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SUMMARY 15

Quantitative comparison of microbial composition from different populations is a fundamental
task in various microbiome studies. We consider two-sample testing for microbial compositional
data by leveraging the phylogenetic tree information. Motivated by existing phylogenetic dis-
tances, we take a minimum-cost flow perspective to study such testing problems. Our investiga-
tion shows that multivariate analysis of variance with permutation using phylogenetic distances, 20

one of the most commonly used methods in practice, is essentially a sum-of-squares type test
and has better power for dense alternatives. However, empirical evidence from real data sets sug-
gests that the phylogenetic microbial composition difference between two populations is usually
sparse. Motivated by this observation, we propose a new maximum type test, Detector of Active
Flow on a Tree, and investigate its properties. It is shown that the proposed method is particularly 25

powerful against sparse phylogenetic composition difference and enjoys certain optimality. The
practical merit of the proposed method is demonstrated by simulation studies and an application
to a human intestinal biopsy microbiome data set for patients with ulcerative colitis.

Some key words: Microbiome and Metagenomics; Phylogenetic tree; Sparse alternative.; Wasserstein distance.

1. INTRODUCTION 30

High throughput sequencing technologies make it possible to survey the microbiome commu-
nities from multiple samples, resulting in a need for statistical methods to quantitatively compare
samples from different populations/experiments. Testing whether two groups of samples have the
same microbiome composition is a key step to decipher the quantitative difference between pop-
ulations and to identify the dysbiotic components. In this paper, we consider two-sample testing 35

for the means of relative abundance from two populations. Although the problem is mainly mo-
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tivated by microbiome and metagenomic data analysis, it, as a general problem, also arises in
other high-throughput sequencing data, e.g. single cell RNA sequencing data.

The microbial community from one sample is usually represented by discrete distributions
with the relative abundance of microbe species organized in taxonomy, or operational taxonomic40

units in some applications. To assess the quantitative difference between groups of samples,
various methods have been proposed for the taxonomic compositional data, including global
two-sample tests (Zhao et al., 2015; Cao et al., 2017) and differential abundance tests (Robin-
son et al., 2010; Wagner et al., 2011; Love et al., 2014; Mandal et al., 2015). These methods,
however, neglect the degree of similarity between microbe species, due to the fact that the45

analysis units in these methods, microbe species, are implicitly assumed to be equally distinct
(Fukuyama, 2017). Furthermore, the classification of microbes by contemporary microbial tax-
onomy is coarse, which results in loss of power to detect subtle difference in a higher resolution
(Washburne et al., 2018). To alleviate these issues, the phylogeny of the bacterial species is
usually incorporated into the analyses of microbiome data (Fukuyama, 2017; Washburne et al.,50

2018).
In order to capture the phylogenetic microbial compositional difference between populations,

one of the most widely used two-sample testing methods is multivariate analysis of variance
with permutation (PERMANOVA) equipped with phylogenetic distance (McArdle & Anderson,
2001; Anderson, 2014; Xia & Sun, 2017). In microbiome data analysis, the popular choices55

of phylogenetic distances include the unweighted or weighted UniFrac distances (Lozupone &
Knight, 2005; Lozupone et al., 2007) and their Lα Zolotarev-type generalized variants (Evans &
Matsen, 2012). Through studying these phylogenetic composition distances, we show that they
are closely related to a minimum-cost flow problem on the underlying phylogenetic tree and the
phylogenetic composition difference between samples can be fully characterized by the optimal60

flow at each edge. Motivated by this observation, we consider the optimal flow at each edge as the
analysis unit, instead of each microbe species. The main goal of the present paper is to study the
problem of two-sample testing on a phylogenetic tree from this minimum-cost flow perspective.

We first investigate PERMANOVA equipped withL2 Zolotarev-type phylogenetic distance. Due
to its flexibility and ease of computation, PERMANOVA using phylogenetic distance has been ap-65

plied in a wide range of microbiome studies (Smith et al., 2015; Wu et al., 2016; Chen et al.,
2016), but it still lacks theoretical justification. Following the minimum-cost flow perspective,
we show that PERMANOVA is essentially a sum-of-squares type test, which has been widely
used to test the difference between the means of two populations in high-dimensional problems
(Bai & Saranadasa, 1996; Srivastava & Du, 2008; Chen & Qin, 2010). We establish its asymp-70

totic normality under the null hypothesis and show that its power is indeed determined by the
phylogenetic distance between the group means. It is known that sum-of-squares type tests are
effective in detecting the dense alternatives, but not powerful against sparse alternatives (Cai
et al., 2014; Chen et al., 2019). However, in most microbiome studies, only a small fraction of
taxa may have different mean abundances (Cao et al., 2017), resulting in optimal flows on a small75

number of edges that are active, i.e. non-zero. Moreover, PERMANOVA, as a global method, is not
able to identify the specific location of the significant differences even when the null hypothesis
is rejected. Therefore, there is a need for a more powerful and interpretable test to detect sparse
phylogenetic composition difference between two populations.

To fill this need, we introduce a new test, Detector of Active Flow on the Tree (DAFOT), to80

detect the sparse phylogenetic composition difference between two populations. To detect sparse
signals, the maximum type statistics are usually adopted in various settings because of their sim-
plicity, effectiveness and optimality (see, e.g. Dumbgen & Spokoiny, 2001; Arias-Castro et al.,
2005; Jeng et al., 2010; Arias-Castro et al., 2011; Cai et al., 2014, and references therein). Mo-
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tivated by this, we construct DAFOT as the maximum of the standardized statistics for optimal 85

flow at each edge. When the null hypothesis is rejected by DAFOT, it is also able to identify the
edges that the active optimal flows lie on. Thus, different from PERMANOVA, DAFOT can not
only detect the difference, it is also able to identify the branches of the phylogenetic tree that
show difference in relative abundance between the populations. It is shown that DAFOT is the
minimax optimal test against sparse alternatives and the optimal detection boundary of phyloge- 90

netic composition difference relies on both the structure of phylogenetic tree and heteroskedastic
variance of microbe species. The practical merits of DAFOT are further demonstrated through a
real data example. The method is implemented in the R package DAFOT available from CRAN.

Transformation of compositional data is often employed in order to account for the composi-
tional nature of the data. For example, the centered log-ratio transformation is one of the com- 95

monly used transformation methods for the analysis of compositional data (Aitchison, 1982).
To account for possible data transformation, we introduce f -generalized optimal flow for any
given strictly increasing transformation function f defined on [0, 1]. The original form of opti-
mal flow corresponds to the special case with f(x) = x. Another special case of f -generalized
optimal flow is the difference of balance between populations (Egozcue & Pawlowsky-Glahn, 100

2016; Rivera-Pinto et al., 2018), when f(x) = log(x), equivalent to adopting centered log-ratio
transformation. After introducing this new concept, we show that all methodology and theory
discussed previously can be generalized accordingly.

2. A HIERARCHICAL MODEL FOR MICROBIOME COUNT DATA AND PHYLOGENETIC
DISTANCE 105

Human microbiome can be quantified using 16S rRNA sequencing or shotgun metagenomic
sequencing. Such 16S rRNA gene sequences of the bacterial genomes or the sequencing of evo-
lutionarily conserved universal marker genes can be used to construct the phylogenetic tree of
the bacterial species. The microbe species and their ancestors are usually organized in such a
phylogenetic tree based on their evolutionary relationships. Let T = (V,E) be the phylogenetic 110

tree of microbe species. Here, V is the collection of microbe species and their ancestors and E
represents the collection of edges of the phylogenetic tree T . For any e ∈ E, Le is the corre-
sponding branch length. We assume the phylogenetic tree is rooted at ρ, which can be seen as the
common ancestor of all microbe species. For any pair of nodes v1, v2 ∈ V , the unique shortest
path between them is denoted by [v1, v2] and the corresponding distance between them is defined 115

as

d(v1, v2) :=
∑

e∈[v1,v2]

Le. (1)

The dissimilarity between two microbe species v1 and v2 can thus be quantified by d(v1, v2).
The height of tree is then defined as the maximum of distances between the root and other nodes
of the tree d(T ) = maxv∈V d(ρ, v).

The relative abundance of a microbial community can be represented by a discrete distribution
on the nodes of tree T . More specifically, write all possible discrete distributions on T as

P =

{
P = {pv}v∈V :

∑
v∈V

pv = 1 and pv ≥ 0

}
.

Here, pv is the relative abundance of microbial species v and P is a simplex of |V | dimension, 120

where | · | is the number of elements. Suppose there are two populations of interest on P , e.g.,
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treated and control groups. These two populations can be represented by two probability distri-
butions on P , π1(P) and π2(P), respectively. We are interested in comparing the mean of relative
abundance between these two populations

H0 : P1,µ = P2,µ v.s. H1 : P1,µ 6= P2,µ (2)

where Pk,µ is the mean of πk(P)

Pk,µ :=

∫
Pdπk(P), k = 1, 2.

The covariance matrix of πk(P) is defined similarly

Σk,µ :=

∫
(P− Pk,µ) (P− Pk,µ)T dπk(P), k = 1, 2.

To test the mean equality hypothesis, m1 and m2 samples are drawn from each of two popu-
lations

P1,1,P1,2, . . . ,P1,m1 ∼ π1(P) and P2,1,P2,2, . . . ,P2,m2 ∼ π2(P).

However, the true relative abundance of each sample, Pk,j , 1 ≤ j ≤ mk, k = 1, 2, is unknown
in practice. Sequencing microbial DNAs are then applied to each sample to assess the relative
abundance of microbe in the sample. In microbiome studies, the sequencing read data can be
modeled by a Poisson distribution. To be specific, the number of sequencing readsNk,j,v that can
be assigned to species v from jth sample of kth group is assumed to follow a Poisson distribution

Nk,j,v ∼ Pois(nk,jpk,j,v), v ∈ V, 1 ≤ j ≤ mk and k = 1, 2,

where, nk,j is the total number of reads in jth sample of kth group and pk,j,v is the relative
abundance of microbe species v in sample Pk,j . Thus, the reads count is assumed to be drawn
from the following hierarchical model

Pk,j ∼ πk(P) and Nk,j,v ∼ Pois(nk,jpk,j,v)

for any v ∈ V , j = 1, . . . ,mk and k = 1, 2. The goal of this paper is to test the hypothesis in (2)125

based on the count data Nk,j = {Nk,j,v}v∈V .
Following this hierarchical model, the empirical distribution of each Pk,j is written as P̂k,j =

{p̂k,j,v}v∈V := {Nk,j,v/nk,j}v∈V . Due to the hierarchical structure of model, the covariance ma-
trix of empirical distribution P̂k,j is

Σk,j : = E
{(

P̂k,j − Pk,µ

)(
P̂k,j − Pk,µ

)T}
130

= Σk,µ + diag(Pk,µ/nk,j).

Here, diag represents the diagonal matrix of a vector. It is clear that the covariance matrix of the
empirical distribution depends on both mean and covariance matrix of πk(P) and the variance of
empirical distribution is inflated because of sequencing steps. The difference between Σk,j and
Σk,µ vanishes when nk,j goes to infinity. For simplicity of analysis, in the rest of paper, we always135

assume the total number of reads in each sample is equal, i.e. nk,j = n for any 1 ≤ j ≤ mk and
k = 1, 2. For brevity, we write Σk = Σk,j when nk,j = n and m = m1 +m2. In the rest of
paper, we assume that there exits t ∈ (0, 1) such that

m1/(m1 +m2)→ t. (3)
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This assumption implies that proportion of samples from either population does not vanish. We
also write Σ̄(t) = (1− t)Σ1 + tΣ2. 140

In microbiome studies, a phylogenetic distance that reflects the evolution relationships among
microbe species is often used in defining the distance between two microbial communities.
Examples include unweighted and weighted UniFrac distance (Lozupone & Knight, 2005;
Lozupone et al., 2007). As shown in Evans & Matsen (2012), the weighted UniFrac distance
is a plugin estimator of Wasserstein distance of probability masses on the tree, which can be gen- 145

eralized to Lα Zolotarev-type variants (for brevity, we call them Lα Zolotarev-type phylogenetic
distance). In the present paper, we focus on L2 Zolotarev-type phylogenetic distance

D(P1,P2) =

{∑
e∈E

Le(P1,e − P2,e)
2

}1/2

, (4)

where Pk,e is the total probability of all descendants of edge e

Pk,e =
∑
v∈τ(e)

pk,v,

where k = 1, 2 and τ(e) is a subtree below edge e: τ(e) = {v ∈ V : e ∈ [ρ, v]}. We also use the
following notation in this paper

P̂k,j,e =
∑
v∈τ(e)

p̂k,j,v.

3. A MINIMUM-COST FLOW PERSPECTIVE FOR TWO SAMPLE TESTING

The phylogenetic distance between two discrete distributions is closely related to optimal
transport theory (Evans & Matsen, 2012). To be specific, the weighted UniFrac/Wasserstein dis- 150

tance between P1,µ = {p1,µ,v}v∈V and P2,µ = {p2,µ,v}v∈V is equal to the solution of the fol-
lowing optimal transport problem

min
{rv1,v2}v1,v2∈V

∑
v1,v2∈V

d(v1, v2)rv1,v2

s.t.
∑
v2

rv1,v2 = p1,µ,v1 ,
∑
v1

rv1,v2 = p2,µ,v2 and rv1,v2 ≥ 0.
(5)

In this optimal transport problem, the objective function is the total cost of transport
{rv1,v2}v1,v2∈V and d(v1, v2) is the cost per unit transported from v1 to v2.

Different from the general optimal transport problem, the distance d(v1, v2) in (1) is defined as
the geodesic distance along the path [v1, v2] on tree T . Therefore, this optimal transport problem
can be naturally cast as a minimum-cost flow problem on a network, as illustrated in Figure 1.
The tree T can be seen as a special network and there are source with capacity p1,µ,v and sink
with capacity p2,µ,v at each node v ∈ V . Then, the optimization problem in (5) aims to find a
way with the minimum cost of sending an amount of flow from the sources to sinks, through the
network T . In particular, for any given transport {rv1,v2}v1,v2∈V , define the flows on each edge
as

∆+
e =

∑
v1∈τ(e),v2 /∈τ(e)

rv1,v2 and ∆−e =
∑

v1 /∈τ(e),v2∈τ(e)

rv1,v2 .
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Fig. 1: An illustration of the minimum-cost flow problem on the tree: blue bars are source and
red bars are sink.

Here, ∆+
e is the flow through edge e ∈ E towards the root ρ and ∆−e is the flow through edge e155

in opposite direction. Then, the optimization problem in (5) can be reformulated as

min
{∆+

e ,∆
−
e }e∈E

∑
e∈E

Le
(
∆+
e + ∆−e

)
s.t. ∆+

e + ∆−e ≤ 1, ∆+
e −∆−e = P1,µ,e − P2,µ,e and ∆+

e ,∆
−
e ≥ 0.

(6)

Although the optimal transport rv1,v2 in (5) might not be unique, the optimal flow in (6) is unique
and has a closed form solution

∆+
e = max (P1,µ,e − P2,µ,e, 0) and ∆−e = max (P2,µ,e − P1,µ,e, 0) .

The optimal net flows on each edge is then defined as ∆∗e = ∆+
e −∆−e = P1,µ,e − P2,µ,e. The

weighted UniFrac distance and corresponding Lα Zolotarev-type variants can thus be seen as the
weighted Lα norm of optimal flows. It is clear from the above discussion that the phylogenetic
composition difference between P1 and P2 can be fully characterized by the optimal flow ∆∗e. If160

we write ∆∗ = {∆∗e}e∈E , the hypothesis in (2) can be rewritten in the following equivalent form

H0 : ∆∗ = 0 and H1 : ∆∗ 6= 0. (7)

This suggests that the basic unit to quantify phylogenetic composition difference shall be the
optimal flow at each edge ∆∗e. L

2 Zolotarev-type phylogenetic distance D(P1,P2) can be seen
as L2 norm of these optimal flows.

4. PERMUTATIONAL MULTIVARIATE ANALYSIS OF VARIANCE165

4.1. Introduction of PERMANOVA

To incorporate phylogenetic tree information in comparing two populations, one of the most
commonly used two-sample tests is PERMANOVA equipped with some phylogenetic distance
(McArdle & Anderson, 2001; Anderson, 2014). Specifically, let D(P1,P2) be the phylogenetic
distance defined in (4). The average empirical distance within and between group is defined as

D̄k,w =
2

mk(mk − 1)

∑
1≤j1<j2≤mk

D2
(

P̂k,j1 , P̂k,j2

)
, k = 1, 2
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and

D̄b =
1

m1m2

∑
1≤j1≤m1,1≤j2≤m2

D2
(

P̂1,j1 , P̂2,j2

)
.

Similar to analysis of variance (ANOVA), PERMANOVA defines the total sum-of-squares as

SST =
2∑

k=1

mk(mk − 1)

2(m1 +m2)
D̄k,w +

m1m2

m1 +m2
D̄b,

within-group sum-of-squares and between-group sum-of-squares as

SSW =
2∑

k=1

mk − 1

2
D̄k,w and SSA = SST − SSW .

The pseudo F -statistic for two-sample testing is then defined as the normalized ratio of SSA to
SSW

F =
SSA

SSW /(m− 2)
.

To evaluate the significance of the F -statistic, the P -value is calculated by permutations. To
be more specific, the m samples are permuted randomly B times and F -statistic is calculated on
these permuted data, denoted by F (1), . . . , F (B). Then, the estimated P -value is

P =
1 + |{i : F (i) > F (B)}|

1 +B
.

One implicitly prerequisite assumption of a valid permutation test is the exchangeability of sam-
ples under the null hypothesis. Thus, the hypothesis required by valid permutation test is

H0 : π1(P) = π2(P) v.s. H1 : π1(P) 6= π2(P).

Compared with mean equality hypothesis in (2), this is a more restrictive hypothesis. In the next
section, we present another way to estimate P -value of PERMANOVA based on the asymptotic
results.

4.2. Properties of PERMANOVA 170

We investigate the properties of pseudo F -statistic under L2 Zolotarev-type phylogenetic dis-
tance D(P1,P2). A simple calculation decomposes SSA into two parts

SSA = − m1m2

2(m1 +m2)

(
D̄1,w + D̄2,w − 2D̄b

)
+
m2D̄1,w +m1D̄2,w

2(m1 +m2)
.

In particular, the second term is asymptotically equal to SSW /(m1 +m2 − 2)(
m2D̄1,w +m1D̄2,w

2(m1 +m2)

)/(
SSW

m1 +m2 − 2

)
→ 1, m1,m2 →∞.

This shows that F is a scaled version of difference between average within group distance and
across group distance. In other words, in terms of two–sample testing, F is asymptotically equiv-
alent to the following energy distance statistic (Székely & Rizzo, 2005; Sejdinovic et al., 2013)

L :=
1

2

(
2D̄b − D̄1,w − D̄2,w

)
.
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Due to the fact that the distance in (4) is a negative type, the energy distance statistic can also be
written as a kernel-based test statistic (Sejdinovic et al., 2013)

L =
2∑

k=1

1

mk(mk − 1)

mk∑
j1 6=j2=1

K
(

P̂k,j1 , P̂k,j2

)
− 2

m1m2

m1,m2∑
j1,j2=1

K
(

P̂1,j1 , P̂2,j2

)
,

where the kernel of P1 and P2 is defined as K (P1,P2) :=
∑

e∈E LeP1,eP2,e. The kernel form
of PERMANOVA suggests

E(L) = D2(P1,µ,P2,µ).

Therefore, F statistic in PERMANOVA is a reasonable statistic for testing the phylogenetic com-
position difference in hypothesis (2), as the mean of L only depends on P1,µ and P2,µ.

Clearly, the behavior of L depends on both the covariance matrix of P̂k,j and tree structure
T . The structure of tree T can be expressed as a transformation matrix H ∈ R|E|×|V |, where
Hev =

√
Le if v ∈ τ(e) and Hev = 0 if v /∈ τ(e). We assume175

tr{HΣi1H
THΣi2H

THΣi3H
THΣi4H

T } = o
(
tr2{(HΣ̄(t)HT )2}

)
, (8)

where i1, i2, i3, i4 = 1 or 2. Such a moment assumption is a common condition in high dimension
statistics, e.g., condition (3.6) in Chen & Qin (2010). Condition (8) is true when eigenvalues
of both HΣ1H

T and HΣ2H
T are bounded. Besides the assumption on the moment, another

assumption we make is

P
(
K(P̂1, P̂2) ≥

√
rm

)
≤ rm tr{(HΣ̄(t)HT )2}/d(T )4 (9)

where P̂1 and P̂2 are empirical distribution drawn from the 1st or 2nd population and rm180

is a sequence of number such that rm = o(m tr{(HΣ̄(t)HT )2}). This is a fairly weak con-
dition. For example, this is a trivial assumption when the tree is not too high, i.e. d(T ) =

o(m tr{(HΣ̄(t)HT )2})1/2, because K(P̂1, P̂2) = O(d(T )).
The following theorem shows the asymptomatic behavior of PERMANOVA statistic L.

THEOREM 1. Under the null hypothesis, i.e. P1,µ = P2,µ, and assumptions (3), (8) and (9),

L/σL → N(0, 1), m→∞,

where σL can be written as

σ2
L =

tr{(HΣ̄(t)HT )2}
2m2t2(1− t)2

.

Furthermore, if d(T ) = o(m) and assumptions (3), (8) and (9) hold, the test is consistent when185

D2(P1,µ,P2,µ)�
√

tr{(HΣ̄(t)HT )2}
m

. (10)

This theorem suggests that the PERMANOVA is a consistent test if the phylogenetic distance
between the means of two populations is large enough. As Σ̄(t) can be written explicitly as

Σ̄(t) = (1− t)Σ1,µ + tΣ2,µ +
1

n
diag ((1− t)P1,µ + tP2,µ) ,

the power of PERMANOVA depends on both the number of samples m and the number of reads
per sample n. The power becomes larger if we increase either m or n. However, (10) also sug-
gests that a larger number of samples is a more efficient way to increase power than a larger
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number of reads per sample. This theorem also suggests that P -value can be calculated based
on asymptomatic distribution instead of conducting permutations. For instance, σ2

L can be esti- 190

mated based on a similar U -statistic σ̂2
L in Chen & Qin (2010). Then, the P -value can be then

calculated by 1− Φ(L/σ̂L). It is worth noting that this way to calculate P -value does not require
π1(P) = π2(P) under the null hypothesis. In practice, we recommend permutation test when m
is not large and asymptotic critical value if m is large.

4.3. PERMANOVA under sparse setting 195

As we see in previous sections, PERMANOVA is a sum-of-squares type statistic. However, the
interesting setting in practice, e.g., in microbiome studies, is a sparse case where only a small
number of microbe species may have different relative mean abundance (Cao et al., 2017). This
suggests that only a small fraction of optimal flow ∆∗e is active, i.e. ∆∗e 6= 0. To investigate the
performance of PERMANOVA under this sparse setting, we consider a simple case where there is
active optimal flow on one edge, denoted by es ∈ E. As suggested by Theorem 1, the condition
for a consistent PERMANOVA test is

Les |∆∗es |
2 �

√
tr{(HΣ̄(t)HT )2}

m
.

On the other hand, we consider an oracle test that has knowledge of active flow location es. Since
the location of es is known, we consider a two sample t-test for ∆∗es

Mes =
P̄1,es − P̄2,es√

σ̂2
1,es

/m1 + σ̂2
2,es

/m2

, (11)

where

P̄k,es =
1

mk

mk∑
j=1

P̂k,j,es and σ̂2
k,es =

1

mk − 1

mk∑
j=1

(P̂k,j,es − P̄k,es)2.

With central limit theorem, we know that Mes is a consistent test if

|∆∗es |
2 � (HΣ̄(t)HT )es,es

m
.

A comparison of two detection boundaries indicates that the oracle test is able to detect a much
smaller difference between two group of samples than PERMANOVA. This naturally leads to the
question of whether it is possible to develop a more powerful test under sparse flow setting. 200

5. ACTIVE OPTIMAL FLOW DETECTION

5.1. Detector of Active Flow on the Tree
As shown in the last section, the two sample t-test could improve the power to detect the

difference between two populations when location of active optimal flow is known. In practice,
the location information is usually unknown. To address this issue, we consider the maximum of
two sample t-test at each edge

M∗ = max
e∈E
|Me|,

whereMe is defined in the same way as (11). The use of this maximum type statistic for detecting
sparse signals is very common in a wide range of applications and it leads to construction of rate-
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optimal test in many problems (Dumbgen & Spokoiny, 2001; Arias-Castro et al., 2005; Jeng205

et al., 2010; Arias-Castro et al., 2011; Cai et al., 2014; Cao et al., 2017; Wang et al., 2019).
To evaluate the statistical significance of M∗, one still needs to choose an appropriate critical

value for M∗. However, it is difficult to derive the asymptotic distribution of M∗ due to the
complex dependency structure among Me. To overcome this problem, one adopts resampling
method to assign appropriate critical value for M∗. In particular, a common resampling method210

to choose critical value is permutation test as in PERMANOVA (Good, 2013; Anderson, 2014).
Although the permutation test requires π1(P) = π2(P) under the null hypothesis as we discussed
before, its performance is robust when sample size is small.

We propose another resampling method, bootstrap, to choose critical value for M∗ in or-
der to avoid the condition π1(P) = π2(P). Let P̃k,j,e = P̂k,j,e − P̄k,e + P̄e for 1 ≤ j ≤ mk and
k = 1, 2, where P̄k,e is mean of P̂k,j,e within each group and P̄e is mean of the combined sam-
ples. We randomly draw mk samples with replacement from each group and then calculate M∗

with shifted data P̃k,j,e. This procedure is repeated B times and the corresponding statistics are
denoted by M∗(1), . . . ,M

∗
(B). Finally, the approximated qα is chosen as (1− α) quantile of em-

pirical distribution of M∗(1), . . . ,M
∗
(B) or the P -value is calculated as

P =
1 + |{i : M∗(i) > M∗}|

1 +B
.

We then make decision under the null hypothesis based critical value or P -value.
When the null hypothesis is rejected, M∗ also provides a natural way to identify the set of215

edges that optimal flow on is not zero {e : ∆∗e 6= 0}. To be specific, we consider the following
set of edges {e : |Me| > qα} as the active edges identified. Due to the construction of M∗, the
family-wise error rate (FWER) of active edges identification is naturally controlled at α level. The
identified edge indicates that all microbe species below this edge, as a whole object, are differ-
entially abundant between the two populations. In this way, the active edges can be identified as220

a microbial signature associated with the difference of the two populations.

5.2. Asymptotic Behavior and Optimality of M∗

In this section, we investigate the behavior of M∗ under the null and alternative hypothesis.
The main difficulty to study the behavior of M∗ is the strong and complex dependence among
different Me. This complexity of dependency structure mainly comes from two sources: the225

high overlapping structure of subtree τ(e) and the unknown heteroskedastic variance/covariance
structure among different microbe species. Our investigation shows that the complexity of de-
pendence structure among Me can be characterized by a single quantity that depends on both the
tree structure and the heteroskedastic variance.

Since each Me is defined on a subtree below edge e, the asymptotic behavior of M∗ clearly230

depends on “effective” number of subtrees. We still assume each group of samples has no vanish-
ing proportion, i.e.(3). Let σ2

v(t) be the element of vth row and vth column of Σ̄(t). To decouple
the complex dependence structure among Me, we appeal to the following proposition.

PROPOSITION 1. For any given a > 0, let E(a) be a subset of edges of the tree such that
E(a) := {e : a <

∑
v∈τ(e) σ

2
v(t) ≤ 2a}. Then,E(a) can be decomposed into a collection of dis-

joint paths

E(a) =
R⋃
r=1

[
vr, v

′
r

]
,
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where vr and v′r are nodes of the tree and R is the number of disjoint paths. In addition, any two
edges from different paths in the above decomposition do not share any descendants. 235

Intuitively, for any e1 and e2 from the same path defined above, the subtrees τ(e1) and τ(e2)
are highly overlapped and thus the Me defined on them are expected to behave similarly. On the
other hand, for the edges from different paths, the corresponding subtrees are “distinct” in that
they do not share any descendants. In general, the number of disjoint paths in above proposition
characterizes “effective” number of subtrees. Motivated by this observation, we define Sj as the
number of different path in E(2−j) for j = 0, 1, . . . ,∞ and S(T, π1, π2) as the sum of Sj

S(T, π1, π2) :=

∞∑
j=0

Sj .

Clearly, S(T, π1, π2) is an integer between 1 and |E| and depends on the structure of tree T
and the distribution π1 and π2. For example, when the tree T is a fully balanced binary tree and
π1 and π2 are Dirichlet distribution with equal parameters for the leaves, S(T, π1, π2) � |E|. If
π1 and π2 are Dirichlet distribution with equal parameters for all nodes of a chain tree T , i.e.
one dimensional lattice, then S(T, π1, π2) � log |E|. More specific examples can be found in 240

Section S3. We later show that the asymptotic behavior of M∗ can be fully characterized by this
quantity S(T, π1, π2).

When two subtrees highly overlap, we expect the correlation between Me on them to be very
strong. We shall assume there exit constants c > 0 and α > 0 such that

Corr
(

(1− t)P̂1,j1,e − tP̂2,j2,e, (1− t)P̂1,j1,e′ − tP̂2,j2,e′

)
≥ 1− c

(
1−

√∑
v∈τ(e) σ

2
v(t)∑

v∈τ(e′) σ
2
v(t)

)α
,

(12)
where 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2 and e, e′ are a pair of edges such that τ(e) ⊂ τ(e′). Here, 245

Corr represents the correlation between two random variables. This is not a strong condition.
For instance, (12) is satisfied when the relative abundance of different microbe species pv in
τ(e′) are mutually independent or drawn from a Dirichlet distribution. Furthermore, we also
assume P̂k,j,e is sub-Gaussian distribution, i.e there exist constants η and K such that

E
(

exp(η(P̂k,j,e − Pk,µ,e)2/σ2
k,e)
)
≤ K, (13)

where σ2
k,e is variance of P̂k,j,e, the elements of eth row and eth column of HΣkH

T . We now 250

show the asymptotic behavior of M∗ under the null hypothesis.

THEOREM 2. Suppose log5 |E| = o(m). Under the null hypothesis and assumptions (3), (12)
and (13), we have

M∗ ≤
√

2 logS(T, π1, π2) +Op(
√

log logS(T, π1, π2)), as m→∞. (14)

Theorem 2 suggests that the amplitude of M∗ is
√

2 logS(T, π1, π2) when null hypothesis is
true, where S(T, π1, π2) here plays the same role as the number of variables when each compo-
nent are almost independent (Cai et al., 2014; Cao et al., 2017). In other words, although M∗ is
constructed from |E| different subtrees, it is equivalent to take maximum of roughly S(T, π1, π2)
independent variables because of high dependency among the statistics Me. For the one active
flow example discussed in previous section, Theorem 2 suggests that M∗ is a consistent test
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when

|∆∗es |
2 � logS(T, π1, π2)

(HΣ̄(t)HT )es,es
m

.

A comparison between above and oracle test’s detection boundary suggests that the price we pay
for unknown location of es is logS(T, π1, π2). With the same argument as for PERMANOVA, we255

know that either a larger number of samples m or a larger number of reads per sample n can
increase the power of DAFOT. More detailed discussions are given in Section 6.

We next turn to the power analysis of the test based onM∗ from a minimax point view (Ingster,
1993; Ingster & Suslina, 2012). The parameter space of the null hypothesis is

H0,S = {(T, π1, π2) : ∆∗e = 0, ∀e ∈ E,S(T, π1, π2) ≤ S}

and the parameter space of the alternative hypothesis is

H1,S(h) =

(T, π1, π2) : sup
e

|∆∗e|√
(1− t)σ2

1,e + tσ2
2,e

≥ h, S(T, π1, π2) ≤ S

 .

The worst-case risk of any given test Λ is then defined as

RS(Λ;h) := sup
(T,π1,π2)∈H0,S

P(Λ = 1|T, π1, π2) + sup
(T,π1,π2)∈H1,S(h)

P(Λ = 0|T, π1, π2)

We say a test Λ is consistent for separating H0,S and H1,S(h) if RS(Λ;h)→ 0 and H0,S and
H1,S(h) are separable if there exists a consistent test Λ for them. On the other hand, a test
Λ is powerless for separating H0,S and H1,S(h) if R(Λ;h)→ 1 and H0,S and H1,S(h) are260

inseparable if infΛRS(Λ;h)→ 1. Here h is a parameter to control the distance between H0,S

and H1,S(h). Clearly, if h is smaller, H0,S and H1,S(h) are more difficult to separate. ΛM is
defined as test that rejects the null hypothesis if and only if M∗ > qα for some α→ 0. The
following theorem characterizes the power of ΛM and separability ofH0,S andH1,S(h).

THEOREM 3. Consider testingH0,S andH1,S(h) by ΛM . Suppose log5 |E| = o(m), (3), (12)
and (13) hold. Then there exist constants C and c such that

RS

(
ΛM ;C

√
logS

m

)
→ 0 and inf

Λ
RS

(
Λ; c

√
logS

m

)
→ 1.

This theorem shows that the optimal rate of detection boundary betweenH0,S andH1,S(h) is√
logS

m
.

This optimal rate suggests that the difficulty of this problem is mainly determined by the single265

quantity S, which relies on both the tree structure and heteroskedastic variance structure. This
theorem also suggests that M∗ is minimax rate optimal.

6. NUMERICAL EXPERIMENTS

6.1. Simulation Studies
We first investigate the properties of PERMANOVA and DAFOT on simulated data sets. We270

choose a phylogenetic tree of bacteria species within the class Gammaproteobacteria as the
underlying tree T , which is extracted from reference tree of Greengenes 16S rRNA database
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version 13.8 clustered at 85% similarity by the R package metagenomeFeatures (DeSantis et al.,
2006). This tree T has a total of 247 leaves, denoted by VL, and 246 internal nodes, denoted by
VI . Figure 2 shows the structure of the tree with each leaf labeled with a number. 275

Fig. 2: Phylogenetic tree of bacteria within the class Gamma proteobacteria used in the simula-
tion studies with each leaf node labeled with a number. The edges with active optimal flow in the
numerical examples are colored in red.

To simulate the numbers of the reads on this tree T , we adopt the Dirichlet-multinomial dis-
tribution. More specifically, the true relative abundance Pk,j , where k = 1, 2 and 1 ≤ j ≤ mk,
is drawn from some Dirichlet distribution, i.e. πk(P) follows a Dirichlet distribution indexed by
αk = {αk,v}v∈V

πk(P) =
Γ(
∑

v∈V αk,v)∏
v∈V Γ(αk,v)

∏
v∈V

p
αk,v−1
v .

For each sample, the reads are then drawn from a multinomial distribution with respect to the
true relative abundance. Under this model, the mean of relative abundance for kth group can be
written as

pk,µ,v =
αk,v∑
v∈V αk,v

.

Thus, under the null hypothesis, we assume α1,v = α2,v = 1 if v ∈ VL and α1,v = α2,v = 0 if
v ∈ VI . Under alternative hypothesis, we perturb α2 and consider two different scenarios: A) the
difference is at node 169 and 170, i.e. α2,169 = 1 + δ and α2,170 = 1− δ; B) the difference is
at clades Vc1 = (84, 85, 86, 87, 88) and Vc2 = (179, 180, 181, 182, 183), i.e. α2,v = 1 + 0.4 ∗ δ
if v ∈ Vc1 and α2,v = 1− 0.4 ∗ δ if v ∈ Vc2. The parameter δ is specified later. In particular, the 280

edges with active optimal flow under the scenarios A) and B) are colored in red in Figure 2.
The first set of simulation experiments is designed to compare the performance of DAFOT

and PERMANOVA under scenario A). To be specific, we compare 4 different methods: DAFOT ,
DAFOT after center log-ratio transformation(DAFOT-log), PERMANOVA equipped with weighted
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Fig. 3: Power comparisons between DAFOT and PERMANOVA under scenario (A), where the dif-
ference is at nodes 169 and 170. DAFOT: proposed method based on proportions; DAFOT-LOG:
proposed method based on log-proportions; PERMANOVA-L1: PERMANOVA with L1 Zolotarev-
type phylogenetic distance; PERMANOVA-L2: PERMANOVA with L2 Zolotarev-type phyloge-
netic distance.

UniFrac distance (PERMANOVA-L1) and PERMANOVA equipped with L2 Zolotarev-type phylo-285

genetic distance (PERMANOVA-L2). To make the comparisons fair, the critical values for all tests
are chosen by permutations at significance level 5%. To investigate the effect of the sample size
m1 = m2 = m, the sequence depth n and the signal strength δ, we chose m = 50, 100 and 200,
n = 1000 and 10000 and δ=0,0·1,0·2,0·3,0·4 and 0·5 in the simulation experiments. The exper-
iment is repeated 100 times for each combination of the m, n and δ. The performance of the290

tests is evaluated by the power of test, i.e. the probability of rejecting the null hypothesis, which
can be estimated by the proportion of the null hypothesis rejections among the 100 simulation
experiments.

The results are summarized in Figure 3. These results show that the type I error is under control
when the null hypothesis is true (δ = 0) and the power of DAFOT is larger than PERMANOVA295

when alternative hypothesis is true (δ 6= 0). Figure 3 implies that the observed effects of m, n
and δ on the power of the tests are consistent with the theoretical results. We observe similar
improved power DAFOT over PERMANOVA for scenario B) when the active flows connect two
clades (See Figure S1 in Supplementary Material for details).

The sequence count data in real microbiome studies are usually very sparse, i.e. there are300

a lot of zero values. The next set of simulation experiments is designed to assess the perfor-
mance of DAFOT and PERMANOVA when there are a lot of zero values. More concretely, we set
α1,v = α2,v = 0 for 1 ≤ v ≤ 160 under scenarios A) and for 1 ≤ v ≤ 80 under scenarios B). In
other words, probability on nearly 2/3 nodes are zeros in scenarios A) and probability on nearly
1/3 nodes are zeros in scenarios B). In order to avoid undefined value of log 0, zero counts are305

replaced by 0.5 in DAFOT-log (Aitchison, 2003; Lin et al., 2014). The sequence depth of each
sample is drawn uniformly between 1000 and 10000 instead of being fixed as in previous exper-
iments. The sample size m and the difference between populations δ are varied in the same way
as in previous simulation experiments. Figure S2 in Supplementary Material summarizes the re-
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sults based on 100 runs for each combination of m and δ. A comparison between Figure 3, S1 310

and Figure S2 suggests that DAFOT, PERMANOVA-L1 and PERMANOVA-L2 are relatively robust
against a lot of zero values, however, the power of DAFOT-log is affected by these zero values.

We further compare the performance of DAFOT and PERMANOVA under a wide range of
sparseness. Specifically, we adopt a similar setting as in scenario A) and choose m = 100,
n = 10000 and δ = 0.3. To assess the effect of sparsity, we randomly choose 2k leaves at each 315

simulation experiment and set α2,v = 1 + δ for the first k leaves and α2,v = 1− δ for the last k
leaves. k is chosen equal to 1, 5, 10, 15, 20, 25 and 30. The results based on 100 times simulation
experiments are summarized in Figure 4. These results show that the DAFOT outperforms PER-
MANOVA when fewer leaves are perturbed. When the signal becomes denser, the PERMANOVA-
L1 can gain more power than DAFOT. 320

Fig. 4: The power comparisons between DAFOT and PERMANOVA for different sparsity levels.

Table 1: The performance of edge identification by DAFOT and DAFOT-log. AFP is the average
number of false positive edges, FWER is the probability of making at least one type I error and
ATP is number of true positive edges.

m = 50 m = 100 m = 200
n = 103 n = 104 n = 103 n = 104 n = 103 n = 104

DAFOT
AFP 0·09 0·06 0·08 0·13 0·10 0·08

FWER 0·04 0·06 0·06 0·09 0·10 0·06
ATP 0·11 0·15 0·56 0·78 1·49 1·66

DAFOT-log
AFP 0·08 0·05 0·08 0·13 0·13 0·36

FWER 0·04 0·05 0·07 0·11 0·05 0·21
ATP 0·35 0·50 0·90 1·35 1·81 1·94

The final set of simulation experiments aims to evaluate the performance of edge identification
by DAFOT and DAFOT-log. In particular, we consider scenario A) with δ = 0 · 5 and vary m
and n as in previous simulation experiments. For each combination of m and n, we repeat the
experiment 100 times and the active edges detected by two methods are recorded. The results
of average number of false positive edges, the probability of making at least one type I error 325

and true positive edges are summarized in Table 1, showing that the FWER is under control
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regardless of signal strength and the two active edges can be identified successfully when signal
is strong enough. In Figure 3 and Table 1, DAFOT-log performs better than DAFOT, as the log
transformation is suitable for non-zero data.

6.2. Analysis of Ulcerative Colitis Disease Microbiome Data330

To further demonstrate the performance of DAFOT, we apply the method to a 16S rRNA data
set of 47 human intestinal biopsy samples collected at the University of Pennsylvania. These
samples are divided into 3 groups:

A) 18 control samples (control),
B) 14 samples with ulcerative colitis who did not receive treatment (unexposed),335

C) 15 samples with ulcerative colitis who received treatment (exposed).

To compare microbiome communities of these groups, the raw sequence reads of each sample
are placed into a reference phylogenic tree from Greengenes 16S rRNA database version 13.8
with a 99% similarity by using SEPP (Mirarab et al., 2012; Janssen et al., 2018). The reference
phylogenetic tree is then trimmed by keeping all nodes related to the operational taxonomic units340

observed in the samples. The trimmed phylogenetic tree is shown in Figure 5a, including 7980
edges. Figure 5b shows the empirical optimal flow between group A and B on each edge, i.e.
difference of probability on subtree indexed by edges P̄1,e − P̄2,e. The order of edge is ranked
automatically by R class ‘phylo’. It is clear from Figure 5b that most of empirical active flows
are small, indicating sparse flow on the tree is a reasonable assumption. In addition, we estimate345

the “effective” number of subtrees S(T, π1, π2) for pair-wise comparison: S(T, π1, π2) = 2687
for group A and B; S(T, π1, π2) = 3172 for group A and C; S(T, π1, π2) = 2676 for group B
and C. The estimation of S(T, π1, π2) is based on the reference phylogenetic tree structure and
estimated variance σ̂2

v(t) at each node v ∈ V .

Table 2: The P -values of comparing different groups using DAFOT and PERMANOVA based on
1000 permutations.

DAFOT DAFOT-log PERMANOVA-L1 PERMANOVA-L2
Group A vs B 0·007 0·256 0·378 0·460
Group A vs C 0·147 0·495 0·305 0·270
Group B vs C 0·648 0·832 0·639 0·677

To test the phylogenetic composition difference between the groups, we apply the same four350

two-sample testing methods as in the first simulation experiment. The resulting P -values es-
timated by permutation test with 1000 permutations are summarized in Table 2. No methods
identify any significant phylogenetic composition difference between group C and A or group C
and B (P -value>0·05). However, only DAFOT indicates an overall difference in intestinal biopsy
microbiome composition between group A and B with a P -value=0·007, while other methods355

do not detect such a difference.
Besides the overall difference in microbiome compositions between groups A and B, DAFOT

also identifies that the overall difference is due to the active flow on one edge. The subtree in-
dexed by this edge is shown in Figure 5a, colored by red in the original phylogenetic tree and
zoomed in a side figure. There are a total of 31 operational taxonomic units placed on this sub-360

tree, 18 of which are annotated as Ruminococcaceae family and Oscillospira genus and 13 of
which are annotated as Ruminococcaceae family and unknown genus. Figure 6a shows the box
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(a) Reference phylogenetic tree. (b) The empirical optimal flow.

Fig. 5: Left: reference phylogenetic tree used in analysis of intestinal biopsy samples. The
branches in red are those identified as active edge and zoomed in subtree below active edge.
Right: the empirical optimal flow between group A and group B on each edge.

plot of the combined relative abundance on these 31 operational taxonomic units, indicating that
the relative abundance on this subtree decreased in ulcerative colitis patients, but is increased
partially after receiving treatments. This is consistent with previous finding that the proportion 365

of Oscillospira genus and Ruminococcaceae family in gut microbiota deceases in inflammatory
bowel disease patients (Konikoff & Gophna, 2016; Santoru et al., 2017; Morgan et al., 2012).
For the purpose of comparison, the box plot of the combined relative abundance of all opera-
tional taxonomic units assigned to Oscillospira genus is shown in Figure 6b, showing that the
pattern of relative abundance found in Figure 6a is not that clear any more. This suggests that the 370

finer species classification by microbial phylogeny can provide more power to detect the subtle
difference between populations than standard taxonomic classification (Washburne et al., 2018).
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