], Roy’s largest root test [16], and Nagao’s test [14]. In
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particular, the LRT statistic is LRn = nLn, where

Ln = trS − log det(S) − p.

The asymptotic distribution of LRn under H0 is χ2
p(p+1)/2.

• Both n,p → ∞ and p/n → c ∈ (0,∞). Investigation in this asymptotic regime has been
very active in the past decade. For example, Johnstone [11] revisited Roy’s largest root test
and derived the Tracy–Widom limit of its null distribution. Ledoit and Wolf [12] proposed
a new test based on Nagao’s proposal. See also Srivastava [17]. When p grows, the chi-
squared limiting null distribution of the LRT statistic LRn is no longer valid. Recently, Bai
et al. [2] proposed a corrected LRT when c < 1, and Jiang et al. [10] extended it to the case
when p < n and c = 1. Here, for cn = p/n, the test statistic of the corrected LRT is

CLRn = Ln − p[1 − (1 − c−1
n ) log(1 − cn)] − 1/2 log(1 − cn)√−2 log(1 − cn) − 2cn

, (2)

whose asymptotic null distribution is N(0,1). Note that no test based on the likelihood ratio
can be defined when p > n or c > 1.

• Both n,p → ∞ and p/n → ∞. This is the ultra high-dimensional setting and both the LRT
and corrected LRT are not well defined in this case. The testing problem in this asymptotic
regime is not as well studied as in the previous categories. Birke and Dette [3] derived the
asymptotic null distribution of the Ledoit–Wolf test under the current asymptotic regime.
More recently, Chen et al. [7] proposed a new test statistic and derived its asymptotic null
distribution when both n,p → ∞, regardless of the limiting behavior of p/n.

When the dimension p grows together with the sample size n, the focus of most of the afore-
mentioned papers is mainly on finding the asymptotic null distribution of the proposed test statis-
tic, so the significance level of the test can be controlled. The few exceptions include Srivastava
[17] and Chen et al. [7], where the asymptotic pointwise power of the proposed tests is also
studied. Recently, Onatski et al. [15] established the regime of mutual contiguity of the joint dis-
tributions of the sample eigenvalues under the null and under the special alternative of rank one
perturbation to the identity matrix, and then applied Le Cam’s third lemma to study the pointwise
power of a collection of eigenvalue based tests for (1) against this special class of alternative.

In the present paper, we investigate this testing problem in the high-dimensional settings from
a minimax point of view. Consider testing (1) against a composite alternative hypothesis

H1: � ∈ �, where � = �n = {
�: ‖� − I‖F ≥ εn

}
. (3)

Here, ‖A‖F = (
∑

ij a2
ij )

1/2 denotes the Frobenius norm of a matrix A = (aij ). It is clear that the
difficulty of testing between H0 and H1 depends on the value of εn: the smaller εn is, the harder
it is to distinguish between the two hypotheses. An interesting question is: What is the boundary
that separates the testable region, where it is possible to reliably detect the alternative based
on the observations, from the untestable region, where it is impossible to do so? This problem
is connected to the classical contiguity theory. It is also important to construct a test that can
optimally distinguish between the two hypotheses in the testable region. The high-dimensional
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settings here include all the cases where the dimension p = pn → ∞ as the sample size n → ∞,
and there is no restriction on the limit of p/n unless otherwise stated.

For a given the significance level 0 < α < 1, our first goal is to identify the separation rate εn

at which there exists a test φ based on the random sample {X1, . . . ,Xn} such that

inf
�∈�

P�(φ rejects H0) ≥ β > α.

Hence, the test is able to detect any alternative that is separated away from the null by a cer-
tain distance εn with a guaranteed power β > α. Our second goal is to construct such a testing
procedure φ.

The major contribution of the current paper is threefold. First, we show that if p/n is
bounded, then the rate εn needs to be no less than b

√
p/n for some constant b. In addi-

tion, it is shown that if εn = b
√

p/n, there exists a test ψ of significance level α, such that
limn→∞ inf� P�(ψ rejects H0) > α, and the power tends to 1 if b = bn → ∞. The test is moti-
vated by the proposal in Chen et al. [7]. (We use ψ to denote the specific test that we construct,
while φ is used to denote a generic test.) Here, we no longer require p/n to be bounded, and
the explicit expression for the asymptotic power of ψ is also given. Moreover, we show that the
asymptotic power of ψ on �n uniformly dominates that of the corrected LRT by Bai et al. [2]
and Jiang et al. [10] over the entire asymptotic regime under which the corrected LRT is defined,
that is, p < n and p/n → c ∈ (0,1].

The rest of the paper is organized as the following. In Section 2, after introducing basic nota-
tion and definitions, we establish a lower bound of the separation rate εn. Section 3 introduces
the test based on a U -statistic and provides a Berry–Essen bound for its weak convergence to the
normal limit under both the null and the alternative hypotheses, which leads to the establishment
of its guaranteed power over � when εn = b

√
p/n. Furthermore, we also show that the power of

this test uniformly dominates that of the corrected LRT. The theoretical results are supported by
the numerical experiments in Section 4. Further discussions on the connections of our results and
those of related testing problems are given in Section 5. The main results are proved in Section 6.

2. Lower bound

In this section, we establish a lower bound for the separation rate εn in (3). The result in Section 3
will show that this lower bound is rate-optimal. The lower and upper bounds together characterize
the separation boundary between the testable and non-testable regions when the ratio of the
dimension p over the sample size n is bounded. This separation boundary can then be used as a
minimax benchmark for the evaluation of the performance of a test in this asymptotic regime.

We begin with basic notation and definitions. Throughout the paper, a test φ = φn(X1, . . . ,Xn)

refers to a measurable function which maps X1, . . . ,Xn to the closed interval [0,1], where
the value stands for the probability of rejecting H0. So, the significance level of φ is
PI (φ rejects H0) = EI φ, and its power at a certain alternative � is P�(φ rejects H0) = E�φ.
Here and after, P�,E�,Var� and Cov� denote the induced probability measure, expectation,

variance and covariance when X1, . . . ,Xn
i.i.d.∼ Np(0,�). The subscript is shown only when

clarity dictates.
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To state the lower bound result, let εn = b
√

p/n for some constant b, and define

�(b) = {
�: ‖� − I‖F ≥ b

√
p/n

}
. (4)

Theorem 1 (Lower bound). Let 0 < α < β < 1. Suppose that as n → ∞, p → ∞ and that
p/n ≤ κ for some constant κ < ∞ and all n. Then there exists a constant b = b(κ,β − α) < 1,
such that for any test φ with significance level α for testing H0: � = I ,

lim sup
n→∞

inf
�∈�(b)

E�φ < β.

Theorem 1 shows that no level α test for (1) can distinguish between the two hypotheses with
power tending to 1 as n and p grow, when the separation rate εn is of order

√
p/n. Hence, it

provides a lower bound for the separation rate.
We now give an outline of the proof for Theorem 1, while the complete proof is provided in

Section 6.1. Consider the following “least favorable” subset of �(b):

�∗(b) =
{
�v =

[
1 − b√

n(p − 1)

]
Ip×p + b√

n(p − 1)
vv′: v ∈ {±1}p

}
. (5)

With slight abuse of notation, let P0 be the probability measure when X1, . . .Xn
i.i.d.∼ Np(0, I )

and Pv the probability measure when X1, . . . ,Xn
i.i.d.∼ Np(0,�v). In addition, let P1 =

1
2p

∑
v∈{±1}p Pv be the average measure of the Pv’s. Then for any test φ, the sum of probabilities

of its two types of errors satisfies

sup
v

E0φ + Ev(1 − φ) ≥ inf
ψ

sup
v

E0ψ + Ev(1 − ψ)

≥ inf
ψ

1

2p

∑
v

E0ψ + Ev(1 − ψ)

= inf
ψ

E0ψ + E1(1 − ψ)

= 1 − 1

2
‖P1 − P0‖1.

Here, E0,Ev and E1 denote the expectation under P0, Pv and P1 respectively, and ‖P1 − P0‖1 is
the L1 distance between P0 and P1. Thus, we obtain

inf
�∈�(b)

E�φ ≤ inf
v

Evφ ≤ E0φ + 1

2
‖P1 − P0‖1 = α + 1

2
‖P1 − P0‖1.

To control the rightmost side, we bound the L1 distance by the chi-square divergence as

‖P1 − P0‖2
1 ≤ E0

∣∣∣∣dP1

dP0
− 1

∣∣∣∣
2

= E0

∣∣∣∣dP1

dP0

∣∣∣∣
2

− 1 =
∫

f 2
1

f0
− 1,
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where fi is the density function of Pi for i = 0,1. So, the proof can be completed by showing

that for an appropriate choice of the constant b, one obtains
∫ f 2

1
f0

− 1 ≤ 4(β − α)2.

Remark 1. (a). Note that all the covariance matrices in the least favorable configuration �∗(b)

defined in (5) have diagonal elements all equal to 1. Thus, they are also correlation matrices. So
the proof of Theorem 1 readily establishes an analogous lower bound result on testing H0: R = I

with R the population correlation matrix.
(b). The lower bound argument here does not extend to the case when p/n is unbounded,

because the chi-square divergence becomes unbounded.

3. Upper bound

In this section, we show that there exists a level α test whose power over �n is uniformly larger
than a prescribed value β > α, if εn = b

√
p/n for a large enough constant b. This matches the

lower bound result in Theorem 1 when p/n is bounded. In addition, the results in the current
section remain valid even when p/n is unbounded.

We first introduce the test statistic in Section 3.1, followed by a study on the rate of conver-
gence of its distribution to the normal limit under both the null and the alternative hypotheses in
Section 3.2. Section 3.3 then uses the rate of convergence result to study the asymptotic power
of the proposed test. Finally, Section 3.4 shows that the test dominates the corrected LRT in (2)
when p/n → c ∈ (0,1].

3.1. Test statistic

Given a random sample X1, . . . ,Xn
i.i.d.∼ Np(0,�), a natural approach to test between (1) and

(3) is to first estimate the squared Frobenius norm ‖� − I‖2
F = tr(� − I )2 by some statistic

Tn = Tn(X1, . . . ,Xn), and then reject the null hypothesis if Tn is too large. To estimate ‖� −
I‖2

F = tr(� − I )2, note that E�h(X1,X2) = tr(� − I )2 where

h(X1,X2) = (
X′

1X2
)2 − (

X′
1X1 + X′

2X2
) + p. (6)

Therefore, tr(� − I )2 can be estimated by the following U -statistic

Tn = 2

n(n − 1)

∑
1≤i<j≤n

h(Xi,Xj ), (7)

for which we have

μn(�) = E�(Tn) = tr(� − I )2, (8)

σ 2
n (�) = Var�(Tn) = 4

n(n − 1)

[
tr2(�2) + tr

(
�4)] + 8

n
tr
(
�2(� − I )2). (9)
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Here, verifying (8) is straightforward, and (9) is proved in Appendix A.2. For the U -statistic Tn,
the proof for Theorem 2 of Chen et al. [7] essentially established the following.

Proposition 2 (Theorem 2 of [7]). Suppose that p → ∞ as n → ∞. If a sequence of covariance
matrices satisfy tr(�2) → ∞ and tr(�4)/ tr2(�2) → 0 as n → ∞, then under P� , we have

Tn − μn(�)

σn(�)
⇒ N(0,1).

Note that as p → ∞, the identity matrix Ip×p satisfies the condition of the above proposition.

Also note that μn(I) = 0 and σ 2
n (I ) = 4p(p+1)

n(n−1)
. Thus, Proposition 2 quantifies the behavior of Tn

under H0, and we could define the test as the following: For any α ∈ (0,1), an asymptotic level
α test based on Tn is given by

ψ = I

(
Tn > z1−α · 2

√
p(p + 1)

n(n − 1)

)
. (10)

Here, I (·) is the indicator function, and z1−α denotes the 100 × (1 − α)th percentile of the
standard normal distribution. This test is motivated by the test introduced in Chen et al. [7],
while the original proposal in [7] involves higher order symmetric functions of the Xi ’s.

In addition to specifying the rejection region in (10), Proposition 2 can also be used to study
the asymptotic power of ψ over a sequence of simple alternatives. However, to understand the
power of ψ over the composite alternative � in (3), it is necessary to understand the rate of
convergence of [Tn − μn(�)]/σn(�) to the normal limit, which is the central topic of the next
subsection.

3.2. Rate of convergence

We now study the rate of convergence for the distribution of [Tn − μn(�)]/σn(�) to its normal
limit in Kolmogorov distance. Let �(·) be the cumulative distribution function of the standard
normal distribution. We have the following Berry–Essen type bound.

Proposition 3. Under the condition of Proposition 2, there exists a numeric constant C such
that

sup
x∈R

∣∣∣∣P�

(
Tn − μn(�)

σn(�)
≤ x

)
− �(x)

∣∣∣∣ ≤ C

[
1

n
+ tr(�4)

tr2(�2)

]1/5

.

We outline the proof of Proposition 3 below, while the complete proof is deferred to Sec-
tion 6.2. The primary tool used in the proof is a Berry–Esseen type bound for martingale central
limit theorem by Heyde and Brown [8].

We begin by giving a martingale representation of Tn − μn(�). Let Xi
i.i.d.∼ Np(0,�). Define

filtration

F0 = σ(∅), Fk = σ(X1, . . . ,Xk), k = 1, . . . , n.



Testing high dimensional covariance matrices 2365

Also introducing the notation Ek[·] = E�[·|Fk]. Then

Tn − μn(�) =
n∑

k=1

Ek[Tn] − Ek−1[Tn] =
n∑

k=1

Dnk. (11)

Here, {Dnk: k = 1, . . . , n} is a martingale difference sequence. The explicit expression for Dnk

is

Dnk = 2

n(n − 1)

[
X′

kQk−1Xk − tr(Qk−1�)
]

(12)

+ 2

n

[
X′

k�Xk − tr
(
�2)] − 2

n

[
X′

kXk − tr(�)
]
,

with Qk−1 = ∑k−1
i=1 (XiX

′
i − �). Let σ 2

nk = Ek−1[D2
nk], and we have σ 2

n (�) = ∑n
k=1 E�[σ 2

nk].
Under the current setup, the main theorem in [8] specializes to the following lemma.

Lemma 1. There exist a numeric constant C, such that

sup
x∈R

∣∣∣∣P�

(
Tn − μn(�)

σn(�)
≤ x

)
− �(x)

∣∣∣∣
(13)

≤ C

[
1

σ 4
n (�)

(
n∑

k=1

E�

[
D4

nk

] + E�

[
n∑

k=1

σ 2
nk − σ 2

n (�)

]2)]1/5

.

Define

E1 =
n∑

k=1

E�

[
D4

nk

]
and E2 = E�

[
n∑

k=1

σ 2
nk − σ 2

n (�)

]2

. (14)

The proof of Proposition 3 could then be completed by showing that E1/σ
4
n (�) = O(1/n) and

E2/σ
4
n (�) = O(tr(�4)/ tr2(�2)). See Section 6.2 for details.

3.3. Power of the test

Equipped with Proposition 3, we now investigate the power of the test ψ in (10) over the com-
posite alternative H1: � ∈ �(b), with b < 1, where �(b) is defined in (4). In particular, we have
the following result.

Theorem 4 (Upper bound). Suppose that p → ∞ as n → ∞. For any significance level
α ∈ (0,1) and �(b) in (4), the power of the test ψ in (10) satisfies

lim
n→∞ inf

�(b)
E�ψ = 1 − �

(
z1−α − b2

2

)
> α.

Moreover, for bn → ∞, limn→∞ inf�(bn) E�ψ = 1.
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Theorem 4 shows that the test ψ can distinguish between the null (1) and the alternative
(3) with power tending to 1 when b = bn → ∞. Comparing with the lower bound given in
Theorem 1, the test ψ is rate-optimal when p/n is bounded. When ‖� − I‖F  √

p/n, the proof
of Theorem 4 essentially shows that the power of ψ is also monotone increasing in ‖� − I‖F .

To prove Theorem 4, we first notice that the second claim is a direct consequence of the first
one. Indeed, if the first claim is true, then for any fixed constant b > 0,

lim inf
n→∞ inf

�(bn)
E�ψ ≥ lim

n→∞ inf
�(b)

E�ψ = 1 − �

(
z1−α − b2

2

)
.

Because the above inequality holds for any b, we obtain lim infn→∞ inf�(bn) E�ψ ≥ 1. On the
other hand, ψ ≤ 1 and so lim supn→∞ inf�(bn) E�ψ ≤ 1. This leads to the second claim.

Turn to the proof of the first claim, we divide �(b) into two disjoint subsets �(b) = �(b,B)∪
�(B), where

�(b,B) = {
�: b

√
p/n ≤ ‖� − I‖F < B

√
p/n

}
,

(15)
�(B) = {

�: ‖� − I‖F ≥ B
√

p/n
}
.

Here, B is a sufficiently large constant, the choice of which depends only on α and b, but not on n

or p. We employ different proof strategies on the two subsets. On �(B), Chebyshev’s inequality
readily shows that

inf
�(B)

E�ψ > 1 − �

(
z1−α − b2

2

)
.

Turn to �(b,B). On this subset, Proposition 3 then plays the key role in obtaining a uniform ap-

proximation to the power function E�ψ by the normal distribution function �(z1−α − ‖�−I‖2
F

2p/n
),

which in turn leads to the final claim. For a detailed proof, see Section 6.3.

Remark 2. (a). When p/n is bounded, the conclusion of the theorem matches the lower bound
in Theorem 1. However, the result here holds even when p/n is unbounded.

(b). It can be seen from the proof of Theorem 4 that the simple expression

�

(
z1−α − ‖� − I‖2

F

2p/n

)

gives good approximation to the power of the test ψ defined in (10) at any � of interest in
practice, because the approximation works well until the power of the test is extremely close to
α or 1.

3.4. Power comparison with the corrected LRT

In the classical asymptotic regime where p is fixed and n → ∞, the likelihood ratio test (LRT)
is one of the most commonly used tests. In the high-dimensional setting where both n and p
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are large and p < n, Bai et al. [2] showed that the LRT is not well behaved as the chi-squared
limiting distribution under H0 no longer holds.

For testing (1), when p < n and p/n → c ∈ (0,1), Bai et al. [2] proposed a corrected likeli-
hood ratio test (CLRT) with the test statistic CLRn given in (2). It was shown that the test statistic
CLRn ⇒ N(0,1) under H0 and this leads to an asymptotically level α test by rejecting H0 when
CLRn > z1−α . It was shown that the CLRT significantly outperforms the LRT when both n and
p are large and p < n. Recently, Jiang et al. [10] also considered the CLRT and showed that the
above limit holds even when p/n → 1.

It is interesting to compare the power of the CLRT with that of the test defined in (10). Note
that the test given in (10) is always well defined, but the CLRT is only properly defined in the
asymptotic regime where p < n and p/n → c ∈ (0,1]. The following result shows that the power
of the CLRT is uniformly dominated by that of ψ given in (10) over the entire asymptotic regime
under which the CLRT is applicable.

Proposition 5. Suppose that as n → ∞, p → ∞ with p < n and p/n → c ∈ (0,1]. Let C(τ ) =
{�: ‖� − I‖F = τ

√
p/n}. Then for ψ in (10) and the corrected LRT φCLR, we have

lim
n→∞ inf

C(τ )
E�ψ > lim sup

n→∞
inf
C(τ )

E�φCLR for all τ ∈ (0,1).

Moreover, for �(b) in (4) with b ∈ (0,1),

lim
n→∞ inf

�(b)
E�ψ > lim sup

n→∞
inf
�(b)

E�φCLR.

Hence, the CLRT is sub-optimal whenever it is properly defined. A proof of Proposition 5 is
given in Section 6.4.

4. Numerical experiments

In this section, a small simulation study is carried out to compare the power of the test ψ defined
in (10) with that of the CLRT under two specific alternatives.

The first alternative is the equi-correlation matrix � = (σij ), where for ρ ∈ (0,1),

σij =
{

1, i = j ,
ρ, i �= j .

Figure 1 shows how the power functions of the ψ test and the CLRT grow with ‖� − I‖F when
p = 40 and n = 80 or 200. For both tests, the significance levels are fixed at α = 0.05. To make
a fair comparison, the 95th percentiles of the null distributions of both test statistics are obtained
via simulation instead of using those of the asymptotic normal distributions. From Figure 1,
it is clear that the ψ test is more powerful than the CLRT for both (n,p) configurations. The
difference between the powers is smaller when n/p is larger. This is not surprising, because the
LRT is a powerful test in the “large n, small p” regime.
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Figure 1. Power curves of the ψ test (solid) and the CLRT (dashed) under the equi-correlation alternative.
Each dot is obtained from 5000 repetitions, and the curves are then obtained via linear interpolation.

The second alternative is the tridiagonal matrix � = (σij ), where for ρ ∈ (0,1),

σij =
{1, i = j ,

ρ, |i − j | = 1,
0, |i − j | > 1.

Figure 2 shows how the power functions of the ψ test and the CLRT grow with ‖� − I‖F for
the tridiagonal alternative. All the other setups remain unchanged. Here, the power of the ψ test
still dominates, while the difference in power between the two tests is smaller.

5. Discussion

We have focused in the present paper on testing the hypotheses under the Frobenius norm. The
technical arguments developed in this paper can also be used for testing under other matrix
norms. Consider, for example, testing (1) against the following composite alternative hypothesis

H1: � ∈ �, where � = �n = {‖� − I‖s ≥ εn

}
.

Here ‖A‖s is the spectral norm defined by ‖A‖s = max‖x‖2=1 ‖Ax‖2. Define

�s(b) = {
�: ‖� − I‖s ≥ b

√
p/n

}
. (16)

Then the same lower bound holds for �s(b). To be more precise, we have the following result.

Theorem 6. Let 0 < α < β < 1. Suppose that as n → ∞, p → ∞ and p/n ≤ κ for some
constant κ < ∞ and all n. Then there exist a constant b = b(κ,β −α) < 1, such that for any test
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Figure 2. Power curves of the ψ test (solid) and the CLRT (dashed) against the tridiagonal alternative.
Each dot is obtained from 5000 repetitions, and the curves are then obtained via linear interpolation.

φ with significance level 0 < α < 1 for testing H0: � = I ,

lim sup
n→∞

inf
�∈�s(b)

E�φ < β.

The proof of Theorem 6 is analogous to that of Theorem 1. We believe that the rate of
√

p/n

in the lower bound is sharp. It is however unclear which test is optimal against the alternative
(16) under the spectral norm. Obtaining a matching upper bound for a practically useful test is
an interesting project for future research.

The results in the current paper also shed light on the problem of testing for independence,
that is, H0: R = I , where R is the population correlation matrix. Following Remark 1, the proof
of Theorems 1 and 6 can be used directly to establish the same lower bound results on testing the
correlation matrix.

Onatski et al. [15] also studied the hypothesis testing problem (1), but their attention is re-
stricted to testing against alternatives that are rank one perturbations to the identity matrix. That
is, under the alternative H1 the covariance matrix belongs to the set �h = {I + hvv′: ‖v‖2 = 1}.
The asymptotic regime is restricted to p/n → c ∈ (0,∞). In this asymptotic regime, Theorem 7
in [15] gives a lower bound result analogous to Theorem 1. However, it does not cover the case
when p/n → 0, nor can it be extended to the case of testing correlation matrices. In addition,
we notice that though the result in [15] enables one to study the asymptotic power of all the
eigenvalue-based tests on each �h when p/n → c ∈ (0,∞), it does not give a minimax claim as
we did in Theorem 4.

The results in this paper also raised a number of interesting questions for future research. One
example is the testing of equality of two covariance matrices based on the independent random

samples X1, . . . ,Xn1

i.i.d.∼ Np(μ1,�1) and Y1, . . . , Yn2

i.i.d.∼ Np(μ2,�2). The validity of many
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commonly used statistical procedures including the classical Fisher’s linear discriminant analysis
requires the assumption of equal covariance matrices. So it is of interest to test H0: �1 = �2.
Motivated by an unbiased estimator of the Frobenius norm of �1 −�2, Chen and Li [6] proposed
a test using a linear combination of U -statistics and studied its power. Cai et al. [5] introduced a
test based on the maximum of the standardized differences between the entries of the two sample
covariance matrices. The test is shown to be powerful against sparse alternatives and robust with
respect to the population distributions. However, the optimality of the two-sample tests has not
been well studied. This is an important topic for future research that is of both theoretical and
practical interest.

In the present paper, no structural assumption is imposed on the alternative class of the co-
variance matrices such as sparsity or bandedness. An optimal test against a structured alternative
is potentially very different from the test (10) considered here. Recently, Cai and Jiang [4] con-
sidered testing the null hypothesis that � is a banded matrix and introduced a test based on the
coherence of a random matrix. Xiao and Wu [18] proposed a test for testing H0: � = I against
sparse alternatives. Their test is based on the maximum of the standardized entries of the sample
covariance matrix. The limiting null distribution is shown to be a type I extreme value distribu-
tion, the power of the test is not analyzed. It is interesting to investigate the optimality of these
testing problems with structured alternatives.

6. Proofs

In this section, we prove Theorems 1, 4 and Propositions 3 and 5.

6.1. Proof of Theorem 1

Recall that P0 is the probability measure when X1, . . .Xn
i.i.d.∼ Np(0, I ) and Pv is the probability

measure when X1, . . . ,Xn
i.i.d.∼ Np(0,�v). In addition, P1 = 1

2p

∑
v∈{±1}p Pv is the average mea-

sure of the Pv’s. Let f0 and f1 be the density functions of P0 and P1, respectively. By the discus-
sion following Theorem 1, we could prove Theorem 1 by showing that

∫
f 2

1 /f0 −1 ≤ 4(β −α)2.
After some basic calculation (see Appendix A.1 for details), we obtain that if b < b0(κ) such

that

b < 1 and
bp√

n(p − 1)
<

1√
2
, (17)

then ∫
f 2

1

f0
= (1 − a2)n−np/2

[1 + (p − 1)a2]n E

[
1 −

(
pa

1 + (p − 1)a2

)2(1′V
p

)2]−n/2

. (18)

Here, the expectation is taken w.r.t. V = (V1, . . . , Vp)′ where the Vj ’s are i.i.d. Rademacher
random variables which take values ±1 with equal probability.
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Note that (17) and p/n ≤ κ implies

(
pa

1 + (p − 1)a2

)2

≤ 1

2
.

Also note that (1′V/p)2 ∈ [0,1]. Thus, let b̃np = (
pa

1+(p−1)a2 )2, and (1′V/p)2 = ξp , we have

E(1 − b̃npξp)−n/2 = E
[
(1 − b̃npξp)−1/(b̃npξp)

]nb̃npξp/2

≤ E exp

(
log 4

2
nb̃npξp

) (
0 ≤ (1 − x)1/x ≤ 4, for all x ∈ [0,1/2])

≤ E exp

(
log 4

2

b2p2

p − 1
ξp

) (
b̃np ≤ p2b2/

[
n(p − 1)

])
.

For ξp , Hoeffding’s inequality [9], applied to Rademacher variables, yields

P(ξp ≥ λ) ≤ 2e−2pλ for all λ > 0.

Thus, we obtain

E exp

(
log 4

2

b2p2

p − 1
ξp

)
=

∫ ∞

0
P

(
exp

(
log 4

2

b2p2

p − 1
ξp

)
≥ u

)
du

= 1 +
∫ ∞

1
P

(
ξp ≥ 2 logu

log 4

p − 1

b2p2

)
du

≤ 1 +
∫ ∞

1
2 exp

(
−4(p − 1) logu

b2p log 4

)
du

= 1 + 2b2p log 2

2(p − 1) − b2p log 2
.

Here, the last equality holds if 2(p−1) > b2p log 2, which is always true for large p since b < 1.
In addition, with b satisfying (17), when n → ∞,

(
1 − a2)n−np/2 → eb2

,
[
1 + (p − 1)a2]n → eb2

.

Therefore, for large enough n ≥ n0(κ),

∫
f 2

1

f0
− 1 ≤ 8b2p log 2

2(p − 1) − b2p log 2
,

which, for sufficiently small b ≤ b0(κ,β − α), is no larger than 4(β − α)2. This completes the
proof.
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6.2. Proof of Proposition 3

Following the outline of proof after Proposition 3, for E1 and E2 defined in (14), we complete
the proof below by showing that E1/σ

4
n (�) = O(1/n) and E2/σ

4
n (�) = O(tr(�4)/ tr2(�2)).

To this end, we start with some preliminaries. Throughout the proof, E and Var are used as ab-
breviations for E� and Var� , respectively. Recall the martingale representation (11), where each
martingale difference Dnk has the explicit expression (12). For Dnk , its conditional variance is

σ 2
nk = Ek−1

[
D2

nk

]
= 8

n2(n − 1)2
tr(Qk−1�Qk−1�) + 16

n2(n − 1)
tr
(
Qk−1�

3) (19)

− 16

n2(n − 1)
tr
(
Qk−1�

2) + 8

n2
tr
(
�2(� − I )2).

Detailed derivation of (12) and (19) can be found in Appendix A.3. With (19), it is not difficult
to verify that

E
[
σ 2

nk

] = 8(k − 1)

n2(n − 1)2

[
tr2(�2) + tr

(
�4)] + 8

n2
tr
(
�2(� − I )2),

and that σ 2
n = Var(Tn) = ∑n

k=1 E[σ 2
nk]. Last but not least, we have for any j > k,

Ek−1
[
σ 2

nj − Eσ 2
nj

] = σ 2
nk − Eσ 2

nk. (20)

Now, we turn to the studies of E1 and E2.
Term E1. We begin with the first term. Decompose the covariance matrix (as in [7]) as

� = ��′, with � ∈ R
p×p . Then, we have the representation

Xi = �Zi, Zi
i.i.d.∼ Np(0, I ), i = 1, . . . , n. (21)

We further define

A = �′�, Mk−1 = �′
k−1∑
i=1

(
XiX

′
i − �

)
� = A

k−1∑
i=1

(
ZiZ

′
i − I

)
A.

With the above definition, (12) can be rewritten as

Dnk = 2

n(n − 1)

[
Z′

kMk−1Zk − tr(Mk−1)
] + 2

n

[
Z′

k

(
A2 − A

)
Zk − tr

(
A2 − A

)]
.

Therefore, we obtain from the Cauchy–Schwarz inequality and Lemma 3 that

E
[
D4

nk

] ≤ C

n4
E
[
Z′

k

(
A2 − A

)
Zk − tr

(
A2 − A

)]4 + C

n4(n − 1)4
E
[
Z′

kMk−1Zk − tr(Mk−1)
]4

≤ C

n4
tr2(�2(� − I )2) + C

n4(n − 1)4
E
[
tr2(M2

k−1

)]
.
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For tr(M2
k−1), we use the following lemma, the proof of which is given in Appendix A.3.

Lemma 2. For tr(M2
k−1), we have

E
[
tr
(
M2

k−1

)] = (k − 1)
[
tr2(�2) + tr

(
�4)],

Var
[
tr
(
M2

k−1

)] = (k − 1)
[
24 tr

(
�8) + 16 tr

(
�6) tr

(
�2) + 8 tr2(�4) + 8 tr

(
�4) tr2(�2)]

+ 2(k − 1)(k − 2)
[
6 tr

(
�8) + 2 tr2(�4)].

For any sequences {an} and {bn} of positive numbers, write an � bn if lim supn→∞ an/bn < ∞.
Note that tr(�6) ≤ tr(�4) tr(�2) and tr(�8) ≤ tr2(�4). Since tr(�4) = o(tr2(�2)), Lemma 2
implies that

E
[
D4

nk

]
� 1

n4
tr2(�2(� − I )2) + k2

n8
tr4(�2),

and hence

E1 � 1

n3
tr2(�2(� − I )2) + 1

n5
tr4(�2). (22)

Term E2. For E2, we can simplify it as

E2 = E

[
n∑

k=1

(
σ 2

nk − Eσ 2
nk

)]2

= E

[
n∑

k=1

(
σ 2

nk − Eσ 2
nk

)2 + 2
n−1∑
k=1

n∑
l=k+1

(
σ 2

nk − Eσ 2
nk

)(
σ 2

nl − Eσ 2
nl

)]

=
n∑

k=1

Var
(
σ 2

nk

) + 2
n−1∑
k=1

(n − k)Var
(
σ 2

nk

) =
n∑

k=1

(2n − 2k + 1)Var
(
σ 2

nk

)
.

Here, the second equality comes from (20).
Note that tr(Qk−1�Qk−1�) = tr(M2

k−1) and tr(Qk−1(�
3 − �2)) = tr(Mk−1(A

2 − A)). So,
by (19), there exist numeric constants C and C′, such that

Var
(
σ 2

nk

) ≤ C

n4(n − 1)4
Var

[
tr
(
M2

k−1

)] + C′

n4(n − 1)2
Var

[
tr
(
Mk−1

(
A2 − A

))]
.

We have studied Var[tr(M2
k−1)] in Lemma 2. On the other hand, we have from Lemma 3 that

Var
[
tr
(
Mk−1

(
A2 − A

))] = (k − 1)Var
[
tr
(
AZZ′A

(
A2 − A

))] = (k − 1)Var
[
Z′(A4 − A3)Z]

= (k − 1)
{
E
[(

Z′(A4 − A3)Z)2] − [
E
[
Z′(A4 − A3)Z]]2}

= (k − 1)
[
2 tr

((
A4 − A3)2) + tr2(A4 − A3) − tr2(A4 − A3)]
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= 2(k − 1) tr
(
�6(� − I )2)

≤ 2(k − 1) tr
(
�4) tr

(
�2(� − I )2).

Since tr(�6) ≤ tr(�4) tr(�2), tr(�8) ≤ tr2(�4) and tr(�4) = o(tr2(�2)), we obtain that

Var
(
σ 2

nk

)
� k

n8
tr
(
�4) tr2(�2) + k2

n2
tr2(�4) + k

n6
tr
(
�4) tr

(
�2(� − I )2),

which leads to the bound

E2 � 1

n3
tr
(
�4) tr

(
�2(� − I )2) + 1

n4
tr2(�4) + 1

n5
tr
(
�4) tr2(�2). (23)

Summing up. By (9), we have

σ 4
n  1

n2
tr2(�2(� − I )2) + 1

n3
tr2(�2) tr

(
�2(� − I )2) + 1

n4
tr4(�2). (24)

Here and after, for any sequences {an} and {bn} of positive numbers, we write an  bn if an/bn

is bounded away from both 0 and ∞. Thus, we obtain that

σ−4
n E1 = O

(
n−1), σ−4

n E2 = O
(
tr
(
�4)/ tr2(�2)).

Plugging these estimates in Lemma 1, we complete the proof.

6.3. Proof of Theorem 4

Following the discussion after Theorem 4, we give below the detailed proof of the first claim
in the theorem. In particular, we bound the power of the test separately on �(B) and �(b,B),
which are defined in (15).

Case 1: �(B). Here, we shall proceed heavy-handedly by using Chebyshev’s inequality, be-
cause the alternative class is sufficiently far away from H0.

For any � ∈ �(B), there exists τ ≥ B , s.t. ‖� − I‖F = τ
√

p/n. Suppose B is large enough
s.t. τ 2 ≥ B2 ≥ 3z1−α . Note that σn(I ) = (2p/n)(1 + o(1)), and so

E�Tn = ‖� − I‖2
F = τ 2

2
σn(I )

(
1 + o(1)

)
> z1−ασn(I ).

Thus, we can use Chebyshev’s inequality to bound the type II error of ψ at � as the following:

1 − E�ψ = P�

(
Tn ≤ z1−ασn(I )

) = P�

(
Tn − E�Tn ≤ z1−ασn(I ) − E�Tn

)
≤ P�

(|Tn − E�Tn| ≥ |z1−ασn(I ) − E�Tn|
)

(25)

≤ Var�(Tn)

[z1−ασn(I ) − E�Tn]2
.
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For Var�(Tn) = σ 2
n (�), we have its explicit expression given in (9). Let λmax(�) denote the

largest eigenvalue of �. When ‖� − I‖F = τ
√

p/n, we have λmax(�) ≤ 1 + τ
√

p/n, and so

tr
(
�2) ≤ p

(
1 + τ√

n

)2

, tr
(
�2(� − I )2) ≤ λ2

max(�)‖� − I‖2
F ≤ τ 2p

n

(
1 + τ

√
p

n

)2

.

Since tr(�4) ≤ tr2(�2) and σ 2
n (I ) = (4p2/n2)(1 + o(1)), the above inequalities, together with

(9), lead to

σ 2
n (�)

σ 2
n (I )

≤
[

2

(
1 + τ√

n

)2

+ 2τ 2

p

(
1 + τ

√
p

n

)2](
1 + o(1)

)
.

Since τ 2/2 − z1−α ≥ τ 2/6 , there exists some constant Cα depending only on α, such that

Var�(Tn)

[z1−ασn(I ) − E�Tn]2
≤ 2(1 + τ/

√
n)2 + (2τ 2/p)(1 + τ

√
p/n)2

(τ 2/2 − z1−α)2

(
1 + o(1)

)

≤ Cα

[(
1√
τ

+ 1√
n

)4

+ 1

τ 2p
+ 1

n

]
.

Note that all the o(1) terms in the above derivation are uniform over �(B). Therefore, given
α and b, there exist a constant B = B(α,b), such that

lim inf
n→∞ inf

�(B)
E�ψ ≥ 1 − Var�(Tn)

[z1−ασn(I ) − E�Tn]2

≥ 1 − Cα

[(
1√
B

+ 1√
n

)4

+ 1

B2p
+ 1

n

]
(26)

≥ 1 − �

(
z1−α − b2

2

)
> α.

Case 2: �(b,B). On this subset, we use Proposition 3 to obtain the following uniform approx-
imation to the power function by the normal distribution function

sup
�(b,B)

∣∣∣∣E�ψ − �

(
z1−α − ‖� − I‖2

F

2p/n

)∣∣∣∣ → 0. (27)

If (27) is true, then we obtain

lim
n→∞ inf

�(b,B)
E�ψ = lim

n→∞ inf
�(b,B)

�

(
z1−α − ‖� − I‖2

F

2p/n

)
= 1 − �

(
z1−α − b2

2

)
> α.

Together with (26), this leads to the desired claim.
Turn to the proof of (27). First, note that uniformly on �(b,B), we have

p(1 − B/
√

n)2 ≤ tr
(
�2) ≤ p(1 + B/

√
n)2, (28)
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and tr(�4) ≤ λ2
max(�) tr(�2) ≤ B2(p/n)p(1 + B/

√
n)2. Therefore, as n → ∞,

sup
�(b,B)

| tr
(
�2)/p − 1| → 0, sup

�(b,B)

tr
(
�4)/ tr2(�2) → 0. (29)

So the condition of Proposition 3 is satisfied. Next, we observe that

E�ψ = P�

(
Tn > z1−ασn(I )

) = P�

(
Tn − ‖� − I‖2

F

σn(�)
≥ σn(I )

σn(�)
z1−α − ‖� − I‖2

F

σn(�)

)

= P�

(
Tn − μn(�)

σn(�)
≥ σn(I )

σn(�)
z1−α − ‖� − I‖2

F

σn(�)

)
.

Thus, Proposition 3 and (29) together imply that

sup
�(b,B)

∣∣∣∣E�ψ − �

(
σn(I )

σn(�)
z1−α − ‖� − I‖2

F

σn(�)

)∣∣∣∣ → 0.

To complete the proof, what is left to be verified is that

sup
�(b,B)

∣∣∣∣ σ 2
n (�)

4p2/n2
− 1

∣∣∣∣ → 0, (30)

because it implies sup�(b,B) |�(z1−α − ‖�−I‖2
F

2p/n
) − �(

σn(I)
σn(�)

z1−α − ‖�−I‖2
F

σn(�)
)| → 0, which to-

gether with the last display before (30), leads to (27). To show (30), first recall the expression of
σ 2

n (�) in (9). By (29), we obtain that the first term in (9) is 4(p2/n2)(1 + o(1)) where o(1) is
uniform on �(b,B). On the other hand,

tr
(
�2(� − I )2) ≤ λ2

max(�)‖� − I‖2
F

≤
(

1 + B

√
p

n

)2
Bp

n
≤ C(B)max

(
1,

p

n

)
· p

n
.

Here, C(B) is a constant depending only on B . Therefore, we have that the second term in (9)
is of order o(p2/n2) uniformly over �(b,B). Putting the two parts together leads to (30). This
completes the proof.

6.4. Proof of Proposition 5

Fix any τ ∈ (0,1). At each dimension p, consider a single point in C(τ ):

�∗ = Ip×p + τ

√
p

n
uu′,
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where u is an arbitrarily fixed unit vector in R
p . Since τ < 1, Proposition 10 in [15] leads to

lim
n→∞ E�∗φCLR = 1 − �

(
z1−α − h(τ, c)

)
for h(τ, c) = τ

√
c − log(1 + τ

√
c)√−2 log(1 − c) − 2c

.

Note that for all τ > 0 and c ∈ (0,1), τ 2/2 > h(τ, c) > 0. Therefore,

lim
n→∞ inf

C(τ )
E�ψ = 1 − �

(
z1−α − τ 2

2

)

> 1 − �
(
z1−α − h(τ, c)

)
= lim

n→∞ E�∗φCLR

≥ lim sup
n→∞

inf
C(τ )

E�φCLR.

The proof of the second claim is obtained by replacing C(τ ) with �(b) and τ with b in the above
arguments.

Appendix: Technical details

A.1. Proof details for Theorem 1

Here we give the calculation leading to (18) in the proof of Theorem 1.
Consider �∗(b) in (5). For any v ∈ {±1}p , we have ‖�v − I‖F = b

√
p/n, diag(�v) =

(1, . . . ,1), and for a = b/
√

n(p − 1),

�−1
v = 1

1 − a
Ip×p −

[
1

1 − a
− 1

1 + (p − 1)a

]
1

p
vv′,

(31)
det�v = (1 − a)p−1[1 + (p − 1)a

]
.

Therefore, we have

f0(x1, . . . , xn) = 1

(2π)np/2
exp

{
−1

2

n∑
i=1

x′
ixi

}
,

f1(x1, . . . , xn) = 1

2p

∑
v

1

(2π)np/2(det�v)n/2
exp

{
−1

2

n∑
i=1

x′
i�

−1
v xi

}

= 1

(2π)np/2
exp

{
− 1

2(1 − a)

n∑
i=1

x′
ixi

}
1

(1 − a)n(p−1)/2[1 + (p − 1)a]n/2

× 1

2p

∑
v

exp

{
1

2p

[
1

1 − a
− 1

1 + (p − 1)a

] n∑
i=1

(
v′xi

)2

}
.
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And so

f 2
1

f0
= 1

(1 − a)n(p−1)[1 + a(p − 1)]n × 1

(2π)np/2
exp

{
−1

2

(
1 + a

1 − a

) n∑
i=1

x′
ixi

}

× 1

22p

{∑
v

exp

[
1

p

(
1

1 − a
− 1

1 + (p − 1)a

) n∑
i=1

(
v′xi

)2

]

+
∑
v �=u

exp

[
1

2p

(
1

1 − a
− 1

1 + (p − 1)a

)(
n∑

i=1

(
v′xi

)2 +
n∑
1

(
u′xi

)2

)]}
.

Now we compute the integral. Fix any v, we have

∫
1

(2π)np/2
exp

{
−1

2

(
1 + a

1 − a

) n∑
i=1

x′
ixi

}
exp

{
1

p

(
1

1 − a
− 1

1 + (p − 1)a

) n∑
i=1

(
v′xi

)2

}
dx

=
[∫

1

(2π)p/2
exp

{
−1

2

(
1 + a

1 − a

)
x′x

}
exp

{
1

p

(
1

1 − a
− 1

1 + (p − 1)a

)(
v′x

)2
}

dx

]n

=
(

1 + a

1 − a

)−np/2[
E exp(tY )

]n

=
(

1 + a

1 − a

)−np/2

(1 − 2t)−n/2 (for t ≤ 1/2),

where Y ∼ χ2
(1), and

t =
(

1

1 − a
− 1

1 + (p − 1)a

)(
1 + a

1 − a

)−1

. (32)

In addition, fix any v �= u, we have

∫
1

(2π)np/2
exp

{
−1

2

(
1 + a

1 − a

) n∑
i=1

x′
ixi

}

× exp

{
1

2p

(
1

1 − a
− 1

1 + (p − 1)a

)(
n∑

i=1

(
v′xi

)2 + (
u′xi

)2

)}
dx

=
[∫

1

(2π)p/2
exp

{
−1

2

(
1 + a

1 − a

)
x′x

}

× exp

{
1

2p

(
1

1 − a
− 1

1 + (p − 1)a

)[(
v′x

)2 + (
u′x

)2]}dx

]n

.
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Let X ∼ Np(0, I ), Z1 = v′X/
√

p, and Z2 = u′X/
√

p. Then

[
Z1
Z2

]
∼ N2

([
0
0

]
,

[
1 v′u/p

v′u/p 1

])
,

and so Z2
1 + Z2

2
d= (1 + v′u/p)Y1 + (1 − v′u/p)Y2, with Yi

i.i.d.∼ χ2
(1). Therefore, the second last

display equals

(
1 + a

1 − a

)−np/2[
E exp(t1Y1 + t2Y2)

]n

=
(

1 + a

1 − a

)−np/2

(1 − 2t1)
−n/2(1 − 2t2)

−n/2,

where

t1 = t

2

(
1 + 1

p
v′u

)
, t2 = t

2

(
1 − 1

p
v′u

)
.

Collecting terms, we obtain after some linear algebra that

∫
f 2

1

f0
= (1 − a2)n−np/2

[1 + (p − 1)a2]n EV,U

[
1 −

(
pa

1 + (p − 1)a2

)2(
V ′U
p

)2]−n/2

= (1 − a2)n−np/2

[1 + (p − 1)a2]n EV

[
1 −

(
pa

1 + (p − 1)a2

)2(1′V
p

)2]−n/2

.

Here, both V and U have i.i.d. Rademacher entries which take values ±1 with equal probability,
and in the first expectation, V and U are independent.

A.2. Variance of Tn

In this part, we establish the variance of Tn given in (9). We begin with a technical lemma, which
is closely connected to [7], Proposition A.1.

Lemma 3. Let Z1,Z2
i.i.d.∼ Np(0, I ), and M , N be two p × p p.s.d. matrices, then

E
[(

Z′
1MZ1

)(
Z′

1NZ1
)] = tr(M) tr(N) + 2 tr(MN); (33)

E
[(

Z′
1MZ2

)4] = 3 tr2(M2) + 6 tr
(
M4); (34)

E
[(

Z′
1MZ1 − tr(M)

)4] = 48 tr
(
M4) + 12 tr2(M2). (35)
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Proof. Denote the ordered eigenvalues of M by λ1 ≥ · · · ≥ λp , and those of N by μ1 ≥ · · · ≥ μp .

Let Uj
i.i.d.∼ N(0,1), j = 1, . . . , p. For (33), we have

E
[(

Z′
1MZ1

)(
Z′

1NZ1
)] = E

[(
p∑

j=1

λjU
2
j

)(
p∑

j=1

μjU
2
j

)]

=
p∑

j=1

λjμj E
[
U4

j

] +
p∑

j �=l

λjμlE
[
U2

j

]
E
[
U2

l

]

= 3
p∑

j=1

λjμj +
p∑

j �=l

λjμl = tr(M) tr(N) + 2 tr(MN).

For (34), we define Vj
i.i.d.∼ N(0,1), j = 1, . . . , p, which are independent from the Uj ’s. Then

E
[(

Z′
1MZ2

)4] = E

[(
p∑

j=1

λjUjVj

)4]

=
p∑

j=1

λ4
j E

[
U4

j

]
E
[
V 4

j

] +
(

4

2

) p∑
j �=l

λ2
j λ

2
l E

[
U2

j

]
E
[
U2

l

]
E
[
V 2

j

]
E
[
V 2

l

]

= 9
p∑

j=1

λ4
j + 6

p∑
j �=l

λ2
j λ

2
l = 3 tr2(M2) + 6 tr

(
M4).

Finally, for (35), we have

E
[(

Z′
1MZ1 − tr(M)

)4] = E

[(
p∑

j=1

λj

(
U2

j − 1
))4]

=
p∑

j=1

λ4
j E

[(
U2

i − 1
)4] + 6

p∑
j �=l

λ2
j λ

2
l E

[(
U2

j − 1
)2]

E
[(

U2
l − 1

)2]

= 60
p∑

j=1

λ4
i + 24

p∑
j �=l

λ2
j λ

2
l = 48 tr

(
M4) + 12 tr2(M2).

This completes the proof of the lemma. �

In order to understand the variance of Tn, we need the following lemma.
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Lemma 4. For X1,X2,X3
i.i.d.∼ Np(0,�), we have

Var
(
h(X1,X2)

) = 2
[
tr2(�2) + tr

(
�4)] + 4 tr

(
�2(� − I )2),

Cov
(
h(X1,X2), h(X1,X3)

) = 2 tr
(
�2(� − I )2).

Proof. For the variance, we first decompose it as

Var
(
h(X1,X2)

) = Var
(
X′

1X2
)2 + 2 Var

(
X′

1X1
) − 4 Cov

((
X′

1X2
)2

,
(
X′

1X1
))

.

For Var(X′
1X2)

2 = E[(X′
1X2)

4] − [E(X′
1X2)

2]2, we have from (34) that

E
[(

X′
1X2

)4] = E
[(

Z′
1AZ2

)4] = 3 tr2(A2) + 6 tr
(
A4) = 3 tr2(�2) + 6 tr

(
�4).

On the other hand, we have

E
[(

X′
1X2

)2] = E
[
Z′

1AZ2Z
′
2AZ1

] = E
[
tr
(
AZ2Z

′
2A

)] = E
[
Z′

2A
2Z2

] = tr
(
A2) = tr

(
�2).

Thus, we obtain Var(X′
1X2)

2 = 2 tr2(�2) + 6 tr(�4). Similar type of calculation yields that

Var
(
X′

1X1
) = 2 tr

(
�2), Cov

((
X′

1X2
)2

,
(
X′

1X1
)) = 2 tr

(
�3).

Assembling the pieces, we prove the variance formula.
For the covariance formula, the basic quantity to compute is

E
[(

X′
1X2

)2 − (
X′

1X1
) − (

X′
2X2

)][(
X′

1X3
)2 − (

X′
1X1

) − (
X′

3X3
)]

= E
(
X′

1X2
)2(

X′
1X3

)2 − E
(
X′

1X1
)(

X′
1X3

)2 − E
(
X′

2X2
)
E
(
X′

1X3
)2

− E
(
X′

1X2
)2(

X′
1X1

) + E
(
X′

1X1
)2 + E

(
X′

1X1
)
E
(
X′

2X2
)

− E
(
X′

3X3
)
E
[(

X′
1X2

)2 − (
X′

1X1
) − (

X′
2X2

)]
= E

(
X′

1X2
)2(

X′
1X3

)2 − 2E
(
X′

1X1
)(

X′
1X3

)2

− 2E
(
X′

1X1
)
E
(
X′

1X2
)2 + E

(
X′

1X1
)2 + 3

[
E
(
X′

1X1
)]2

.

First, we compute E(X′
1X2)

2(X′
1X3)

2, for which we have

E
(
X′

1X2
)2(

X′
1X3

)2 = E
[(

Z′
1AZ2

)2(
Z′

1AZ3
)2]

= E
[
E
[
Z′

2AZ1Z
′
1AZ2|Z1

]
E
[
Z′

3AZ1Z
′
1AZ3|Z1

]]
= E

[
tr2(AZ1Z

′
1A

)]
= E

[(
Z′

1A
2Z1

)2]
= tr2(A2) + 2 tr

(
A4) = tr2(�2) + 2 tr

(
�4).
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Next, we compute E(X′
1X1)(X

′
1X3)

2, for which we have

E
(
X′

1X1
)(

X′
1X3

)2 = E
[(

Z′
1AZ1

)(
Z′

1AZ3
)2]

= E
[(

Z′
1AZ1

)
E
[
Z′

3AZ1Z
′
1AZ3|Z1

]]
= E

[(
Z′

1AZ1
)(

Z′
1A

2Z1
)]

= 2 tr
(
A3) + tr

(
A2) tr(A) = 2 tr

(
�3) + tr

(
�2) tr(�).

We further note that E(X′
1X1)

2 = E(Z′
1AZ1)

2 = 2 tr(�2)+ tr2(�), that E(X′
1X2)

2 = tr(�2), and
that E(X′

1X1) = tr(�). Thus, we obtain that

E
[(

X′
1X2

)2 − (
X′

1X1
) − (

X′
2X2

)][(
X′

1X3
)2 − (

X′
1X1

) − (
X′

3X3
)]

= tr2(�2) + 2 tr
(
�4) − 4 tr

(
�3) − 4 tr

(
�2) tr(�) + 2 tr

(
�2) + 4 tr2(�).

Noting that E[(X′
1X2)

2 − (X′
1X1) − (X′

2X2)] = tr(�2) − 2 tr(�), we obtain the claim. �

Proof of (9). With Lemma 4, we have

Var

( ∑
1≤i<j≤n

h(Xi,Xj )

)

=
∑

1≤i<j≤n

Var
(
h(Xi,Xj )

) + 2
∑

1≤i<j,i′<j ′≤n

i=i′ or j=j ′

Cov
(
h(Xi,Xj ),h(Xi′ ,Xj ′)

)

= n(n − 1)

2
Var

(
h(X1,X2)

) + 2
n(n − 1)

2
(n − 2)Cov

(
h(X1,X2), h(X1,X3)

)
= n(n − 1)

[
tr2(�2) + tr

(
�4)] + 2n(n − 1)2 tr

(
�2(� − I )2).

Multiplying both sides with 4n−2(n − 1)−2, we obtain (9). �

A.3. Proof details for Proposition 3

A.3.1. Proof of (12)

First of all, we give a formal proof of the representation (12).

Proof of (12). The computations made in [7], Appendix, are handy for the proof here. Indeed,
we have

unk = (Ek − Ek−1)

[
1

n
X′

kXk

]
= 1

n

[
X′

kXk − tr(�)
]
, (36)



Testing high dimensional covariance matrices 2383

vnk = (Ek − Ek−1)

[
2

n(n − 1)

∑
i �=k

(
X′

iXk

)2
]

= 2

n(n − 1)

[
X′

kQk−1Xk − tr(Qk−1�)
] + 2

n

[
X′

k�Xk − tr
(
�2)],

where Qk−1 = ∑k−1
i=1 (XiX

′
i − �). Noting that Dnk = vnk − 2unk , we obtain (12). �

A.3.2. Proof of (19)

To calculate σ 2
nk , we note that

σ 2
nk = Ek−1

[
D2

nk

] = 4Ek−1
[
u2

nk

] − 4Ek−1[unkvnk] + Ek−1
[
v2
nk

]
.

Thus, (19) is immediate with the following lemma.

Lemma 5. For unk, vnk defined as in (36), we have

Ek−1
[
u2

nk

] = 2

n2
tr
(
�2),

Ek−1[unkvnk] = 4

n2(n − 1)
tr
(
Qk−1�

2) + 4

n2
tr
(
�3),

Ek−1
[
v2
nk

] = 8

n2(n − 1)2
tr(Qk−1�Qk−1�)

+ 16

n2(n − 1)
tr
(
Qk−1�

3) + 8

n2
tr
(
�4).

Proof. First, we have

Ek−1
[
u2

nk

] = 1

n2
Var

(
X′

kXk

) = 2

n2
tr
(
�2).

Next, we have from (33) that

Ek−1[unkvnk] = 2

n2(n − 1)
Ek−1

[
X′

kXk − tr(�)
]
X′

kQk−1Xk + 2

n2

[
X′

kXk − tr(�)
]
X′

k�Xk

= 2

n2(n − 1)

[
tr(�) tr(Qk−1�) + 2 tr

(
Qk−1�

2) − tr(�) tr(Qk−1�)
]

+ 2

n2

[
tr(�) tr

(
�2) + 2 tr

(
�3) − tr(�) tr

(
�2)]

= 4

n2(n − 1)
tr
(
Qk−1�

2) + 4

n2
tr
(
�3).
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Finally, we have

Ek−1
[
v2
nk

] = 4

n2(n − 1)2
Ek−1

[
X′

kQk−1Xk − tr(Qk−1�)
]
X′

kQk−1Xk

+ 8

n2(n − 1)
Ek−1

[
X′

k�Xk − tr
(
�2)]X′

kQk−1Xk

+ 4

n2
Ek−1

[
X′

k�Xk − tr
(
�2)]X′

k�Xk.

Note that

Ek−1
[
X′

kQk−1XkX
′
kQk−1Xk

] = Ek−1
[
Z′

k�
′Qk−1�ZkZ

′
k�

′Qk−1�Zk

]
= tr2(�′Qk−1�

) + 2 tr
(
�′Qk−1��′Qk−1�

)
= 2 tr(Qk−1�Qk−1�) + tr2(Qk−1�),

E
[
X′

kQk−1XkX
′
k�Xk

] = Ek−1
[
Z′

k�
′Qk−1�ZkZ

′
k�

′��Zk

]
= tr

(
�′Qk−1�

)
tr
(
�′��

) + 2 tr
(
�′Qk−1��′��

)
= 2 tr

(
Qk−1�

3) + tr(Qk−1�) tr
(
�2),

Ek−1
[
X′

k�XkX
′
k�Xk

] = Ek−1
[
Z′

k�
′��ZkZ

′
k�

′��Zk

]
= 2 tr

(
�′���′��

) + tr2(�′��
)

= 2 tr
(
�4) + tr2(�2).

Collecting terms, we complete the proof. �

A.3.3. Proof of Lemma 2

Finally, we shall complete the proof of Lemma 2.
Recall that Mk−1 = A

∑k−1
i=1 (ZiZ

′
i − I )A, and so

tr
(
M2

k−1

) =
k−1∑
i=1

tr
(
A

(
ZiZ

′
i − I

)
A2(ZiZ

′
i − I

)
A

)
(37)

+ 2
k−2∑
i=1

k−1∑
j=i+1

tr
(
A

(
ZiZ

′
i − I

)
A2(ZjZ

′
j − I

)
A

)
.

For any fixed i, we have

E
[
tr
(
A

(
ZiZ

′
i − I

)
A2(ZiZ

′
i − I

)
A

)] = E
[
tr
(
AZiZ

′
iA

2ZiZ
′
iA

)] − 2E
[
tr
(
A2ZiZ

′
iA

2)] + tr
(
A4)

= E
[(

Z′
iA

2Zi

)2] − 2E
[
Z′

iA
4Zi

] + tr
(
A4)
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= 2 tr
(
A4) + tr2(A2) − 2 tr

(
A4) + tr

(
A4)

= tr2(�2) + tr
(
�4).

On the other hand, for any i �= j , we have

E
[
tr
(
A

(
ZiZ

′
i − I

)
A2(ZjZ

′
j − I

)
A

)] = 0.

In addition, we note that the terms in (37) are all uncorrelated. Therefore, we obtain that

E
[
tr
(
M2

k−1

)] = (k − 1)
[
tr2(�2) + tr

(
�4)].

Moreover, we have

Var
[
tr
(
M2

k−1

)] =
k−1∑
i=1

Var
[
tr
(
A

(
ZiZ

′
i − I

)
A2(ZiZ

′
i − I

)
A

)]

+ 2
k−2∑
i=1

k−1∑
j=i+1

Var
[
tr
(
A

(
ZiZ

′
i − I

)
A2(ZjZ

′
j − I

)
A

)]
(38)

= (k − 1)V1 + 2(k − 1)(k − 2)V2.

Here, V1 = Var[tr(A(Z1Z
′
1 − I )A2(Z1Z

′
1 − I )A)] and V2 = Var[tr(A(Z1Z

′
1 − I )A2(Z2Z

′
2 −

I )A)].
Consider V1 first, for which we have the decomposition

V1 = Var
[(

Z′
1A

2Z1
)2 − 2Z′

1A
4Z1

]
= Var

[(
Z′

1A
2Z1

)2] + 4 Var
(
Z′

1A
4Z1

) − 4 Cov
[(

Z′
1A

2Z1
)2

,Z′
1A

4Z1
]
.

To calculate Var[(Z′
1A

2Z1)
2], we note that the eigenvalues of A2 are λ2

1 ≥ · · · ≥ λ2
p , where

λ1 ≥ · · · ≥ λp are the eigenvalues of �. Let Uj
i.i.d.∼ N(0,1), for j = 1, . . . , p. By the mo-

ment generating function of χ2
(1) distribution, we have E[U2

j ] = 1, E[U4
j ] = 3, E[U6

j ] = 15, and

E[U8
j ] = 105. Then, we obtain that

E
(
Z′

iA
2Zi

)4 = E

[(
p∑

j=1

λ2
jU

2
j

)4]

= E

[
p∑

j=1

λ8
jU

8
j + 4

p∑
j �=l

λ6
j λ

2
l U

6
j U2

l + 6

2!
p∑

j �=l

λ4
j λ

4
l U

4
j U4

l

+ 12

2!
p∑

j �=l �=m

λ4
j λ

2
l λ

2
mU4

j U2
l U2

m + 24

4!
p∑

j �=l �=m �=r

λ2
j λ

2
l λ

2
mλ2

rU
2
j U2

l U2
mU2

r

]
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= 105
p∑

j=1

λ8
j + 15 · 4

p∑
j �=l

λ6
j λ

2
l + 9 · 6

2!
p∑

j �=l

λ4
j λ

4
l

+ 3 · 12

2!
p∑

j �=l �=m

λ4
j λ

2
l λ

2
m + 24

4!
p∑

j �=l �=m �=r

λ2
j λ

2
l λ

2
mλ2

r

= tr4(�2) + 12 tr
(
�4) tr2(�2) + 12 tr2(�4) + 32 tr

(
�6) tr

(
�2) + 48 tr

(
�8).

Observing that E[(Z′
1A

2Z1)
2] = 2 tr(�4) + tr2(�2), we get

Var
[(

Z′
1A

2Z1
)2] = 8 tr

(
�4) tr2(�2) + 8 tr2(�4) + 32 tr

(
�6) tr

(
�2) + 48 tr

(
�8).

Next, we compute Var(Z′
1A

4Z1), for which we have

E
[(

Z′
1A

4Z1
)2] = 2 tr

(
�8) + tr2(�4),

E
[
Z′

1A
4Z1

] = tr
(
�4).

Therefore, we get Var(Z′
1A

4Z1) = 2 tr(�8).
Now switch to Cov[(Z′

1A
2Z1)

2,Z′
1A

4Z1]. We note that

E
[(

Z′
1A

2Z1
)2

Z′
1A

4Z1
]

= E

[(
p∑

j=1

λ4
jU

4
j +

p∑
j �=l

λ2
j λ

2
l U

2
j U2

l

)
p∑

j=1

λ4
jU

2
j

]

= E

[
p∑

j=1

λ8
jU

6
j +

p∑
j �=l

λ4
j λ

4
l U

4
j U2

l + 2
p∑

j �=l

λ6
j λ

2
l U

4
j U2

l +
p∑

j �=l �=m

λ4
j λ

2
l λ

2
mU2

j U2
l U2

m

]

= 15
p∑

j=1

λ8
j + 3

p∑
j �=l

λ4
j λ

4
l + 6

p∑
j �=l

λ6
j λ

2
l +

p∑
j �=l �=m

λ4
j λ

2
l λ

2
m

= tr
(
�4) tr2(�2) + 4 tr

(
�6) tr

(
�2) + 2 tr2(�4) + 8 tr

(
�8).

By previous expression for E[(Z′
1A

2Z1)
2] and E[Z′

1A
4Z1], we obtain that

Cov
[(

Z′
1A

2Z1
)2

,Z′
1A

4Z1
] = 4 tr

(
�6) tr

(
�2) + 8 tr

(
�8).

Finally, we obtain that

V1 = 8 tr
(
�4) tr2(�2) + 8 tr2(�4) + 16 tr

(
�6) tr

(
�2) + 24 tr

(
�8). (39)
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Switch to the calculation of V2. We first note that

V2 = Var
[
tr
(
A

(
Z1Z

′
1 − I

)
A2(Z2Z

′
2 − I

)
A

)]
= Var

[
tr
(
AZ1Z

′
1A

2Z1Z
′
1A

) − tr
(
A2Z1Z

′
1A

2) − tr
(
A2Z2Z

′
2A

2)]
= Var

[(
Z′

1A
2Z2

)2] + 2 Var
(
Z′

1A
4Z1

) − 2 Cov
[(

Z′
1A

2Z2
)2

,Z′
1A

4Z1
]
.

Note that E[(Z′
1A

2Z2)
4] = 3 tr2(�4) + 6 tr(�8), and E[(Z′

1A
2Z2)

2] = tr(�4). We then get

Var
[(

Z′
1A

2Z2
)2] = 2 tr2(�4) + 6 tr

(
�8).

In addition, previous calculation gives Var(Z′
1A

4Z1) = 2 tr(�8). Then for Cov[(Z′
1A

2Z2)
2,

Z′
1A

4Z1], we have

E
[(

Z′
1A

2Z1
)2

Z′
1A

4Z1
] = E

[(
p∑

j=1

λ2
jUjVj

)2 p∑
j=1

λ4
jU

2
j

]

= E

[(
p∑

j=1

λ4
jU

2
j V 2

j

)(
p∑

j=1

λ4
jU

2
j

)]

= E

[
p∑

j=1

λ8
jU

4
j V 2

j +
p∑

j �=l

λ4
j λ

4
l U

2
j V 2

j U2
l

]

= 3
p∑

j=1

λ8
j +

p∑
j �=l

λ4
j λ

4
l

= tr2(�4) + 2 tr
(
�8).

This leads to the conclusion that Cov[(Z′
1A

2Z2)
2,Z′

1A
4Z1] = 2 tr(�8), and so

V2 = 2 tr2(�4) + 6 tr
(
�8). (40)

Replacing V1 and V2 in (38) by (39) and (40), we obtain the claimed formula for Var[tr(M2
k−1)].
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