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SUMMARY 15

Model organisms and human studies have led to increasing empirical evidence that interac-
tions among genes contribute broadly to genetic variation of complex traits. In the presence
of gene-by-gene interactions, the dimensionality of the feature space becomes extremely high
relative to the sample size. This imposes a significant methodological challenge in identifying
gene-by-gene interactions. In the present paper, through a Gaussian graphical model framework, 20

we translate the problem of identifying gene-by-gene interactions associated with a binary trait
D into an inference problem on the difference of two high-dimensional precision matrices, which
summarize the conditional dependence network structures of the genes. We propose a procedure
for testing the differential network globally that is particularly powerful against sparse alterna-
tives. In addition, a multiple testing procedure with false discovery rate control is developed 25

to infer the specific structure of the differential network. Theoretical justification is provided to
ensure the validity of the proposed tests and optimality results are derived under sparsity assump-
tions. A simulation study demonstrates that the proposed tests maintain the desired error rates
under the null and have good power under the alternative. The methods are applied to a breast
cancer gene expression study. 30

Some key words: Differential network, false discovery rate, Gaussian graphical model, gene-by-gene interaction, high-
dimensional precision matrix, large scale multiple testing.

1. INTRODUCTION

High throughput technologies, enabling comprehensive monitoring of a biological system,
have fundamentally transformed biomedical research. Studies using such technologies have led 35

to successful molecular classifications of diseases into clinically relevant subtypes and genetic
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signatures predictive of disease progression and treatment response (van’t Veer et al., 2002;
Gregg et al., 2008; Hu et al., 2009, e.g.). Irrespective of the technology used, analysis of high-
throughput data typically considers one marker at a time and yields a list of differentially ex-
pressed genes or proteins. On the other hand, epistasis, or interactions between genes, has40

long been recognized as crucial to understanding the genetic architecture of disease phenotypes
(Phillips, 2008; Eichler et al., 2010). Increasing empirical evidence from model organisms and
human studies suggests that gene-by-gene interactions may make an important contribution to
total genetic variation of complex traits (Zerba et al., 2000; Marchini et al., 2005). In this paper,
we are specifically interested in gene-by-gene interactions with respect to the interactive effects45

of two genes on a binary disease trait D.
In the presence of gene-by-gene interactions, the dimensionality of the feature space becomes

extremely high relative to the sample size. This, together with the variability of the data, imposes
a significant methodological challenge in identifying gene-by-gene interactions using currently
available studies, which typically have limited sample sizes and power. Recent development in50

interaction modeling has led to several useful methods including multi-factor dimensionality re-
duction (Ritchie et al., 2001; Moore, 2004), polymorphism interaction analysis (Mechanic et al.,
2008), random forests (Breiman, 2001), various variations of logistic regression with interac-
tive effects (Chatterjee et al., 2006; Chapman & Clayton, 2007; Kooperberg & Ruczinski, 2005;
Kooperberg & LeBlanc, 2008) and sure independence screening (Fan & Lv, 2008). However, to55

overcome the high dimensionality, a majority of these methods use multistage procedures and
marginal assessments of the effects of a gene pair without simultaneously accounting for the ef-
fects of other genes. Multistage procedures may have limited power in detecting genes that affect
the outcome through interactions with other genes without strong main effects. The interactive
effects detected through models that only consider one pair of genes at a time without condition-60

ing on other genes may also result in false identification of interactions due to the discrepancy
between conditional and unconditional effects. Furthermore, none of the existing methods pro-
vide false discovery rate control in the presence of interactions. Due to the large number of tests,
the power of multiple testing procedures using the standard Bonferroni or naive false discovery
rate corrections can dissipate quickly.65

In this paper, through a Gaussian graphical model framework, we translate the problem of
identifying gene-by-gene interactions associated with a binary trait D into the comparison of
two high-dimensional precision matrices. Let G denote a p× 1 vector of genomic markers and
assume that, conditional on D = d, G ∼ N(µd,Σd), for d = 1, 2. Then the posterior risk given
G is70

pr(D = 1 | G) = g
{

constant− 1

2
GT(Ω1 − Ω2)G+GT(Ω1µ1 − Ω2µ2)

}
where g(x) = ex/(1 + ex) and Ωd = (ωi,j,d) = Σ−1

d is the precision matrix for G conditional
on D = d. Hence, an interaction between the gene pair (i, j) affects the disease risk if and only
if δi,j = ωi,j,1 − ωi,j,2 = 0. The difference between the two precision matrices, denoted by ∆ =
(δi,j) = Ω1 − Ω2, is called the differential network. This type of model for a differential network75

has been used in Li et al. (2007) and Danaher et al. (2014). We thus propose to test for gene-by-
gene interactions both by testing the global hypotheses

H0 : ∆ = 0 versus H1 : ∆ 6= 0, (1)

and by simultaneously testing the hypotheses

H0,i,j : δi,j = 0 versus H1,i,j : δi,j 6= 0, 1 ≤ i < j ≤ p,
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while controlling for the overall false discovery rate at a pre-specified level.
Few authors have considered testing the equality of two precision matrices in the high-

dimensional setting. The global null hypothesis ∆ = 0, or equivalently Ω1 = Ω2, corresponds 80

to the hypothesis that none of the gene pairs have interactive effects on D. The equality of two
precision matrices is equivalent to the equality of two covariance matrices, and the latter has been
studied under various alternatives. Under the dense alternative, where Σ1 and Σ2 differ in a large
number of entries, various sum-of-square type testing procedures have been proposed (Schott,
2007; Srivastava & Yanagihara, 2010; Li & Chen, 2012). Under the sparse alternative with Σ1 85

and Σ2 differing only in a small number of entries, Cai et al. (2013) introduced a particularly
powerful test. However, in the gene-by-gene interaction setting, the goal is to identify the struc-
ture of the differential network. In such cases, it is often reasonable to assume that ∆ is sparse,
while Σ1 − Σ2 is not. Hence, testing procedures that can leverage information on the sparsity of
∆ may improve power. Furthermore, due to the fundamental difference between conditional and 90

unconditional dependences, the various procedures for testing the covariance matrices may not
be well adapted to testing specific entries of the precision matrices.

The first goal of this paper is to develop a global test for H0 : ∆ = 0 that is powerful against
sparse alternatives. We then develop a multiple testing procedure for simultaneously testing the
hypotheses {H0,i,j : 1 ≤ i < j ≤ p} with false discovery rate control to infer the structure of the 95

differential network. In the high-dimensional setting, there is no sample precision matrix that one
can use to approximate Ωd. We propose to infer Ωd by relating its elements to the coefficients of
a set of regression models for G conditional on D = d. We then construct test statistics based on
the covariances between the residuals from the fitted regression models. The testing procedures
are easy to implement. A Matlab implementation is available in the Supplementary Material. 100

2. GLOBAL TESTING OF DIFFERENTIAL NETWORKS

2·1. Notation and Definitions
In this section we consider testing the global hypothesis (1). We begin with notation and

definitions that will be used in the rest of the paper. Let Xk ∈ Rp and Yk ∈ Rp denote G
given D = 1 and D = 2, respectively, Xk ∼ N(µ1,Σ1) for k = 1, . . . , n1, Yk ∼ N(µ2,Σ2) 105

for k = 1, . . . , n2, where Σd = (σi,j,d) for d = 1, 2, and {Xk : k = 1, . . . , n1} and {Yk : k =
1, . . . , n2} are independent observations from the two populations. Let X = (X1, . . . , Xn1)T

and Y = (Y1, . . . , Yn2)T denote the data matrices. Let Ωd = (ωi,j,d) = Σ−1
d , for d = 1, 2.

For subscripts, we use the convention that i stands for the ith entry of a vector and (i, j) for
the entry in the ith row and j th column of a matrix, k represents the kth sample and d indexes the 110

binary trait. Let βi,1 = (β1,i,1, . . . , βp−1,i,1)T denote the regression coefficients ofXk,i regressed
on the rest of the entries of Xk and let βi,2 = (β1,i,2, . . . , βp−1,i,2)T denote the regression coeffi-
cients of Yk,i regressed on the rest of the entries of Yk.

For any vector µd with dimension p× 1, let µ−i,d denote the (p− 1)× 1 vector by removing
the ith entry from µd. For a symmetric matrix A, let λmax(A) and λmin(A) denote the largest 115

and smallest eigenvalues of A. For any p× q matrix A, Ai,−j denotes the ith row of A with its
j th entry removed and A−i,j denotes the j th column of A with its ith entry removed. The matrix
A−i,−j denotes a (p− 1)× (q − 1) matrix obtained by removing the ith row and j th column ofA.
For an n× p data matrix U = (U1, . . . , Un)T, let U·,−i = (UT

1,−i, . . . , U
T
n,−i)

T with dimension
n× (p− 1), Ū·,−i = n−1

∑n
k=1 Uk,−i with dimension 1× (p− 1), U(i) = (U1,i, . . . , Un,i)

T
120

with dimension n× 1, Ū(i) = (Ūi, . . . , Ūi)
T with dimension n× 1, where Ūi = n−1

∑n
k=1 Uk,i,

and Ū(·,−i) = (ŪT
·,−i, . . . , Ū

T
·,−i)

T with dimension n× (p− 1). For tuning parameters λ, let
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λnd,i,d represent the ith tuning parameter for binary trait d, which depends on the sample size
nd.

For a vector β = (β1, . . . , βp)
T ∈ Rp, define the `q norm by |β|q = (

∑p
i=1 |βi|q)1/q for125

1 ≤ q ≤ ∞. A vector β is called k-sparse if it has at most k nonzero entries. For a ma-
trix Ω = (ωi,j)p×p, the matrix 1-norm is the maximum absolute column sum, ‖Ω‖L1 =
max1≤j≤p

∑p
i=1 |ωi,j |, the matrix elementwise infinity norm is defined to be ‖Ω‖∞ =

max1≤i,j≤p |ωi,j | and the elementwise `1 norm is ‖Ω‖1 =
∑p

i=1

∑p
j=1 |ωi,j |. For a matrix Ω,

we say Ω is k-sparse if each row/column has at most k nonzero entries. For a set H, de-130

note by |H| the cardinality of H. For two sequences of real numbers {an} and {bn}, write
an = O(bn) if there exists a constant C such that |an| ≤ C|bn| holds for all n, write an = o(bn)
if limn→∞ an/bn = 0, and write an � bn if there are positive constants c and C such that
c ≤ an/bn ≤ C for all n.

2·2. Testing Procedure135

It is well known (e.g., Anderson, 2003, Section 2.5), that in the Gaussian setting the precision
matrix can be described in terms of regression models. Specifically, we may write

Xk,i = αi,1 +Xk,−iβi,1 + εk,i,1, (i = 1, . . . , p; k = 1, . . . , n1), (2)
Yk,i = αi,2 + Yk,−iβi,2 + εk,i,2, (i = 1, . . . , p; k = 1, . . . , n2), (3)

where εk,i,d ∼ N(0, σi,i,d − Σi,−i,dΣ
−1
−i,−i,dΣ−i,i,d) (d = 1, 2), are independent of Xk,−i and

Yk,−i respectively, and αi,d = µi,d − Σi,−i,dΣ
−1
−i,−i,dµ−i,d. The regression coefficient vectors

βi,d and the error terms εk,i,d satisfy140

βi,d = −ω−1
i,i,dΩ−i,i,d, ri,j,d = cov(εk,i,d, εk,j,d) =

ωi,j,d
ωi,i,dωj,j,d

,

where cov(·, ·) denotes the population covariance. Since the null hypothesisH0 : ∆ = 0 is equiv-
alent to the hypothesis

H0 : max
1≤i≤j≤p

|ωi,j,1 − ωi,j,2| = 0,

a natural approach to test H0 is to first construct estimators of ωi,j,d, and then base the test on the
maximum standardized differences. We first construct estimators of ri,j,d.

Let β̂i,d = (β̂1,i,d, . . . , β̂p−1,i,d)
T be estimators of βi,d satisfying

max
1≤i≤p

|β̂i,d − βi,d|1 = op{(log p)−1}, (4)

max
1≤i≤p

|β̂i,d − βi,d|2 = op{(nd log p)−1/4}. (5)

Estimators β̂i,d that satisfy (4) and (5) can be obtained easily via methods such as the lasso and
Dantzig selector. See Section 2·3 for details. Define the residuals by145

ε̂k,i,1 = Xk,i − X̄i − (Xk,−i − X̄·,−i)β̂i,1, ε̂k,i,2 = Yk,i − Ȳi − (Yk,−i − Ȳ·,−i)β̂i,2.

A natural estimator of ri,j,d is the sample covariance between the residuals,

r̃i,j,d =
1

nd

nd∑
k=1

ε̂k,i,dε̂k,j,d. (6)
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However, when i 6= j, r̃i,j,d tends to be biased due to the correlation induced by the estimated
parameters and it is desirable to construct a bias-corrected estimator. Lemma 2 shows that

r̃i,j,d = R̃i,j,d − r̃i,i,d(β̂i,j,d − βi,j,d)− r̃j,j,d(β̂j−1,i,d − βj−1,i,d) + op{(nd log p)−
1
2 }

where R̃i,j,d is the empirical covariance between {εk,i,d : k = 1, . . . , nd} and {εk,j,d : k =
1, . . . , nd}. For 1 ≤ i < j ≤ p, βi,j,d = −ωi,j,d/ωj,j,d and βj−1,i,d = −ωi,j,d/ωi,i,d. Thus, we 150

propose a bias-corrected estimator of ri,j,d as

r̂i,j,d = −(r̃i,j,d + r̃i,i,dβ̂i,j,d + r̃j,j,dβ̂j−1,i,d), 1 ≤ i < j ≤ p. (7)

The bias of r̂i,j,d is of order max{ri,j,d(log p/nd)
1/2, (nd log p)−1/2}.

For i = j, note that ri,i,d = 1/ωi,i,d. We show in Lemma 2 that

max
1≤i≤p

|r̃i,i,d − ri,i,d| = Op{(log p/nd)
1/2},

which implies that r̂i,i,d = r̃i,i,d is a nearly unbiased estimator of ri,i,d. A natural estimator of
ωi,j,d can then be defined by 155

Ti,j,d =
r̂i,j,d

r̂i,i,dr̂j,j,d
, 1 ≤ i ≤ j ≤ p (8)

We test H0 : ∆ = 0 based on the estimators T = {Ti,j,1 − Ti,j,2 : 1 ≤ i ≤ j ≤ p}.
The estimators Ti,j,1 − Ti,j,2 in T are heteroscedastic and possibly have a wide range of vari-

ability. We first standardize Ti,j,1 − Ti,j,2 before combining information from all entries in T . Let
Ui,j,d = (1/nd)

∑nd
k=1{εk,i,dεk,j,d − E(εk,i,dεk,j,d)} and Ũi,j,d = (ri,j,d − Ui,j,d)/(ri,i,drj,j,d). It

will be shown in Lemma 2 that, uniformly in 1 ≤ i < j ≤ p, 160

|Ti,j,d − Ũi,j,d| = Op{(log p/nd)
1
2 }ri,j,d + op{(nd log p)−

1
2 }.

Let θi,j,d = var(Ũi,j,d). Note that

θi,j,d = var{εk,i,dεk,j,d/(ri,i,drj,j,d)}/nd = (1 + ρ2
i,j,d)/(ndri,i,drj,j,d),

where ρ2
i,j,d = β2

i,j,dri,i,d/rj,j,d. We then estimate θi,j,d by

θ̂i,j,d = (1 + β̂2
i,j,dr̂i,i,d/r̂j,j,d)/(ndr̂i,i,dr̂j,j,d).

Define the standardized statistics

Wi,j =
Ti,j,1 − Ti,j,2

(θ̂i,j,1 + θ̂i,j,2)1/2
, 1 ≤ i ≤ j ≤ p. (9)

Finally, we propose the following test statistic for testing the global null hypothesis H0,

Mn = max
1≤i≤j≤p

W 2
i,j = max

1≤i≤j≤p

(Ti,j,1 − Ti,j,2)2

θ̂i,j,1 + θ̂i,j,2
. (10)

The asymptotic properties of Mn will be studied in detail in Section 3. Intuitively, {Wi,j} are 165

approximately standard normal variables under the null H0 and they are only weakly dependent
under suitable conditions. Thus Mn is the maximum of the squares of p(p+ 1)/2 such random
variables, so its value should be close to 2 log{p(p+ 1)/2} ≈ 4 log p under H0. We show in
Section 3 that, under certain regularity conditions, Mn − 4 log p− log log p converges to a type
I extreme value distribution under H0 : ∆ = 0. 170
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Based on the limiting null distribution of Mn, which will be developed in Section 3·1, we
define the test Ψα by

Ψα = I(Mn ≥ qα + 4 log p− log log p) (11)

where qα is the 1− α quantile of the type I extreme value distribution with the cumulative
distribution function exp{(8π)−1/2e−t/2}, i.e.,

qα = − log(8π)− 2 log log(1− α)−1. (12)

The hypothesis H0 is rejected whenever Ψα = 1.175

2·3. Data-driven estimation of regression coefficients
The testing procedure requires the estimation of regression coefficients βi,d, for i = 1, . . . , p

and d = 1, 2. Various estimators have been studied in the literature, including the lasso and Dan-
tizg selector. Here, we use the lasso by solving the optimization problem,

β̂i,1 = D
−1/2
i,1 arg min

u∈Rp−1

{(2n1)−1|(X·,−i − X̄(·,−i))D
−1/2
i,1 u− (X(i) − X̄(i))|22 + λn1,i,1|u|1},(13)

β̂i,2 = D
−1/2
i,2 arg min

v∈Rp−1

{(2n2)−1|(Y·,−i − Ȳ(·,−i))D
−1/2
i,2 v − (Y(i) − Ȳ(i))|22 + λn2,i,2|v|1}, (14)

where Di,d = diag(Σ̂−i,−i,d), and λnd,i,d = κd(σ̂i,i,d log p/nd)
1/2, d = 1, 2. Then by Proposi-180

tion 4.2 of Liu (2013), under Condition (C1) given in Section 3 and a mild condition on the
sparsity of βi,d (i = 1, . . . , p, d = 1, 2), the convergence rates in (4) and (5) can be guaranteed
by using any κd > 2. The result is formally stated in Corollary 1. In practice, κd = 2 works well
for global testing of H0 : ∆ = 0, and for the multiple testing procedure with false discovery rate
control, a data-driven algorithm is proposed in Section 5 to select κd adaptively.185

2·4. Discussion
The global test Ψα given in (11) is based on estimators of ωi,j,1 − ωi,j,2. Here we estimate

ωi,j,d by first constructing estimators for ri,j,d = ωi,j,d/(ωi,i,dωj,j,d), and then estimating ri,j,d
through bias correction of the residuals r̂i,j,d defined in (7).

Liu (2013) considered multiple testing of entries of a single precision matrix Ω = (ωi,j). In190

the one-sample case, ωi,j = 0 is equivalent to ri,j = ωi,j/(ωi,iωj,j) = 0 under the null and ri,j is
easier to estimate. The procedure in Liu (2013) is based on the estimation of ri,j instead of ωi,j .
However, in Section 4 we will also consider multiple testing between two groups, and ωi,j,1 =
ωi,j,2 is not equivalent to ri,j,1 = ri,j,2. Thus, it is necessary to construct testing procedures based
directly on estimators of ωi,j,1 − ωi,j,2.195

Testing the global hypothesis H0 : Ω1 = Ω2 is equivalent to testing H0 : Σ1 = Σ2, which has
been well studied (Schott, 2007; Srivastava & Yanagihara, 2010; Li & Chen, 2012; Cai et al.,
2013). In particular, Cai et al. (2013) constructed a global test for H0 : Σ1 = Σ2 that is powerful
against the alternative where Σ1 − Σ2 is sparse. However, in many applications, the goal is to
learn the structure of the differential network, and we are interested in both testing the global hy-200

pothesis H0 : Ω1 = Ω2 and multiple testing of the entrywise hypotheses H0,i,j : ωi,j,1 = ωi,j,2.
In such cases, it is often reasonable to assume that ∆ = Ω1 − Ω2 is sparse, but Σ1 − Σ2 is not.
Hence, testing procedures for H0 : Σ1 = Σ2 cannot leverage information on the sparsity of ∆
and more importantly do not naturally lead to a multiple testing procedure for simultaneously
testing the entrywise hypotheses H0,i,j : ωi,j,1 = ωi,j,2.205
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3. THEORETICAL RESULTS FOR THE GLOBAL TEST

3·1. Asymptotic Null Distribution of Mn

In this section, we analyze the properties of the new test for testing the global null hypothesis
H0 : ∆ = 0, including the null distribution of the test statisticMn, the asymptotic size and power.
We are particularly interested in the power of the new test under the alternative with ∆ sparse. 210

We further show that the power is minimax rate optimal.
Under assumptions (C1) and (C2), Theorem 1 indicates that under H0, Mn − 4 log p+

log log p converges weakly to a Gumbel random variable with distribution function
exp{−(8π)−1/2e−t/2}.

(C1) Assume that log p = o(n1/5), n1 � n2, and for some constant C0 > 0, C−1
0 ≤ λmin(Ωd) ≤ 215

λmax(Ωd) ≤ C0, for d = 1, 2. There exists some τ > 0 such that |Aτ | = o(p1/16) whereAτ =
{(i, j) : |ωi,j,d| ≥ (log p)−2−τ , 1 ≤ i < j ≤ p, for d = 1 or 2}.

(C2) Let Dd be the diagonal of Ωd and let (ηi,j,d) = Rd = D
−1/2
d ΩdD

−1/2
d , for d = 1, 2. Assume

that max1≤i≤j≤p |ηi,j,d| ≤ ηd < 1 for some constant 0 < ηd < 1.

Condition (C1) on the eigenvalues is a common assumption in the high-dimensional setting 220

and implies that most of the variables are not highly correlated with each other. Condition (C2)
is also mild. For example, if max1≤i<j≤p |ηi,j,d| = 1, then Ωd is singular. The following theorem
states the asymptotic null distribution for Mn.

THEOREM 1. Suppose that (C1), (C2), (4) and (5) hold. Then under H0, for any t ∈ R,

pr(Mn − 4 log p+ log log p ≤ t)→ exp{−(8π)−1/2 exp(−t/2)}, as n1, n2, p→∞, (15)

where Mn is defined in equation (10). Under H0, the convergence in (15) is uniform for all 225

{Xk : k = 1, . . . , n1} and {Yk : k = 1, . . . , n2} satisfying (C1), (C2), (4) and (5).

Equations (4) and (5) are mild conditions on the estimator of βi,d in order to obtain the limiting
distribution in Theorem 1. As discussed in Section 2·3, these conditions can be guaranteed by
the lasso estimator for example.

COROLLARY 1. Suppose that (C1) and (C2) hold and max1≤i≤p |βi,d|0 = 230

o{n1/2/(log p)3/2}. Then under H0, for any κd > 2 in (13) and (14), and for any t ∈ R,

pr(Mn − 4 log p+ log log p ≤ t)→ exp{−(8π)−1/2 exp(−t/2)}, n1, n2, p→∞, (16)

where Mn is defined in (10).

3·2. Power Analysis
We now turn to an analysis of the power of the test Ψα given in (11). We shall define the

following class of precision matrices: 235

U(c) =

{
(Ω1,Ω2) : max

1≤i≤j≤p

|ωi,j,1 − ωi,j,2|
(θi,j,1 + θi,j,2)1/2

≥ c(log p)1/2

}
. (17)

The next theorem shows that the null parameter set in which Ω1 = Ω2 is asymptotically distin-
guishable from U(4) by the test Ψα. That is, H0 is rejected by the test Ψα with overwhelming
probability if (Ω1,Ω2) ∈ U(4).
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THEOREM 2. Let the test Ψα be given as in (11). Suppose that (C1), (4) and (5) hold. Then

inf
(Ω1,Ω2)∈U(4)

pr(Ψα = 1)→ 1, n, p→∞.

The following result shows that this lower bound is rate-optimal. Let Tα be the set of all α-level240

tests, i.e., pr(Tα = 1) ≤ α under H0 for all Tα ∈ Tα.

THEOREM 3. Suppose that log p = o(n). Let α, β > 0 and α+ β < 1. Then there exists a
constant c0 > 0 such that for all sufficiently large n and p,

inf
(Ω1,Ω2)∈U(c0)

sup
Tα∈Tα

pr(Tα = 1) ≤ 1− β.

Theorem 3 shows that, if c0 is sufficiently small, then any α level test is unable to reject the
null hypothesis correctly uniformly over (Ω1,Ω2) ∈ U(c0) with probability tending to one. So245

the order (log p)1/2 in the lower bound of max1≤i≤j≤p{|ωi,j,1 − ωi,j,2|/(θi,j,1 + θi,j,2)1/2} in
(17) cannot be improved.

4. MULTIPLE TESTING WITH FALSE DISCOVERY RATE CONTROL

If the global null hypothesis is rejected, it is often of interest to investigate the structure of the
differential network ∆. A natural approach is to carry out simultaneous testing on the elements250

of ∆. In this section, we introduce a multiple testing procedure with false discovery rate control
for testing (p2 − p)/2 hypotheses

H0,i,j : δi,j = 0 versus H1,i,j : δi,j 6= 0, 1 ≤ i < j ≤ p. (18)

The standardized differences of Ti,j,1 and Ti,j,2 are defined by the test statistics Wi,j =

(Ti,j,1 − Ti,j,2)/(θ̂i,j,1 + θ̂i,j,2)1/2 as in (9). Let t be the threshold level such that H0,i,j is re-
jected if |Wi,j | ≥ t. Let H0 = {(i, j) : δi,j = 0, 1 ≤ i < j ≤ p} be the set of true nulls. De-255

note by R0(t) =
∑

(i,j)∈H0
I(|Wi,j | ≥ t) the total number of false positives, and by R(t) =∑

1≤i<j≤p I(|Wi,j | ≥ t) the total number of rejections. The false discovery proportion and false
discovery rate are defined as

FDP(t) =
R0(t)

R(t) ∨ 1
, FDR(t) = E{FDP(t)}.

An ideal choice of t would reject as many true positives as possible while controlling the false
discovery rate and false discovery proportion at the pre-specified level α. That is, we select260

t0 = inf
{

0 ≤ t ≤ 2(log p)1/2 : FDP(t) ≤ α
}
.

Since H0 is unknown, we can estimate
∑

(i,j)∈H0
I{|Wi,j | ≥ t} by 2{1− Φ(t)}|H0| as in Liu

(2013), where Φ(t) is the standard normal cumulative distribution function. Note that |H0| can
be estimated by (p2 − p)/2 due to the sparsity of ∆. This leads to the following multiple testing
procedure.

1. Calculate the test statistics Wi,j .265

2. For given 0 ≤ α ≤ 1, calculate

t̂ = inf

{
0 ≤ t ≤ 2(log p)1/2 :

2{1− Φ(t)}(p2 − p)/2
R(t) ∨ 1

≤ α
}
.

If t̂ does not exists, set t̂ = 2(log p)1/2.
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3. For 1 ≤ i < j ≤ p, reject H0,i,j if and only if |Wi,j | ≥ t̂.

The following theorem shows that, under regularity conditions, the above procedure controls the
false discovery proportion and false discovery rate at the pre-specified level α asymptotically. 270

THEOREM 4. Let

Sρ =

{
(i, j) : 1 ≤ i < j ≤ p, |ωi,j,1 − ωi,j,2|

(θi,j,1 + θi,j,2)1/2
≥ (log p)1/2+ρ

}
.

Suppose for some ρ > 0 and some δ > 0, |Sρ| ≥ [1/{(8π)1/2α}+ δ](log log p)1/2. Suppose
that |Aτ ∩H0| = o(pν) for any ν > 0, where Aτ is given in Condition (C1). Assume that
q0 = |H0| ≥ cp2 for some c > 0, and (4) and (5) hold. Let q = (p2 − p)/2. Then under (C1)
with p ≤ cnr for some c > 0 and r > 0, we have 275

lim
(n,p)→∞

FDR(t̂)

αq0/q
= 1,

FDP(t̂)

αq0/q
→ 1

in probability, as (n, p)→∞.

The condition |Sρ| ≥ [1/{(8π)1/2α}+ δ](log log p)1/2 in Theorem 4 is mild, since there are
(p2 − p)/2 hypotheses in total and this condition only requires a few entries with the standard-
ized difference having magnitude exceeding {(log p)1/2+ρ/n}1/2 for some constant ρ > 0. The
technical condition |Aτ ∩H0| = o(pν) for any ν > 0 is to ensure that most of the regression 280

residuals are not highly correlated with each other under the null hypotheses H0,i,j : δi,j = 0.
The basic idea for the proof of Theorem 4 is similar to that in Liu (2013). However, the setting

here is more complicated as ωi,j,1 and ωi,j,2 are not necessarily zero under H0,i,j : δi,j = 0. So
the coordinates of the regression residuals in (2) and (3) can be correlated with each other. Thus
slightly stronger conditions are needed and the proof is more involved. 285

5. SIMULATION STUDY

The proposed testing procedures are easy to implement, and the Matlab code is available
in the Supplementary Material. We carry out a simulation study to investigate the numerical
performance, including the size and power, of the global test Ψα and the false discovery rate
controlled multiple testing procedure. 290

We first introduce the matrix models used in the simulations. Let D = (Di,j) be a diagonal
matrix with Di,i = Unif(0.5, 2.5) for i = 1, . . . , p. The following four models under the null,
Ω1 = Ω2 = Ω(m) = (ω

(m)
i,j ) (m = 1, . . . , 4), are used to study the size of the tests.

Model 1: Ω∗(1) = (ω
∗(1)
i,j ) where ω∗(1)

i,i = 1, ω∗(1)
i,i+1 = ω

∗(1)
i+1,i = 0.6, ω∗(1)

i,i+2 = ω
∗(1)
i+2,i = 0.3 and

ω
∗(1)
i,j = 0 otherwise. Ω(1) = D1/2Ω∗(1)D1/2. 295

Model 2: Ω∗(2) = (ω
∗(2)
i,j ) where ω∗(2)

i,j = ω
∗(2)
j,i = 0.5 for i = 10(k − 1) + 1 and 10(k − 1) +

2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10. ω∗(2)
i,j = 0 otherwise. Ω(2) = D1/2(Ω∗(2) + δI)/(1 +

δ)D1/2 with δ = |λmin(Ω∗(2))|+ 0.05.
Model 3: Ω∗(3) = (ω

∗(3)
i,j ) where ω

∗(3)
i,i = 1, ω∗(3)

i,j = 0.8× Bernoulli(1, 0.05) for i < j and

ω
∗(3)
j,i = ω

∗(3)
i,j . Ω(3) = D1/2(Ω∗(3) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(3))|+ 0.05. 300
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p Model 1 Model 2 Model 3 Model 4
Size

50 3.8 3.9 5.4 4.4
100 3.6 4.4 4.1 3.8
200 3.4 3.6 3.7 3.9
400 3.5 3.7 3.6 3.5

Power
50 100 98.7 95.6 81.6

100 99.7 96.6 95.1 77.8
200 93.1 88.2 93.6 72.1
400 86.3 73.1 77.7 70.7

Table 1: Empirical sizes and powers (%) for global testing with α1 = 0.05, n1 = n2 = 100, and
1000 replications.

Model 4: Σ∗(4) = (σ
∗(4)
i,j ) where σ∗(4)

i,i = 1, σ∗(4)
i,j = 0.5 for 2(k − 1) + 1 ≤ i 6= j ≤ 2k, where

k = 1, . . . , [p/2] and σ
∗(4)
i,j = 0 otherwise. Ω(4) = D1/2{(Σ∗(4) + δI)/(1 + δ)}−1D1/2 with

δ = |λmin(Σ∗(4))|+ 0.05.
For global testing of H0 : ∆ = 0, the sample sizes are taken to be n1 = n2 = 100, while the

dimension p varies over the values 50, 100, 200 and 400. For each model, data are generated305

from multivariate normal distributions with mean zero and covariance matrices Σ1 = Ω−1
1 and

Σ2 = Ω−1
2 . The nominal significance level for all the tests is set at α1 = 0.05.

To evaluate the power of the proposed tests, let U = (ui,j) be a matrix with eight
random nonzero entries. The locations of four nonzero entries are selected randomly
from the upper triangle of U , each with a magnitude generated randomly and uniformly310

from the set [−2ω(log p/n)1/2,−ω(log p/n)1/2] ∪ [ω(log p/n)1/2, 2ω(log p/n)1/2], where ω =

max1≤i≤p ω
(m)
i,i . The other four nonzero entries in the lower triangle are determined by sym-

metry. We use the following four pairs of precision matrices (Ω
(m)
1 ,Ω

(m)
2 ) (m = 1, . . . , 4),

to show the power of the test, where Ω
(m)
1 = Ω(m) + δI and Ω

(m)
2 = Ω(m) + U + δI , with

δ = |min{λmin(Ω(m) + U), λmin(Ω(m))}|+ 0.05. The actual sizes and powers in percentage315

for the four models, reported in Table 1, are estimated from 1000 replications.
Table 1 shows that the sizes of the global test Ψα1 are close to the nominal level in all cases.

This reflects the fact that the null distribution of the test statistic Mn is well approximated by
its asymptotic distribution. The empirical sizes are slightly below the nominal level in some
models, due to the correlation among the variables. Similar phenomena have also been observed320

in Cai et al. (2013) and are theoretically justified by their Proposition 1. Table 1 shows that the
proposed test is powerful in all settings, although the two precision matrices differ only in eight
entries with the magnitude of the difference of the order (log p/n)1/2.

In addition, we consider nearer alternatives by generating the nonzero entries randomly and
uniformly from the set [−ω(2 log p/n)1/2, ω(2 log p/n)1/2]. The power results are summarized325

in Table 2. Under the nearer alternatives, the magnitude of the standardized difference of Ω1 −
Ω2 is smaller and as a result the power is lower.

More extensive simulation results are presented in the Supplementary Material. The proposed
test significantly outperforms both that of Cai et al. (2013), which is powerful when Σ1 − Σ2 is
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p Model 1 Model 2 Model 3 Model 4
Power under nearer alternative

50 90.3 71.6 58.9 20.6
100 89.4 70.3 60.8 22.8
200 81.9 55.2 54.2 21.7
400 73.5 54.7 57.7 17.5

Table 2: Empirical power (%) for global testing under nearer alternatives.

sparse under the alternative, and that of Li & Chen (2012), which is powerful when Σ1 − Σ2 is 330

dense under the alternative.
For simultaneous testing of the individual entries of the differential network ∆ with false

discovery rate control, we select λnd,i,d in (13) and (14) adaptively with the principle of making∑
(i,j)∈H0

I(|Wi,j | ≥ t) and {2− 2Φ(t)}|H0| as close as possible. The algorithm is as follows.

1. For any given i ∈ {1, . . . , p}, let λn1,i,1 = (s/20)(Σ̂i,i,1 log p/n1)1/2 and λn2,i,2 = 335

(s/20)(Σ̂i,i,2 log p/n2)1/2 for s = 1, . . . , 40. For each s, calculate β̂(s)
i,d (i = 1, . . . , p) and

d = 1, 2. Based on the estimated regression coefficients, construct the corresponding stan-
dardized difference W (s)

i,j for each s.
2. Choose

ŝ = arg min
10∑
l=1

(∑
1≤i<j≤p I{|W

(s)
i,j | ≥ Φ−1(1− l[1− Φ{(log p)1/2}]/10)}

lp(p− 1)[1− Φ{(log p)1/2}]/10
− 1
)2
.

The tuning parameters are chosen to be λn1,i,1 = ŝ/20(Σ̂i,i,1 log p/n1)1/2 and λn2,i,2 = 340

ŝ/20(Σ̂i,i,2 log p/n2)1/2.
Pairwise comparisons among these four models are considered. The sample sizes are n1 =

n2 = 100, while the dimension p = 50, 100, and 200. The false discovery rate level is set at
α2 = 0.1, and the empirical false discovery rate and the power of false discovery rate control in
percentage, summarized in Table 3, are estimated from 100 replications. We examine the power 345

based on the average powers for 100 replications as follows

1

100

100∑
l=1

∑
(i,j)∈H1

I(|Wi,j,l| ≥ t̂)
|H1|

,

where Wi,j,l denotes standardized difference for the lth replication and H1 denotes the nonzero
locations. For all six cases, the false discovery rates are close to α across all dimensions. For
empirical power, the procedure is powerful when the dimension p is low, and retains high power
for the comparisons between Model 1 and Models 2 and 4. However, for the comparison between 350

Model 2 and Model 3, the power is low when dimension is high and this is because all of |ωi,j,1 −
ωi,j,2|/(θi,j,1n1 + θi,j,2n2)1/2 is smaller than 0.25 when p = 200 and D = I . Similarly, most
nonzero entries of the standardized difference for Model 2 and 4 are smaller than 0.24. Thus it
is difficult to detect nonzero locations. Furthermore, under the same scenario, ωi,j/(θi,jn)1/2 is
always smaller than 0.16 for Model 3, and thus the detection becomes harder when we compare 355

Model 3 with other models. Thus, the power results are not good when Model 3 is included in
the comparison.
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p Models 1, 2 Models 1, 3 Models 2, 3 Models 1, 4 Models 2, 4 Models 3, 4
Empirical False Discovery Rate

50 10.5 11.0 12.6 12.2 11.5 10.2
100 9.5 10.0 12.1 11.8 11.4 9.5
200 9.7 10.4 11.2 11.7 11.6 10.3

Power
50 67.9 65.6 35.7 55.0 30.2 26.1
100 64.2 38.3 19.3 51.4 25.1 18.2
200 61.1 20.6 17.1 46.1 21.7 11.3

Table 3: Empirical false discovery rate and power (%) with α2 = 0.1, n1 = n2 = 100, and 100
replications.

6. REAL DATA ANALYSIS

The high throughput technology and massively parallel measurement of mRNA expression
catalyzed a new area of genomic biomarkers. A number of prominent genomic markers have360

been identified to assist in predicting breast cancer patient survival in clinical practice, and in-
creasingly, pharmacogenomic endpoints are being incorporated into the design of clinical trials
(Olopade et al., 2008). Molecular pathways of pathogenesis for breast cancer have also been in-
creasingly discovered and curated (Nathanson et al., 2001). However, the role of gene-by-gene
interactions, within and across pathways, in breast cancer survival remain unclear. Here, we ap-365

ply our procedures to identify gene-by-gene interactions important for breast cancer survival.
For illustration, we consider 32 pathways from the molecular signature database that are re-

lated to breast cancer survival. Examples include the MAPK/ERK, WNT, TGF-β, P13k-AKT-
mTOR and ATRBRCA pathways. Existing literature has indicated that a defect in the MAPK
pathway may lead to uncontrolled growth, which is a step necessary for the development of all370

cancers (Santen et al., 2002; Downward, 2003). Mutations or deregulated expression of genes in
the Wnt pathway can induce cancer (Klaus & Birchmeier, 2008). The TGF-β signaling pathway
is critical to a plethora of cellular processes including cell proliferation, apoptosis and differentia-
tion (Shi & Massagué, 2003). An increase in the TGF-β2 expression is associated with response
to tamoxifen for breast cancer patients (Buck & Knabbe, 2006). The ATRBRCA pathway de-375

scribes the role of BRCA1, BRCA2 and ATR in cancer susceptibility (Venkitaraman, 2002).
BRCA1 and BRCA2 are the best-known genes linked to breast cancer risk. Hence, these path-
ways may play critical roles in breast cancer progression. To examine the interactions between
genes in these pathways, we applied our procedure to a recent breast cancer gene expression
study of 295 patients with primary breast carcinomas from the Netherlands Cancer Institute380

(van de Vijver et al., 2002). Out of the 32 pathways, there are a total of p = 754 genes with
available data in this study. The two populations we consider are the short term survivors, de-
fined as those 78 patients who died within 5 years; and the long term survivors, defined as those
69 patients who survived more than 10 years. We are particularly interested in identifying gene
pairs with interactive effects on the binary cancer survival trait using the proposed procedures. In385

this setting, the sparsity assumption about βi,k’s is reasonable as it is generally believed that tran-
scriptional regulation of a single gene is generally defined by a small set of regulatory elements
(Segal et al., 2003; Dobra et al., 2004).

Based on our proposed procedures, we identified nine pairs of gene-by-gene interactions as
significant at a false discovery rate level of 0.1. An interaction here does not simply indicate a co-390
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ACVR2B	  

RBL1	  

TGF-‐β	  

PRKARCB	  

APOTOSIS	  

CFLAR	  

IL1R2	  

CAMK2B	  

MAP4K1	  

MAPK/ERK	  

BDNF	  

FGF12	  

HSU1	  
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BRCA2	  
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WNT10B	  
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MTA3	  

CYP19A1	  

Estrogen	  

Fig. 1: Identified gene-by-gene interactions for the breast cancer example. The dashed lines be-
tween gene-paris represent detected interactions. Genes inside each circle belong to the same
pathway whose name is also shown.

expression between a pair of genes, but instead represents a difference between the co-expression
patterns among the long terms survivors and among the short term survivors. As shown in Figure
1, the majority of the genes involved in these interactions belong to five major pathways, the
MAPK, WNT, TGF-β, Apoptosis, and ATRBRCA pathways, although many of these genes be-
long to multiple pathways. One pair of the identified interactions represent gene-by-gene interac- 395

tions within pathways and the remaining eight pairs represent cross-talk between these pathways,
some of which are previously documented. A total of five interactions are between the MAPK
signaling pathway and the WNT and TGF-β, Apoptosis, ATRBRCA and MTA3 pathways. These
cross-talks are not surprising since MAPK modulates a wide range of processes including gene
expression, mitosis, proliferation, metabolism and apoptosis (Wada & Penninger, 2004). Several 400

recent studies suggest extensive crosstalk between WNT and MAPK signaling pathways in can-
cer. For example, hyper-activation of MAPK signaling results in down-regulation of the WNT
signal transduction pathway in melanoma, suggesting a negative crosstalk between the two path-
ways; while in colorectal cancer, stimulating the WNT pathway leads to activation of the MAPK
pathway through Ras stabilization, representing a positive crosstalk (Guardavaccaro & Clevers, 405

2012). The observed interactive effect between the WNT and MAPK pathways suggests that
the cross-talk between these two pathways may play an important role in breast cancer survival.
The interaction between the tumor suppressor gene BRCA2 and the MAPK pathway has been
documented in experiments with prostate cancer cells with upregulation of BRCA2 linked to an
increase in MAPK activity (Moro et al., 2007). In the WNT pathway, the WNT1 gene promotes 410

cell survival in various cell types and it has been experimentally shown that blocking WNT1
signaling can induce apoptotic cell death (You et al., 2004). Thus the interaction between WNT1
gene and the PRKACB gene in the Apoptosis pathway may also be crucial for breast cancer.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes more extensive simulation 415

results comparing the numerical performance of the proposed global test with that of other tests,
the proofs of Lemmas 2, 3 and 4, and the Matlab code for numerical implementation.
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A. APPENDIX: PROOFS

A·1. Technical Lemmas
We prove the main results in this section. We begin by collecting technical lemmas proved in the420

supplementary material. The first lemma is the classical Bonferroni inequality.

LEMMA A1 (BONFERRONI INEQUALITY). Let B = ∪pt=1Bt. For any k < [p/2], we have

2k∑
t=1

(−1)t−1Ft ≤ pr(B) ≤
2k−1∑
t=1

(−1)t−1Ft,

where Ft =
∑

1≤i1<···<it≤p pr(Bi1 ∩ · · · ∩Bit).

For d = 1, 2, let Ui,j,d = nd
−1∑nd

k=1(εk,i,dεk,j,d − Eεk,i,dεk,j,d), and define Ũi,j,d =

(ri,j,d − Ui,j,d)/(ri,i,drj,j,d) for 1 ≤ i < j ≤ p and Ũi,i,d = (ri,i,d + Ui,i,d)/(ri,i,dri,i,d).425

LEMMA A2. Suppose that Conditions (C1), (4) and (5) hold. Then

max
1≤i≤p

|r̃i,i,d − ri,i,d| = Op{(log p/nd)
1/2},

and

r̃i,j,d = R̃i,j,d − r̃i,i,d(β̂i,j,d − βi,j,d)− r̃j,j,d(β̂j−1,i,d − βj−1,i,d) + op{(nd log p)−1/2},

for 1 ≤ i < j ≤ p, where R̃i,j,d is the empirical covariance between {εk,i,d : k = 1, . . . , nd} and {εk,j,d :
k = 1, . . . , nd}. Consequently, uniformly in 1 ≤ i < j ≤ p,

r̂i,j,d − (ωi,i,dσ̂i,i,d,ε + ωj,j,dσ̂j,j,d,ε − 1)ri,j,d = −Ui,j,d + op{(nd log p)−1/2},
|Ti,j,d − Ũi,j,d| = Op{(log p/nd)

1
2 }ri,j,d + op{(nd log p)−1/2},

and uniformly in 1 ≤ i ≤ p,430

|Ti,i,d − Ũi,i,d| = op{(nd log p)−1/2},

where r̂i,j,d is defined in (7), (σ̂i,j,d,ε) = (1/nd)
∑nd
k=1(εk,d − ε̄d)(εk,d − ε̄d)T, εk,d = (εk,1,d, . . . , εk,p,d)

and ε̄d = nd
−1∑nd

k=1 εk,d.

LEMMA A3. Let Xk ∼ N(µ1,Σ1) for k = 1, . . . , n1 and Yk ∼ N(µ2,Σ2) for k = 1, . . . , n2. Define

Σ̃1 = (σ̃i,j,1)p×p =
1

n1

n1∑
k=1

(X − µ1)(X − µ1)T, Σ̃2 = (σ̃i,j,2)p×p =
1

n2

n2∑
k=1

(Y − µ2)(Y − µ2)T.

Then, for some constant C > 0, σ̃i,j,1 − σ̃i,j,2 satisfies the large deviation bound

pr

[
max

(i,j)∈S

(σ̃i,j,1 − σ̃i,j,2 − σi,j,1 + σi,j,2)2

var{(Xk,i − µ1,i)(Xk,j − µ1,j)}/n1 + var{(Yk,i − µ2,i)(Yk,j − µ2,j)}/n2
≥ x2

]
≤ C|S|{1− Φ(x)}+O(p−1)

uniformly for 0 ≤ x ≤ (8 log p)1/2 and any subset S ⊆ {(i, j) : 1 ≤ i ≤ j ≤ p}.435

The following lemma is needed for false discovery rate control in Theorem 4.
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LEMMA A4. Let Vi,j = (Ui,j,2 − Ui,j,1){var(εk,i,1εk,j,1)/n1 + var(εk,i,2εk,j,2)/n2}−1/2. Under the
same conditions as in Theorem 4, we have for any ε > 0 that,

∑
0≤t≤tp

pr

[∣∣∣∣∣
∑

(i,j)∈H0\Aτ {I(|Vi,j | ≥ t)− pr(|Vi,j | ≥ t)}
2q0{1− Φ(t)}

∣∣∣∣∣ ≥ ε
]

= o(1),

∫ tp

0

pr

[∣∣∣∣∣
∑

(i,j)∈H0\Aτ {I(|Vi,j | ≥ t)− pr(|Vi,j | ≥ t)}
2q0{1− Φ(t)}

∣∣∣∣∣ ≥ ε
]
dt = o(vp),

where tp = (4 log p− log2 p− log3 p)
1/2 and vp = 1/{log p(log4 p)

2}1/2.

A·2. Proof of Theorem 1 440

Without loss of generality, throughout this section, we assume that ωi,i,d = 1 for d = 1, 2 and
i = 1, . . . , p. Let A = {(i, j) : 1 ≤ i ≤ j ≤ p}. (C1) implies |Aτ | = o(p1/16). To prove Theorem 1,
we first show that the terms in Aτ are negligible. Then we use Lemma 1, together with the
Gaussian approximation technique, to show that pr(max(i,j)∈A\Aτ W

2
i,j − 4 log p+ log log p ≤ t)→

exp{−(8π)−1/2 exp(−t/2)}, where Wi,j is defined in equation (9). 445

For d = 1, 2, let Vi,j = (Ui,j,2 − Ui,j,1)/{var(εk,i,1εk,j,1)/n1 + var(εk,i,2εk,j,2)/n2}1/2, where
var(εk,i,dεk,j,d) = ri,i,drj,j,d(1 + ρ2i,j,d) with ρ2i,j,d = β2

i,j,dri,i,d/rj,j,d. The proof of Lemma 2 yields

max
1≤i≤p

|r̂i,i,d − ri,i,d| = Op{(log p/n)
1
2 }, (A1)

and max1≤i≤p |r̂i,i,d − R̃i,i,d| = op{(nd log p)−1/2}, where n = max{n1, n2}. Note that

max
1≤i≤j≤p

(β̂2
i,j,dr̂i,i,d/r̂j,j,d − ρ2i,j,d) = op(1/ log p), (A2)

and max1≤i≤j≤p |ωi,i,dσ̂i,i,d,ε + ωj,j,dσ̂j,j,d,ε − 2| = Op{(log p/n)1/2}. Also note that for
(i, j) ∈ A \Aτ , we have |ωi,j,d| = o{(log p)−1}. Then by Lemma 2, it is easy to see that, under condi- 450

tions (C1), (4) and (5), we have, for (i, j) ∈ A \Aτ , max(i,j)∈A\Aτ ||Wi,j | − |Vi,j || = op{(log p)−1/2}.
For (i, j) ∈ Aτ , as a result of Lemma 2, we have Wi,j = Vi,j + bi,j + op(log p−1/2),

where bi,j = 2{ωi,j(σ̂i,i,1,ε − σ̂i,i,2,ε) + ωi,j(σ̂j,j,1,ε − σ̂j,j,2,ε)}/(θ̂i,j,1 + θ̂i,j,2)1/2, (σ̂i,j,d,ε) =
n−1d

∑nd
k=1(εk,d − ε̄d)(εk,d − ε̄d)T, εk,d = (εk,1,d, . . . , εk,p,d) and ε̄d = (1/nd)

∑nd
k=1 εk,d. Note that

|bi,j | ≤ 2

(
2ρ2i,j

1 + ρ2i,j

) 1
2
[

|σ̃i,i,1,ε − σ̃i,i,2,ε|
{var(ε2k,i,1)/n1 + var(ε2k,i,2)/n2}

1
2

+
|σ̃j,j,1,ε − σ̃j,j,2,ε|

{var(ε2k,j,1)/n1 + var(ε2k,j,2)/n2}
1
2

]
+ o{(log p)−1/2},

where σ̃i,i,d,ε = n−1d
∑nd
k=1 ε

2
k,i,d. Thus, we have 455

pr( max
(i,j)∈Aτ

W 2
i,j ≥ 4 log p− log log p+ t) ≤ Card(Aτ ){pr(V 2

i,j ≥ log p/8) + pr(b2i,j ≥ 2 log p)} = o(1),

where the last equality is a direct result of Lemma 3. Thus it suffices to prove that

pr( max
(i,j)∈A\Aτ

V 2
i,j − 4 log p+ log log p ≤ t)→ exp{−(8π)−1/2 exp(−t/2)}.

We arrange the indices {(i, j) : (i, j) ∈ A \Aτ} in any ordering and set them as
{(im, jm) : m = 1, . . . , q} with q =Card(A \Aτ ). Let n1/n2 ≤ K with K ≥ 1, θm,d =
var(εim,dεjm,d), for d = 1, 2 and define Zk,m = (n1/n2){εk,im,2εk,jm,2 − E(εk,im,2εk,jm,2)} for
1 ≤ k ≤ n2, Zk,m = −{εk,im,1εk,jm,1 − E(εk,im,1εk,jm,1)} for n2 + 1 ≤ k ≤ n1 + n2, Vm = 460

(n21θm,2/n2 + n1θm,1)−1/2
∑n1+n2

k=1 Zk,m, and V̂m = (n21θm,2/n2 + n1θm,1)−1/2
∑n1+n2

k=1 Ẑk,m,
where Ẑk,m = Zk,mI(|Zk,m| ≤ τn)− E{Zk,mI(|Zk,m| ≤ τn)}, and τn = 32K1 log(p+ n). Note that
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max(i,j)∈A\Aτ V
2
i,j = max1≤m≤q V

2
m, and that

max
1≤m≤q

n−1/2
n1+n2∑
k=1

E[|Zk,m|I{|Zk,m| ≥ 32K1 log(p+ n)}]

≤ Cn1/2 max
1≤k≤n1+n2

max
1≤m≤q

E[|Zk,m|I{|Zk,m| ≥ 32K1 log(p+ n)}]

≤ Cn1/2(p+ n)−4 max
1≤k≤n1+n2

max
1≤m≤q

E[|Zk,m| exp{|Zk,m|/(8K1)}]

≤ Cn1/2(p+ n)−4.

Hence, pr
{

max1≤m≤q |Vm − V̂m| ≥ (log p)−1
}
≤ pr

(
max1≤m≤q max1≤k≤n1+n2 |Zk,m| ≥ τn

)
=

O(p−1). By the fact that
∣∣∣max1≤m≤q V

2
m −max1≤m≤q V̂

2
m

∣∣∣ ≤ 2 max1≤m≤q |V̂m|max1≤m≤q |Vm −465

V̂m|+ max1≤m≤q |Vm − V̂m|2, it suffices to prove that for any t ∈ R, as n, p→∞,

pr
(

max
1≤m≤q

V̂ 2
m − 4 log p+ log log p ≤ t

)
→ exp

{
−(8π)−1/2 exp(−t/2)

}
. (A3)

By Lemma 1, for any integer l with 0 < l < q/2,

2l∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

pr

(
d⋂
j=1

Fmj

)
≤ pr

(
max

1≤m≤q
V̂ 2
m ≥ yp

)

≤
2l−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

pr

(
d⋂
j=1

Fmj

)
, (A4)

where yp = 4 log p− log log p+ t and Fmj = (V̂ 2
mj ≥ yp). Let Z̃k,m = Ẑk,m/(n1θm,2/n2 + θm,1)1/2

for m = 1, . . . , q and Wk = (Z̃k,m1 , . . . , Z̃k,md), for 1 ≤ k ≤ n1 + n2. Define |a|min = min1≤i≤d |ai|
for any vector a ∈ Rd. Then we have470

pr

(
d⋂
j=1

Fmj

)
= pr

(∣∣∣∣∣n− 1
2

2

n1+n2∑
k=1

Wk

∣∣∣∣∣
min

≥ y
1
2
p

)
.

Then it follows from Theorem 1 in Zaı̈tsev (1987) that

pr

(∣∣∣∣∣n−1/22

n1+n2∑
k=1

Wk

∣∣∣∣∣
min

≥ y1/2p

)
≤ pr

{
|Nd|min ≥ y1/2p − εn(log p)−1/2

}
+c1d

5
2 exp

{
− n1/2εn
c2d3τn(log p)1/2

}
, (A5)

where c1 > 0 and c2 > 0 are constants, εn → 0 which will be specified later and Nd = (Nm1 , . . . , Nmd)
is a normal random vector with E(Nd) = 0 and cov(Nd) = n2/n1cov(W1) + cov(Wn2+1). Recall that d
is a fixed integer which does not depend on n, p. Because log p = o(n1/5), we can let εn → 0 sufficiently
slowly that, for any large M > 0475

c1d
5/2 exp

{
− n1/2εn
c2d3τn(log p)1/2

}
= O(p−M ). (A6)

Combining (A4), (A5) and (A6) we have

pr
(

max
1≤m≤q

V̂ 2
m ≥ yp

)
≤

2l−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

pr
{
|Nd|min ≥ y1/2p − εn(log p)−1/2

}
+ o(1).

(A7)
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Similarly, using Theorem 1 in Zaı̈tsev (1987) again, we can get

pr
(

max
1≤m≤q

V̂ 2
m ≥ yp

)
≥

2l∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

pr
{
|Nd|min ≥ y1/2p + εn(log p)−1/2

}
− o(1).

(A8)
We recall the following lemma, which is shown in the supplementary material of Cai et al. (2013).

LEMMA A5. For any fixed integer d ≥ 1 and real number t ∈ R,∑
1≤m1<···<md≤q

pr
{
|Nd|min ≥ y1/2p ± εn(log p)−1/2

}
=

1

d!
{(8π)−1/2 exp(−t/2)}d{1 + o(1)}. (A9)

It then follows from Lemma 5, (A7) and (A8) that 480

lim sup
n,p→∞

pr
(

max
1≤m≤q

V̂ 2
m ≥ yp

)
≤

2l∑
d=1

(−1)d−1
1

d!
{(8π)−1/2 exp(−t/2)}d

lim inf
n,p→∞

pr
(

max
1≤m≤q

V̂ 2
m ≥ yp

)
≥

2l−1∑
d=1

(−1)d−1
1

d!
{(8π)−1/2 exp(−t/2)}d

for any positive integer l. By letting l→∞, we obtain (A3) and Theorem 1 is proved.

A·3. Proof of Theorem 2
LetM1

n = max1≤i≤j≤p{Ti,j,1 − Ti,j,2 − (ωi,j,1 − ωi,j,2)}2/(θ̂i,j,1 + θ̂i,j,2). It follows from the proof
of Theorem 1 that pr(M1

n ≤ 4 log p− 2−1 log log p)→ 1, as n, p→∞. By (A1), (A2) and the
inequalities max1≤i≤j≤p(ωi,j,1 − ωi,j,2)2/(θ̂i,j,1 + θ̂i,j,2) ≤ 2M1

n + 2Mn, and max1≤i≤j≤p |ωi,j,1 − 485

ωi,j,2|/(θi,j,1 + θi,j,2)1/2 ≥ 4(log p)1/2, we have pr(Mn ≥ qα + 4 log p− log log p)→ 1 as n, p→∞.

A·4. Proof of Theorem 3
To prove the lower bound result, we first construct the worst case scenario to test between Ω1 and Ω2,

and then apply the arguments as shown in Baraud (2002).
LetM denote the set of all subsets of {1, . . . , p} with cardinality pr, for r < 1/2. Let m̂ be a random 490

subset of {1, . . . , p}, which is uniformly distributed onM. We construct a class of Ω1, N = {Ωm̂, m̂ ∈
M}, such that ωi,j = 0 for i 6= j and 1/ωi,i − 1 = ρ1i∈m̂, for i, j = 1, . . . , p and ρ = c(log p/n)1/2,
where c > 0 will be specified later. Let Ω2 = I and Ω1 be uniformly distributed on N . Let µρ be the
distribution of Ω1 − I . Note that µρ is a probability measure on {∆ ∈ S(pr) : ‖∆‖2F = prρ2}, where
S(pr) is the class of matrices with pr nonzero entries. Let dpr1({Xn, Yn}) and dpr2({Xn, Yn}) be the 495

likelihood functions with precision matrices Ω1 and Ω2 respectively, then we have

Lµρ = Lµρ({Xn, Yn}) = Eµρ

{
dpr1({Xn, Yn})
dpr2({Xn, Yn})

}
,

where Eµρ(·) is the expectation on Ω1. By the arguments in Baraud (2002), it suffices to show that
E(L2

µρ) ≤ 1 + o(1). It is easy to check that

Lµρ = Em̂

[
n∏
i=1

1

|Σm̂|1/2
exp

{
− 1

2
ZT

i (Ωm̂ − I)Zi

}]
,

where Σm̂ = Ω−1m̂ and Z1, . . . , Zn
i.i.d.∼ N(0, I). Thus, we have

E(L2
µρ) = E

((
p

kp

)−1 ∑
m∈M

[
n∏
i=1

1

|Σm|1/2
exp{−ZT

i (Ωm − I)Zi/2}

])2
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=

(
p

kp

)−2 ∑
m,m′∈M

E

[
n∏
i=1

1

|Σm|1/2
1

|Σm′ |1/2
exp{−ZT

i (Ωm + Ωm′ − 2I)Zi/2}

]
.

Set Ωm + Ωm′ − 2I = (ai,j). It is easy to show that ai,j = 0 for i 6= j, aj,j = 0 if j ∈ (m ∪m′)c, aj,j =500

2(1/(1 + ρ)− 1) if j ∈ m ∩m′ and aj,j = 1/(1 + ρ)− 1 if j ∈ m \m′ and m′ \m. Let t = |m ∩m′|.
Then

E(L2
µρ) =

(
p

kp

)−1 kp∑
t=0

(
kp
t

)(
p− kp
kp − t

)
1

(1 + ρ)kpn
(1 + ρ)(kp−t)n

(
1 + ρ

1− ρ

)tn/2

≤ pkp(p− kp)!/p!
kp∑
t=0

(
kp
t

)(kp
p

)t( 1

1− ρ2

)tn/2
=

{
1 +

kp
p(1− ρ2)n/2

}kp
(1 + o(1)),

for r < 1/2. Thus, by letting c be sufficiently small, we have

E(L2
µρ) ≤ exp{kp log(1 + kpp

c2−1)}(1 + o(1)) ≤ exp(k2pp
c2−1)(1 + o(1)) = 1 + o(1).

A·5. Proof of Theorem 4
We first show that t̂, as defined in Section 4, is obtained in the range (0, 2(log p)1/2). Then we illus-505

trate that R0(t), defined in Section 4, is close to 2{1− Φ(t)}|H0| by first showing the terms in Aτ are
negligible. We then focus on the setH0 \Aτ and prove the result based on Lemma 4.

Under the condition of Theorem 4, we have
∑

1≤i<j≤p I{|Wi,j | ≥ 2(log p)1/2} ≥ [1/{(8π)1/2α}+

δ](log2 p)
1/2, with probability going to one. Hence we have with probability going to one,

(p2 − p)/2
max{

∑
1≤i<j≤p I{|Wi,j | ≥ 2(log p)1/2}, 1}

≤ p2 − p
2

{
1

(8π)1/2α
+ δ

}−1
(log2 p)

−1/2.

Let tp = (4 log p− log2 p− log3 p)
1/2. Because 1− Φ(tp) ∼ 1/{(2π)1/2tp} exp(−t2p/2), we have510

pr(1 ≤ t̂ ≤ tp)→ 1 according to the definition of t̂ in the false discovery rate control algorithm in Section
4. Note that, for 0 ≤ t̂ ≤ tp, we have

2{1− Φ(t̂)}(p2 − p)/2
max{

∑
1≤i<j≤p I{|Wi,j | ≥ 2(log p)1/2}, 1}

= α.

Thus to prove Theorem 4, it suffices to prove that |
∑

(i,j)∈H0
{I(|Wi,j | ≥ t)−G(t)}|/{q0G(t)} → 0 in

probability, for 0 ≤ t ≤ {4 log p+ o(log p)}1/2, whereG(t) = 2{1− Φ(t)}. Now we consider two cases.

1) If t = {4 log p+ o(log p)}1/2, the proof of Theorem 1 yields that pr(max(i,j)∈Aτ W
2
i,j ≥ t2) = o(1).515

Thus, it suffices to prove that |
∑

(i,j)∈H0\Aτ {I(|Wi,j | ≥ t)−G(t)}|/{q0G(t)} → 0 in probability.
For (i, j) ∈ H0 \Aτ , we have from the proof of Theorem 1 that max1≤i<j≤p |Wi,j − Vi,j | =
op{(log p)−1/2}. Thus, it suffices to show that∣∣∣∣∣

∑
(i,j)∈H0\Aτ εi,j(t)

q0G(t)

∣∣∣∣∣→ 0 (A10)

in probability, where εi,j(t) = I(|Vi,j | ≥ t)−G(t).
2) If t ≤ (C log p)1/2 with C < 4, we have520 ∣∣∣∣∣

∑
(i,j)∈Aτ∩H0

{I(|Wi,j | ≥ t)− I(|Vi,j | ≥ t)}
q0G(t)

∣∣∣∣∣ ≤ 2|Aτ ∩H0|
O(p2−C/2)

→ 0
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in probability. Thus, it is again enough to show that∣∣∣∣∣
∑

(i,j)∈H0\Aτ εi,j(t)

q0G(t)

∣∣∣∣∣→ 0 (A11)

in probability. Define H̃0 = H0 \Aτ . Let 0 ≤ t0 < · · · < tm = tp such that tl − tl−1 = vp for l =
1, . . . ,m− 1 and tm − tm−1 ≤ vp. Thus we have m ∼ tp/vp. For any t such that tl−1 ≤ t ≤ tl, we
have∑

(i,j)∈H̃0
I(|Vi,j | ≥ tl)

q0G(tl)

G(tl)

G(tl−1)
≤
∑

(i,j)∈H̃0
I(|Vi,j | ≥ t)

q0G(t)
≤
∑

(i,j)∈H̃0
I(|Vi,j | ≥ tl−1)

q0G(tl−1)

G(tl−1)

G(tl)
.

Thus it suffices to prove max0≤l≤m |
∑

(i,j)∈H̃0
εi,j(tl)|/{q0G(tl)} → 0 in probability. Note that 525

pr

{
max

0≤l≤m

∣∣∣∣∣
∑

(i,j)∈H̃0
εi,j(tl)

q0G(tl)

∣∣∣∣∣ ≥ ε
}
≤

m∑
l=1

pr

{∣∣∣∣∣
∑

(i,j)∈H̃0
εi,j(tl)

q0G(tl)

∣∣∣∣∣ ≥ ε
}

≤ 1

vp

∫ tp

0

pr

{∣∣∣∣∣
∑

(i,j)∈H̃0
εi,j(t)

q0G(t)

∣∣∣∣∣ ≥ ε
}
dt+

m∑
l=m−1

pr

{∣∣∣∣∣
∑

(i,j)∈H̃0
εi,j(tl)

q0G(tl)

∣∣∣∣∣ ≥ ε
}
.

Thus by (A5) with d = 1 and Lemma 4, Theorem 4 is proved.
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