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Motivated by a range of applications, we study in this paper the problem
of transfer learning for nonparametric contextual multi-armed bandits under
the covariate shift model, where we have data collected from source bandits
before the start of the target bandit learning. The minimax rate of conver-
gence for the cumulative regret is established and a novel transfer learning
algorithm that attains the minimax regret is proposed. The results quantify
the contribution of the data from the source domains for learning in the target
domain in the context of nonparametric contextual multi-armed bandits.

In view of the general impossibility of adaptation to unknown smooth-
ness, we develop a data-driven algorithm that achieves near-optimal statisti-
cal guarantees (up to a logarithmic factor) while automatically adapting to
the unknown parameters over a large collection of parameter spaces under an
additional self-similarity assumption. A simulation study is carried out to il-
lustrate the benefits of utilizing the data from the source domains for learning
in the target domain.

1. Introduction. Inspired by the human intelligence of leveraging prior experiences to
tackle novel problems, transfer learning, which aims to improve the learning performance
in a target domain by transferring the knowledge contained in different but related source
domains, has become an active and promising area of research in machine learning. Trans-
fer learning has achieved significant success in a wide range of practical applications such
as computer vision (Quattoni, Collins and Darrell (2008), Kulis, Saenko and Darrell (2011),
Li et al. (2013)), genomic and genetic studies (Wang et al. (2019), Peng et al. (2021)) and
medical imaging (Raghu et al. (2019), Yu et al. (2022)) to mention a few. We refer interested
readers to Pan and Yang (2009), Weiss, Khoshgoftaar and Wang (2016) for detailed sur-
veys on transfer learning. Motivated by the success in these applications, substantial progress
has also been made recently in the theoretical quantification for transfer learning in super-
vised and unsupervised settings. A partial list of examples includes classification (Cai and
Wei (2021), Kpotufe and Martinet (2021), Maity, Sun and Banerjee (2020), Reeve, Cannings
and Samworth (2021)), high-dimensional linear regression (Li, Cai and Li (2022)), graphical
model (Li, Cai and Li (2023)) and nonparametric regression (Cai and Pu (2021a), Ma, Pathak
and Wainwright (2023), Pathak, Ma and Wainwright (2022)).

In this paper, we consider transfer learning for nonparametric contextual multi-armed ban-
dits. Since the seminal formulation in Robbins (1952), the multi-armed bandit (MAB) and its
various extensions have been widely used in numerous fields related to sequential decision-
making, including personalized medicine (Tewari and Murphy (2017), Rabbi et al. (2018),
Zhou et al. (2019), Shrestha and Jain (2021), Demirel, Celik and Tekin (2022)), recommen-
dation system (Li et al. (2010), Kallus and Udell (2020)) and dynamic pricing (Rothschild
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(1974), Kleinberg and Leighton (2003), Wang, Chen and Simchi-Levi (2021)). In the classi-
cal nonparametric contextual multi-armed bandit problem, a decision maker sequentially and
repeatedly chooses an arm from a set of available arms and receives a random reward gener-
ated by the selected arm. The goal is to develop an arm selection policy that maximizes the
expected cumulative rewards over a finite time horizon. Motivated by the common scenario
where the decision maker often has access to side information to assist arm selection, covari-
ates are introduced to encode the features that affect the reward yielded by each arm at each
time step. The expected reward of each arm conditioned on the context is assumed to fol-
low a nonparametric form, allowing for a more flexible and robust formulation in real-world
applications.

However, collecting enough reward feedback to design an optimal arm selection strategy
is often challenging in practice. For instance, the contextual multi-armed bandit framework
is widely used in precision medicine that aims to tailor the medical care to each patient
(Rindtorff et al. (2019), Zhou et al. (2019)). Every time a patient visits, a healthcare provider
needs to determine a treatment based on the patient’s profile, including genetics, biomarkers,
environment and demographic information. The objective is to optimize the post-treatment
health outcomes of all patients. In this case, patient profiles, treatments and health outcomes
correspond to covariates, arms and rewards, respectively. However, there is no shortage of
cases where biomedical data of minority populations are underrepresented in certain health-
care institutions (Sudlow et al. (2015)). Given this limited availability of data in clinical
research, it is common to resort to the healthcare records of other patients with similar char-
acteristics. In such a scenario, the task of transfer learning for contextual multi-armed bandits
naturally arises.

In addition to applications in precision medicine, contextual multi-armed bandits are also
frequently used in online recommendation systems that seek to learn dynamically the pref-
erences of an individual customer for a collection of products based on the demographics
and purchase histories (Agrawal et al. (2019), Kallus and Udell (2020)). Since each user can
only purchase a small set of products, the availability of transactional data is often limited in
practice. Therefore, it is natural to explore the information of different but related customers,
in order to better predict the possibility of an individual customer purchasing a specific prod-
uct. Similarly, anomaly detection systems often rely on a limited number of interactions with
human experts for verification to maximize accurate anomaly detection. Due to its trade-
off between exploration (e.g., investigation of various anomalies to improve prediction) and
exploitation (e.g., queries of the most suspicious one), anomaly detection has also been for-
mulated by a contextual multi-armed bandit framework (Ding, Li and Liu (2019), Soemers
et al. (2018)). In credit card fraud identification systems, if the account history of a single card
holder is short, it would be advisable to utilize the information of similar types of transactions
and customers to increase the detection accuracy of fraudulent transactions.

In this work, we consider the following setting of transfer learning for contextual multi-
armed bandits. Let Q and P be two probability distributions over [0,1]d ×[0,1]K that gener-
ate a sequence of independent random vectors (Xt , Y

(1)
t , . . . , Y

(K)
t )t≥1 associated with a con-

textual K-armed bandit. Here, (Xt)t≥1 is a sequence of i.i.d. random vectors in X := [0,1]d
representing the covariates. For each 1 ≤ k ≤ K and t ≥ 1, Y

(k)
t is a random variable in

[0,1] indicating the reward yielded by arm k at time t , with conditional expectation given
by E[Y (k)

t |Xt ] = fk(Xt), where fk : X → [0,1] is referred to as a reward function. The
bandit game operates as follows: at each time step t , given side information Xt , the de-
cision maker pulls one of the K arms, denoted by πt and receives the random reward
Y

(πt )
t . Suppose that before the Q-bandit game starts, we have access to precollected sam-

ples {(XP
i ,πP

i , Y
(πP

i )

i )}nP

i=1, generated from a source bandit with underlying distribution P .
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Throughout the paper, Q refers to the target distribution about which we wish to make sta-
tistical inferences; P stands for the source distribution from which we have collected data to
improve the decision-making under Q. We use the Q-bandit (resp., P -bandit) to represent
the bandit with distribution Q (resp., P ). In addition, we use superscripts Q and P to refer to
quantities associated with the Q-bandit and the P -bandit, respectively. Our goal is to design
a policy π = {πt }t≥1 that maximizes the expected cumulative rewards under the target distri-
bution Q. The performance of the policy π can be measured by its cumulative regret over nQ

time steps, given by

E
[
RnQ

(π)
] := E

[ nQ∑
t=1

(
Y

Q,(π�(X
Q
t ))

t

(
X

Q
t

) − Y
Q,(πt (X

Q
t ))

t

(
X

Q
t

))]
,(1)

where π� is the oracle policy with complete knowledge of the reward functions {fk}Kk=1. One
can expect that as long as distributions P and Q are similar, the source data from the P -
bandit can improve the decision-making in the Q-bandit. Therefore, it is natural to quantify
the improvement in the cumulative regret, which can be viewed as the amount of information
transferred from the source distribution P to the target distribution Q.

This paper focuses on transfer learning under the covariate shift model, where the marginal
distributions of covariates PX and QX differ (i.e., PX �= QX), but the conditional reward
distributions of Y (k) given X are identical under P and Q (i.e., PY(k)|X = QY(k)|X) for all
1 ≤ k ≤ K . This framework is well motivated by many practical applications, typically aris-
ing from the scenarios when the same study is conducted among different populations. For
instance, healthcare providers in a hospital may utilize medical records from other healthcare
centers to better guide medical treatments. While the patient characteristics (captured by the
marginal context distributions) tend to differ across different hospitals, given the same patient
profile, the effects of the same treatment (which can be modeled as the conditional reward
distributions) in various medical institutions can be identical in many cases. Therefore, it is
natural to model this scenario as a covariate shift.

The covariate shift model hinges on the characterization of the similarity between the
marginal distributions PX and QX . Various assumptions on the similarity have been proposed
in the literature. In the present paper, we adopt the concept of transfer exponent—introduced
in Kpotufe and Martinet (2021) to study transfer learning for nonparametric classification—
that measures the discrepancy between PX and QX in terms of the ball mass ratio of the
respective distributions. It is assumed that there exists a transfer exponent γ ≥ 0 such that
PX(B(x, r)) � rγ QX(B(x, r)) holds for any �∞-ball of center x ∈ X and radius r ∈ (0,1]
(see Definition 1). Informally, the transfer exponent γ gauges how locally singular PX is with
respect to QX . When γ is small, this condition ensures that the source data adequately covers
important regions under the target distribution Q (i.e., with large QX mass), thus facilitating
the transfer of information from the source domain. In a recent study by Suk and Kpotufe
(2021), contextual multi-armed bandits were considered in a setting where the distribution of
covariates changes over time. The authors employed a similar framework to capture the dis-
tribution shift. They proposed an algorithm that provably achieves the near-optimal minimax
regret while automatically adapting to the unknown change point in time and covariate shift
level. However, the results therein suffer some deficiencies. First, the proposed algorithm is
designed for Lipschitz reward functions (i.e., smoothness parameter β = 1, see Section 2 for
the formal definition). Therefore, it falls short of accommodating the general settings β �= 1.
Moreover, this limitation raises a more challenging question—is it possible to design a data-
driven procedure that can adapt to the smoothness level, which is typically a priori unknown
in practice?
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Moving beyond concerns about smoothness, it is noteworthy that Suk and Kpotufe (2021)
focused on a scenario where the decision maker is allowed to explore the bandit game amid
a covariate shift actively. However, it is more common in practice that one does not have the
freedom to interact with the source bandit. Instead, one has to rely on a fixed precollected
batch data set. In this setup, it is natural to expect a potentially larger regret, as the arm
selection policy in the source data set might be uninformative (e.g., a suboptimal arm is
predominantly selected in the source data set). To account for this challenge, we introduce
an exploration coefficient κ (see Definition 2) that quantifies the extent to which each arm
is explored in the source bandit. Specifically, the exploration coefficient κ ensures that each
arm is pulled with probability at least κ/K across the covariate space in the source data set.
Consequently, when κ is not vanishingly small, each arm is explored more or less sufficiently,
thereby enabling the extraction of valuable information about the reward functions from the
source domain. A natural question arising from such a scenario is: what is the minimax regret
in the transfer learning setting when dealing with precollected batch data? Finally, we note a
logarithmic gap exists between the upper and lower bounds in Suk and Kpotufe (2021), and
it remains unknown whether the minimax lower bound on the regret can be attained.

In the present paper, we aim to address the following questions: given a precollected source
data set, what is the minimax rate of convergence of the regret for nonparametric contextual
multi-armed bandits in the covariate shift setting? Can we design a rate-optimal policy that
achieves the minimax regret? Moreover, is it possible to develop a data-driven procedure that
achieves near-optimal statistical guarantees while at the same time automatically adapting
to the unknown smoothness of the reward functions and the covariate shift of the source
distribution? Encouragingly, the answers to these questions are affirmative.

1.1. Main contribution. Our main contribution is twofold. We first establish the minimax
rate of convergence of the cumulative regret for nonparametric contextual multi-armed ban-
dits under the covariate shift model. In addition to the standard assumptions that the reward
functions are β-Hölder (see Assumption 1) and the target distribution Q satisfies a margin
assumption with parameter α (see Assumption 2), we assume that the source and target distri-
butions P and Q satisfy transfer learning conditions with transfer exponent γ and exploration
coefficient κ (see Definitions 1 and 2). Given nP source samples collected from the source
bandit, we show that the minimax regret over nQ time steps in the target Q-bandit is of order

nQ(nQ + (κnP )
d+2β

d+2β+γ )
− β(1+α)

d+2β . In the classical setting where one has no auxiliary data from

the source domain, that is, nP = 0, the minimax regret is known to be of order n
1− β(1+α)

d+2β

Q .

Therefore, the term (κnP )
d+2β

d+2β+γ in the minimax regret captures the contribution from the
source data to the target bandit, which depends on the amount of covariate shift between PX

and QX as well as the degree of arm exploration in the source data set.
We also develop a novel transfer learning algorithm and prove that it achieves the mini-

max regret. However, the constructed procedure depends on the knowledge of the smooth-
ness and transfer learning parameters. Unfortunately, it has been widely recognized that
adaptation to unknown smoothness is generally infeasible in nonparametric bandit problems
(Locatelli and Carpentier (2018), Gur, Momeni and Wager (2022), Cai and Pu (2022b)).
To this end, we choose to focus on the bandits with reward functions that satisfy the self-
similarity condition—an assumption extensively used in the statistics literature (Picard and
Tribouley (2000), Giné and Nickl (2010)). We develop a data-driven algorithm and show that
it simultaneously achieves the near-optimal minimax regret at the penalty of an additional
logarithmic factor over a large class of parameter spaces. Moreover, we demonstrate that the
self-similarity assumption does not decrease the complexity of the problem by establishing
the minimax lower bound that remains the same as in the general case.
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1.2. Related works.

Contextual multi-armed bandits. The framework of contextual multi-armed bandits was first
introduced in Woodroofe (1979). Among the parametric approaches, an important line of
work assumes a linear reward function (Abe and Long (1999), Auer (2002), Bastani and
Bayati (2020), Goldenshluger and Zeevi (2013)). In this setup, Bastani, Bayati and Khos-
ravi (2021) proposed a rate-optimal greedy strategy with regret logarithmic in the length of
the time horizon. For nonparametric contextual multi-armed bandits, it is typical to assume
Hölder smooth reward functions. Yang and Zhu (2002) developed a greedy policy and showed
that its regret goes to zero as the time horizon tends to infinity. Rigollet and Zeevi (2010) stud-
ied the two-armed bandits and proposed an upper-bound-confidence (UCB) type policy that
attains a near-optimal minimax regret. This result was further refined in Perchet and Rigollet
(2013) where a rate-optimal policy called ABSE was proposed in the multi-armed setting.
Additionally, Reeve, Mellor and Brown (2018) combined a UCB-type policy with the nearest
neighbor method to design a near-optimal algorithm capable of adapting to the low intrinsic
dimension of contexts. It is worth noting that all the aforementioned methods are tailored for
β-Hölder smooth reward with β ∈ (0,1]. Hu, Kallus and Mao (2022) extended the theory to
accommodate smoother reward functions with β > 1.

Adaptivity. It has been demonstrated in various bandit settings that adaptation to the un-
known smoothness of reward functions is generally impossible. This means that no policy
can achieve the minimax regrets simultaneously over different classes of reward functions
(Locatelli and Carpentier (2018), Gur, Momeni and Wager (2022), Cai and Pu (2022b)). We
note that this phenomenon is closely related to the impossibility of constructing adaptive con-
fidence intervals in nonparametric function estimation (Low (1997), Cai and Low (2004), Cai
(2012)). Fortunately, adaptive statistical inference can be accomplished under certain shape
constraints, such as monotonicity and convexity (Cai, Low and Xia (2013), Hengartner and
Stark (1995), Dümbgen (1998), Genovese and Wasserman (2005)). Self-similarity—first in-
troduced by Picard and Tribouley (2000) for adaptive nonparametric confidence intervals—is
another widely used condition that allows adaptivity. This concept finds applications in vari-
ous fields, including density estimation (Giné and Nickl (2010)), sparse regression (Nickl and
van de Geer (2013)) and �p-confidence sets (Nickl and Szabó (2016)). It was first introduced
to the nonparametric contextual bandit setting by Qian and Yang (2016), where a UCB-type
policy based on Lepski’s method (Lepski, Mammen and Spokoiny (1997)) was proposed and
shown to achieve the minimax regret up to a logarithmic factor. The drawback, however, is
that its cost of adaptation tends to infinity as the covariate dimension grows. Gur, Momeni
and Wager (2022) improved upon this result by reducing the adaptation cost to a logarithmic
factor independent of the dimension.

Transfer learning. Transfer learning has been explored using information measures such as
KL-divergence and total variation to quantify the distinction between target and source dis-
tributions (Ben-David et al. (2006), Blitzer et al. (2007), Mansour, Mohri and Rostamizadeh
(2009)). Generalization bounds are then established based on these metrics. Despite its gener-
ality, such results are often not tight when applied to specific statistical models. Recent work
has imposed more structured assumptions on the similarity between target and source distri-
butions, such as covariate shift and posterior drift (Cai and Wei (2021), Cai and Pu (2021a),
Hanneke and Kpotufe (2019), Kpotufe and Martinet (2021), Maity, Sun and Banerjee (2020),
Reeve, Cannings and Samworth (2021)), thereby leading to more refined theoretical guar-
antees. Finally, our work is also closely related to hybrid reinforcement learning that aims
to combine offline data sets with online interaction to improve statistical/computational ef-
ficiency (Ross and Bagnell (2012), Xie et al. (2021), Song et al. (2022), Wagenmaker and
Pacchiano (2023), Li et al. (2023), Nakamoto et al. (2023)).
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1.3. Organization. The rest of the paper is organized as follows. Section 2 formulates the
problem and introduces definitions and assumptions. We then establish the minimax optimal
rate of the regret and develop a rate-optimal algorithm in Section 3. In Section 4, we propose
a data-driven adaptive procedure that achieves the minimax regret up to logarithmic factors.
The proofs of our theorems, technical lemmas and numerical experiments are deferred to the
Supplementary Material (Cai, Cai and Li (2024)). We conclude with a discussion of future
directions in Section 5.

1.4. Notation. For any a, b ∈ R, we define a ∨ b := max{a, b} and a ∧ b := min{a, b}.
We denote by ‖ · ‖2 and ‖ · ‖∞ the �2 norm and the �∞ norm, respectively. The notation
B∞(x, r) := {y : ‖y − x‖∞ ≤ r} refers to the �∞ ball of center x and radius r , and we define
the shorthand B(x, r) := B∞(x, r). Denote by [K] := {1,2, . . . ,K}. We use 1{·} to represent
the indicator function, and we define log+(x) := log(x) ∨ 1. Let supp(·) denote the support
of any probability distribution. For any distributions P , Q, the notation KL(P‖Q) stands for
the KL-divergence. For any a ∈ R, denote by �a� (resp., a�) the largest (resp., smallest)
integer that is strictly smaller (resp., larger) than a. The notation N stands for the set of the
natural numbers, and we denote X := [0,1]d . Throughout the paper, we denote by C or c

some constants independent of nP and nQ, which may vary from line to line.
For any two functions f (n), g(n) > 0, the notation f (n) � g(n) (resp., f (n) � g(n))

means that there exists a constant C > 0 such that f (n) ≤ Cg(n) (resp., f (n) ≥ Cg(n)).
The notation f (n) � g(n) means that C0f (n) ≤ g(n) ≤ C1f (n) holds for some constants
C0,C1 > 0. In addition, f (n) = o(g(n)) means that lim supn→∞ f (n)/g(n) = 0, f (n) �
g(n) means that f (n) ≤ c0g(n) for some small constant c0 > 0, and f (n) � g(n) means that
f (n) ≥ c1g(n) for some large constant c1 > 0.

2. Problem formulation.

2.1. Transfer learning for nonparametric contextual multi-armed bandits. Let Q be a
probability distribution over X × [0,1]K that generates a sequence of independent random
vectors (XQ,YQ,(1), . . . , YQ,(K)). At each time point t , based on the covariate X

Q
t ∈ X

drawn from the marginal distribution QX , a decision maker selects an arm k ∈ [K] and
receives a random reward Y

Q,(k)
t ∈ [0,1] associated with the chosen arm according to the

conditional distribution Q
Y(k)|XQ

t
. We assume that for any k ∈ [K] and t ≥ 1, the random

reward Y
Q,(k)
t is a random variable with conditional expectation given by

E
[
Y

Q,(k)
t |XQ

t

] = f
Q
k

(
X

Q
t

)
,

where f
Q
k : X → [0,1] is an unknown function called a reward function. A policy π is a

collection of functions {πt }t≥1 where πt : X → [K] prescribe the arm to pull at time t .
In the context of transfer learning, we assume that the decision maker is given a batch data

set DP := {(XP
i ,πP

i , Y
P,(πP

i )

i )}nP

i=1. This data set is collected from a contextual K-armed ban-
dit over nP rounds, of which the underlying probability distribution P generates a sequence
of independent random vectors (XP ,YP,(1), . . . , Y P,(K)) ∈ X × [0,1]K . Here, XP

i ∈ X rep-
resents the covariate observed at time i, policy πP

i : X → [K] denotes the selected arm at

time i, and Y
P,(πP

i )

i corresponds to the observed random reward at time i. Similar to the Q-

bandit, it is assumed that for any k ∈ [K] and i ≥ 1, the random reward Y
P,(k)
i of the P -bandit

obeys

E
[
Y

P,(k)
i |XP

i

] = f P
k

(
XP

i

)
,

for an unknown function f P
k : X → [0,1]. Throughout the paper, we denote n := nQ ∨ nP .
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As mentioned in the Introduction, this paper focuses on the covariate shift model. To be
specific, it is assumed that the marginal distributions of covariates in the P -bandit and Q-
bandit are different (i.e., PX �= QX) while the distributions of rewards conditioned on the
covariate value are identical (i.e., PY(k)|X = QY(k)|X for all 1 ≤ k ≤ K). In particular, the
latter implies that the reward functions of the two bandits are also identical. We denote these
common reward functions as fk(x) := f P

k (x) ≡ f
Q
k (x) for all k ∈ [K] and x ∈ X .

Recall that π� is the oracle policy with access to full knowledge of the reward functions
{fk}Kk=1. It is straightforward to see that given a covariate value x, the oracle policy π� selects
any arm with the largest expected reward, with ties broken arbitrarily. In other words,

π�(x) ∈ argmax
k∈[K]

fk(x).

Therefore, for any policy π = {πt }t≥1, the regret of π in the Q-bandit defined in (1) has the
following expression:

E
[
RnQ

(π)
] = E

[ nQ∑
t=1

(
f

π�(X
Q
t )

(
X

Q
t

) − f
πt (X

Q
t )

(
X

Q
t

))]

= E

[ nQ∑
t=1

(
max
k∈[K]fk

(
X

Q
t

) − f
πt (X

Q
t )

(
X

Q
t

))]
.

(2)

In the remainder of the paper, we may drop the subscript nQ whenever there is no confusion.
Finally, we would like to emphasize that the policy πt at time t depends on both the obser-

vations of the Q-data prior to time t (i.e., {(XQ
i ,πi, Y

Q,(πi)
i )}t−1

i=1 ∪ {XQ
t }) and the complete

P -data (i.e., {(XP
i ,πP

i , Y
P,(πP

i )

i )}nP

i=1).

2.2. Assumptions. It is noteworthy that one cannot hope to distinguish the optimal arm
of a contextual multi-armed bandit with arbitrary covariate and reward distributions. In order
to guarantee provably small cumulative regrets, we impose the following model assumptions,
which have become standard in the literature on nonparametric contextual multi-armed ban-
dits (Rigollet and Zeevi (2010), Perchet and Rigollet (2013)).

We begin by imposing a Hölder smoothness assumption on the reward functions {fk}Kk=1
as follows.

ASSUMPTION 1 (Smoothness). The reward functions {fk}Kk=1 are (β,Cβ)-Hölder con-
tinuous for some constants 0 < β ≤ 1, Cβ > 0, that is, for any k ∈ [K],∣∣fk(x) − fk

(
x′)∣∣ ≤ Cβ

∥∥x − x′∥∥β
∞ ∀x, x′ ∈X .

REMARK 1. By the equivalence of �p norms (p ≥ 1) in X , the results in this work
continue to hold if �∞ norm is replaced with any �p norm (p ≥ 1).

REMARK 2. Given the primary focus of this work is to illustrate the potential for re-
ducing cumulative regrets through the utilization of source data, we confine our attention to
the case 0 < β ≤ 1 for simplicity of presentation. Notably, the insights and findings here can
be extended to accommodate the case β > 1. A detailed discussion of this generalization is
deferred to Section 5.

Next, it is natural to expect that the gap between the reward functions is a pivotal measure
of a contextual multi-armed bandit problem’s complexity. To this end, let f(1) (resp., f(2)) de-
note the pointwise maximum (resp., the second pointwise maximum) of the reward functions
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{fk}Kk=1, namely

f(1)(x) := max
k∈[K]fk(x),

and

f(2)(x) :=
⎧⎨⎩ max

k∈[K]
{
fk(x) : fk(x) < f(1)(x)

}
if min

k∈[K]fk(x) �= max
k∈[K]fk(x),

f(1)(x) otherwise.

Equipped with these notation, we introduce the following margin assumption to quantify
the interplay between the reward gap and the covariate distribution in the target bandit Q.

ASSUMPTION 2 (Margin). There exist constants α ≥ 0, Cα > 0 such that the reward
functions {fk}Kk=1 and marginal distribution QX satisfy

QX

(
0 < f(1)(X) − f(2)(X) ≤ δ

) ≤ Cαδα ∀0 < δ ≤ 1.

Assumption 2 bears a resemblance to the margin condition initially introduced in classifi-
cation (Mammen and Tsybakov (1999), Tsybakov (2004), Audibert and Tsybakov (2007)),
and has been widely used in contextual multi-armed bandits (Goldenshluger and Zeevi
(2009), Perchet and Rigollet (2013)) and dynamic treatment regimes (Qian and Murphy
(2011), Luedtke and van der Laan (2016), Shi, Lu and Song (2020)). Roughly speaking, the
margin condition encodes the distribution behavior of the contexts near the decision bound-
ary. It is easy to see that the margin condition is inherently satisfied for α = 0 and holds for
α = 1 when f(1)(X) − f(2)(X) has a bounded probability density near zero. If the margin
parameter α is large, it implies that with low probability the reward gap between the optimal
arm and other arms is small but bounded away from zero. This means that the reward func-
tions of different arms are well separated over a region of large probability mass, which in
turn, reduces the difficulty of distinguishing between the arms.

REMARK 3. As discussed in Perchet and Rigollet ((2013), Proposition 3.1), when αβ >

d , there exists a single arm that dominates others across the entire covariate space. In such a
case, a contextual multi-armed bandit problem degenerates into a static multi-armed bandit
problem that falls beyond the scope of interest for this work. Therefore, we shall assume
αβ ≤ d in the remainder of the paper.

REMARK 4. Assumptions 1 and 2 are commonly found in the nonparametric contextual
multi-armed bandit literature. However, the assumption that all reward functions are smooth
may not be valid in certain practical applications. In such cases, it might be possible to relax
Assumption 1 by imposing the smoothness assumption solely on the best few arms while
introducing a more delicate condition on the reward gap to replace Assumption 2. We leave
the development of suitable models for such settings to future investigation.

In addition, we impose a regularity condition on the marginal distribution QX . It ensures
that the support of QX is regular and that the density is bounded away from zero and infinity
on the support.

ASSUMPTION 3 (Bounded density). There exist constants q > q > 0 such that qrd ≤
QX(B(x, r)) ≤ qrd for any x ∈ supp(QX) and r ∈ (0,1].
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With these conditions pertaining to the target bandit Q in place, let us turn to the assump-
tions that enable reliable transfer learning. As previously discussed in Section 1, we focus on
the covariate shift setting and deploy the concept of the transfer exponent. This notion was
originally introduced in Kpotufe and Martinet (2021), and numerous variants have emerged
in the transfer learning literature (Hanneke and Kpotufe (2019), Pathak, Ma and Wainwright
(2022), Cai and Wei (2021), Suk and Kpotufe (2021)).

DEFINITION 1 (Transfer exponent). Define the transfer exponent γ ∈ R+ ∪ {0,∞} of
PX with respect to QX to be the smallest constant such that

PX

(
B(x, r)

) ≥ cγ rγ QX

(
B(x, r)

) ∀x ∈ supp(QX), r ∈ (0,1],(3)

for some constant 0 < cγ ≤ 1.

Note that for an arbitrary probability distribution pair (P,Q), condition (3) always holds
with γ = ∞. Also, given that the radius r is always upper bounded by one in [0,1]d , the
probability mass PX(B(x, r)) increases as γ approaches to 0. Intuitively, this implies that the
source data cover a larger subset of the covariate regime of interest, allowing more effective
information to be transferred from the source distribution P to the target distribution Q.

We now give an example for Definition 1. Let QX be the uniform distribution over [0,1].
Suppose the density function pX(x) of PX takes the form pX(x) = Cxγ for some normaliza-
tion constant C > 0. Then it is easy to verify that the transfer exponent of PX with respect to
QX equals γ . We refer to Kpotufe and Martinet (2021) for a more in-depth discussion of this
transfer exponent.

In addition, the covariate-arm pairs {(XP
i ,πP

i )}nP

i=1 in the precollected source data set
are assumed to be generated i.i.d. according to XP

i ∼ PX and πP
i (XP

i ) ∼ μ(· |XP
i ), where

{μ(· |x)}x∈X is a collection of probability distributions over the arm set [K]. We make a
note that this i.i.d. assumption prevails in the literature on bandits and reinforcement learning
where one seeks to exploit offline data (Rashidinejad et al. (2022)), which is well motivated
by the data randomization procedure in experience replay (Mnih et al. (2015)). To gauge the
degree of exploration over the arm set in the source data set, we introduce the exploration
coefficient as defined below.

DEFINITION 2 (exploration coefficient). Define the exploration coefficient κ ∈ [0,1] of
a collection of distributions over the arm set {μ(· |x)}x∈X with respect to QX as

κ := inf
k∈[K], x∈supp(QX)

Kμ(k |x).(4)

Note that κ/K is the lowest probability of an arm being selected over the support of QX in
the P -data. Intuitively, when the exploration coefficient κ is not vanishingly small, each arm
has been extensively tested by the source policy within the regions of interest. This, in turn,
provides the decision maker with greater confidence regarding the reward function associated
with each arm, thereby facilitating the decision-making in the target bandit. We make a note
that Definition 2 exhibits close ties to the positivity assumption in dynamic treatment regimes
(Shi, Lu and Song (2020)), as well as the notion of uniformly bounded concentrability coef-
ficient in offline reinforcement learning (Munos (2007), Farahmand, Szepesvári and Munos
(2010), Chen and Jiang (2019), Xie and Jiang (2021), Wagenmaker and Pacchiano (2023)).

Finally, we assume the number of arms K is constant throughout this paper.
Denote by 
(K,β,Cβ,α,Cα, q, q, γ, cγ , κ) the class of nonparametric contextual K-

armed bandits that satisfy Assumptions 1–3 and Definitions 1–2. Here and throughout, the
paper, we may use the shorthands 
(K,β,α, γ, κ) and 
 if there is no confusion.
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3. Minimax rate of convergence. In this section, we establish the minimax regret for
transfer learning under the covariate shift model and develop a rate-optimal procedure Algo-
rithm 1 to achieve the minimax regret.

3.1. Algorithm. The key to solving nonparametric contextual multi-armed bandit prob-
lems lies in accurately estimating the values of the reward functions {fk}Kk=1 at each observed

point X
Q
t . Inspired by the success of Rigollet and Zeevi (2010), Perchet and Rigollet (2013)

in the classical setting, the high-level idea of Algorithm 1 is fairly straightforward. It dy-
namically partitions the covariate space X into a set of hypercubes (bins), and uses local
constant estimators for the reward functions in each bin. This reduces the original contex-
tual multi-armed bandit into a collection of (static) multi-armed bandits (without covariates).
Subsequently, we can apply a successive elimination algorithm within each bin separately
and independently. To be more specific, Algorithm 1 generates a sequence of nested parti-
tions {Lt }t≥1 of the covariate space X over time, where the partition Lt at time t consists of
a set of bins (of potentially different side lengths) in X . Here, for any nonnegative integer
l ≥ 0, we define a collection of bins Bl := {Bk}k∈[2l ]d where

Bk := {
x ∈ X : (ki − 1)2−l ≤ xi ≤ ki2

−l , ki ∈ [
2l], i ∈ [d]} ∀k = (k1, . . . , kd).(5)

Throughout the paper, we use |B| to denote the side length of any bin B , that is, |B| = 2−l

for any B ∈ Bl . As an important observation, for any bin B ∈ Lt with QX(B) > 0, if we
restrict our focus to samples of which the covariates fall in bin B , it is not hard to see that
the corresponding observed rewards (Y

Q,(k)
s (B))s≥1 generated by arm k are i.i.d. random

variables with expectation equal to the conditional expectation of the reward of arm k over
bin B , namely

f̄
Q
k (B) := E

[
fk

(
X

Q
t

) |XQ
t ∈ B

] = 1

QX(B)

∫
B

fk(x)dQX(x).(6)

As a consequence, at each time t , given the covariate X
Q
t , we first find the bin B in the current

partition Lt that contains X
Q
t . We then invoke Procedure 1—a transfer learning procedure

tailored to multi-armed bandits that yields a policy {π̃s(B)}s≥1 for bin B—to determine πt ,
that is, the arm to pull at time t .

In order to present the policy π = {πt }t≥1 generated by Algorithm 1, we introduce several
notation. First, for any x ∈ X and t ≥ 1, let Bt(x) ∈ Lt denote the bin in the partition Lt at
time t such that x ∈ Bt(x). If there are multiple bins, we choose Bt(x) to be the one whose
center is closest to the origin. Next, for any bin B and time t ≥ 1, denote by Nt(B) the number
of times the covariate fell into B prior to time t , that is, Nt(B) := ∑

1≤s≤t 1{XQ
s ∈ B}. With

these definitions in place, the policy π = {πt }t≥1 yielded by Algorithm 1 can be described by
πt = π̃Nt (B)(B) with B = Bt(X

Q
t ) for any time t ≥ 1.

Before delving into the details of Algorithm 1, we pause to introduce some additional
notation. As Algorithm 1 maintains an adaptive partition of the covariate space X over time,
it is convenient to describe the partition using a tree. To this end, denote by T (l) the perfect
tree with root node X and depth l ≥ 0, where there are 2id nodes in each depth 0 ≤ i < l and
each node B represents a bin in set Bi . The set of children of any bin B ∈ Bi with i ≥ 0 is
defined as child(B) := {B ′ ∈ Bi+1 : B ′ ⊂ B}. Then at each time t , the partition Lt induced
by Algorithm 1 can be described as a set of leaf nodes of a subtree of T (l) for some l > 0.
Throughout the paper, the terms bin and node are used interchangeably.

Next, given a subset D of the source data set DP , for any bin B and arm k, let nP
k (B;D)

denote the number of samples in data set D such that the covariate falls in bin B and arm k
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Algorithm 1 Transfer learning algorithm for contextual multi-armed bandits
1: Input: arm set I , horizon length nQ, smoothness parameters β , Cβ , transfer parameters

γ , exploration coefficient κ , P -data DP .
2: Initialize L1 ← {X }, I(X ) ← I . � initialize partition and arm set
3: Initialize the policy π̃ (X ) by Procedure 1(X ,I(X ),U,DP ).
4: Initialize N(X ) ← 0. � initialize time for policy π̃(X )

5: Initialize τk(X ) ← 0, and τ �
k (X ;DP ) as in (10), ∀k ∈ I(X ). � initialize rounds and set

round upper bounds
6: for t = 1, . . . , nQ do
7: Draw a sample X

Q
t ∼ QX .

8: Find the bin B ∈ Lt such that X
Q
t ∈ B .

9: while |I(B)| > 1 and τk(B) ≥ τ �
k (B;DP ), ∀k ∈ I(B) do � keep partitioning B until

reaching suitable scale
10: if τ �

k (B;DP ) = 0, ∀k ∈ I(B) then � no exploration needed in B: discard
suboptimal arms

11: Set Y �(B;DP ) ← maxk∈I(B){YP

k (B;DP ) − Uk(0,B;DP )}. � set largest
reward lower bound

12: Set I(B) ← {k ∈ I(B) : YP

k (B;DP ) + Uk(0,B;DP ) ≥ Y �(B;DP )}. �
update arm set

13: end if
14: for B ′ ∈ child(B) do
15: Set I(B ′) ← I(B). � assign remaining arms in B as initial arms in its

children
16: Initialize the policy π̃(B ′) by Procedure 1 (B ′,I(B ′),U,DP ).
17: Set N(B ′) ← 0. � initialize time for policy π̃(B ′)
18: Set τk(B

′) ← 0 and τ �
k (B ′;DP ) as in (10), ∀k ∈ I(B ′). � initialize rounds

and set round upper bounds
19: end for
20: Set Lt ← (Lt \ B) ∪ child(B). � replace B with its children in partition
21: Find the bin B ∈ Lt such that X

Q
t ∈ B .

22: end while
23: Set N(B) ← N(B) + 1. � update times X

Q
t ∈ B

24: Set πt ← π̃N(B)(B). � choose arm by policy π̃ (B)

25: Set I(B) ← ĨN(B)(B). � update arm set by policy π̃ (B)

26: Set τk(B) ← τ̃N(B),k(B),∀k ∈ I(B). � update numbers of rounds by policy π̃ (B)

27: end for
28: Output: policy {πt }t≥1.

is pulled, that is,

nP
k (B;D) := ∑

(Xi,πi ,Yi)∈D
1{Xi ∈ B, πi = k}.(7)

Let Y
P

k (B;D) denote the empirical mean of the reward of arm k over bin B in data set D,
namely

Y
P

k (B;D) :=
⎧⎪⎨⎪⎩

1

nP
k (B;D)

∑
(Xi,πi ,Yi)∈D

Y1{Xi ∈ B, πi = k} if nP
k (B;D) �= 0,

0 otherwise.

(8)
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In addition, for any nonnegative integer τ ≥ 0, bin B and arm k, let us define

(9)

Uk(τ,B;D)

:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

√√√√ 2

τ + nP
k (B;D)

log+
(

nQ|B|d
τ

)
∨ 2Cβ |B|β if τ > 0,

2

√
2

nP
k (B;D)

log+(
nQ|B|d+2β ∨ κnP |B|d+2β+γ

) ∨ 2Cβ |B|β if τ = 0,

where we recall the notation log+(x) := log(x) ∨ 1 and use the convention 1/0 = ∞. The
Uk(τ,B;D) can be essentially viewed as a confidence bound that quantifies the uncertainty
of the reward function estimator used in Algorithm 1.

With these notation in place, the transfer learning algorithm for nonparametric contextual
multi-armed bandits is summarized in Algorithm 1. Let us discuss its details, along with some
intuition. As briefly mentioned earlier, Algorithm 1 aims to segment the covariate space based
on the local margins of the reward functions. Smaller bins are employed in areas where the
gaps between the reward functions of different arms are small, whereas coarser partitioning
is used in regions where arms are easily distinguishable. Once this partition is established,
each bin is treated as an index for a sequence of static multi-armed bandit problems, and
Procedure 1 is executed in each bin with parameters specific to that bin.

In order to achieve such an adaptive partition, for each bin B and arm k, we assign a
nonnegative upper bound on the number of pulls, given by

τ �
k (B;D) := min

τ∈{0}∪N
{
τ : Uk(τ,B;D) ≤ 2Cβ |B|β}

,(10)

where we recall the definition of Uk(τ,B;D) in (9). Note that the confidence bound
Uk(τ,B;D) is composed of two terms. The first term represents the standard deviation of
the reward function estimator owing to finite samples, while the second component stands
for the bias term, as we attempt to approximate the reward function using its conditional
expectation over bin B . Roughly speaking, the value of τ �

k (B;D) is chosen to ensure that,
after arm k has been pulled τ �

k (B;D) times in bin B , the standard deviation and bias of its
reward function estimator is balanced. In particular, if the conditional mean reward of arm
k over bin B is low, Procedure 1 executed in bin B can identify and eliminate it by the end
of τ�

k (B;D) rounds with high probability. Combined with the smoothness assumption, this
procedure guarantees that the eliminated arms are uniformly suboptimal over bin B and that
none of the remaining arms dominates the others. Therefore, if multiple arms remain active
in bin B after each arm k has been pulled τ �

k (B;D) times, one knows that the reward func-
tions of the remaining arms are locally close to each other, and hence need more refined
estimation. Consequently, we split the node B by replacing B with its children child(B) in
the partition tree, and the set of the active arms in node B is passed on to each B ′ ∈ child(B).
An illustration of Algorithm 1 can be found in Figure 1.

Next, let us move on to take a closer look at Procedure 1. Since it is designed for each bin,
in addition to the bin index B , set of arms I and confidence bound function U , Procedure 1
also requires the information of the source samples that fall in the bin. Specifically, Proce-

dure 1 needs the sample size nP
k , empirical mean of the reward Y

P

k and upper bound on the
play rounds τ �

k , for each arm k ∈ I .
Before any arm reaches its play round limit, Procedure 1 runs similar to a standard succes-

sive elimination algorithm (see, e.g., Auer and Ortner (2010), Perchet and Rigollet (2013)).
It operates in rounds and maintains a set of active arms that are potentially optimal. In each
round, each arm in the active arm set is pulled once. Given access to the source data set, the
observed rewards from the Q-bandit and P -bandit are combined to calculate the empirical
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FIG. 1. An illustration of Algorithm 1 for d = 2 and K = 2. The target samples (resp., source samples) are
represented by the red (resp., blue) points. The coordinates of each point correspond to the covariate X, and the
number in the point stands for the arm that is pulled. In each time step t , Algorithm 1 first assesses if the bin

containing X
Q
t requires splitting. It then utilizes the samples located in the same bin as X

Q
t to execute a static

MAB procedure to select an arm. For example, at time t = 11, one has (say) τ�
1 = 3, τ�

2 = 1, and both arms are

active. In this case, we need to split the lower left bin and run Procedure 1 in the bin containing X
Q
t to choose an

arm.

average of the reward of each active arm. It then seeks to eliminate suboptimal arms from the
set of active arms by comparing their upper and lower confidence bounds of the sample mean
rewards.

However, once arm k has been pulled for τ �
k times, Procedure 1 stops selecting it tem-

porarily. In fact, τ �
k can be viewed as the maximum horizon length of the exploration phase

for arm k. The rationale is simple: given the additional information from the source data, one
should be able to gain more certainty about whether arm k is optimal compared to the stan-
dard case. Consequently, we can reduce the cumulative regret by exiting from the exploration
stage earlier. Once each active arm reaching its play round limit, Procedure 1 advances to the
second phase, where we select only the arm with the highest empirical average reward. In this
case, a previously suspended arm might be pulled again if it happens to be the only active
arm or has the highest empirical mean award. Therefore, one critical difference between this
work and previous results on classical contextual multi-armed bandits (without source data),
such as Perchet and Rigollet (2013), is that our successive elimination procedure in each bin
involves a more complicated early stopping stage, hence requiring much a more sophisticated
analysis. In addition, achieving the exact minimax regret demands more carefully designed
uncertainty estimates that take account of both the source sample size and transfer learning
parameters.

It is noteworthy that Algorithm 1 has three critical steps to integrate the source data. First,
we combine the target and source data to estimate the reward function of each arm, and the
increased sample size leads to an improvement in estimation accuracy. Second, note that
the upper bound on the play rounds τ �

k (B;D) in (10) incorporates the information from the
source data D. It is easy to see that τ �

k (B;D) is a decreasing function of the source sample
size nP

k (B;D). Therefore, if a suboptimal arm has been pulled sufficiently many times in
the P -bandit so that one is certain about its suboptimality, we no longer need to test it in
the Q-bandit. This implies a shorter exploration phase, and thus reduces the regret. Finally,
closely related to the second point, the source data allows us to build a deeper partition tree.
We can then discretize the covariate space more finely, thus facilitating the identification of
suboptimal arms and incurring a smaller regret.

We would like to remark that the covariate shift of the source data is characterized by the
transfer exponent γ , which plays a crucial role in Algorithm 1. For instance, as γ decreases,
the partition tree becomes deeper, resulting in a more refined partition of the covariate space.
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Procedure 1 Successive elimination procedure for a static bandit with source data
1: Input: bin B , arm set I , confidence bound function U , source data D.
2: Set nP

k (B;D), Y
P

k (B;D), τ �
k (B;D) as in (7), (8), (10), respectively, ∀k ∈ I .

3: Set nP
k ← nP

k (B;D), Y k ← Y
P

k (B;D), and τ �
k ← τ �

k (B;D),∀k ∈ I .
4: Initialize t ← 0.
5: Initialize τk ← 0,∀k ∈ I . � initialize pull counts
6: Initialize Y � ← maxk∈I{Y k − Uk(0,B;D)}. � initialize largest reward lower bound
7: loop
8: if τk ≥ τ �

k , ∀k ∈ I then � condition to stop exploration
9: Set t ← t + 1.

10: Select arm π̃t ← argmax
k∈I

Y k (with ties broken arbitrarily) and receive reward

YQ,(π̃t ).
11: Set τπ̃t ← τπ̃t + 1. � update pull count
12: Set τt,k ← τk,∀k ∈ I , and It ← I . � record pull count and active arm set
13: Set Y π̃t ← 1

nP
π̃t

+τπ̃t

(YQ,(π̃t ) + (nP
π̃t

+ τπ̃t − 1)Y π̃t ). � update estimated reward

14: else
15: for k ∈ I such that τk < τ�

k do � only explore arms s.t. pull counts less than
upper bounds

16: if Y k + Uk(τk,B;D) ≥ Y � then � eliminate arm s.t. reward upper bound is
smaller than largest reward lower bound

17: Set t ← t + 1.
18: Select arm π̃t ← k and receive reward YQ,(π̃t ).
19: Set τπ̃t ← τπ̃t + 1. � update pull count
20: Set τt,k ← τk,∀k ∈ I , and It ← I . � record pull count and active arm set
21: Set Y π̃t ← 1

nP
π̃t

+τπ̃t

(YQ,(π̃t ) + (nP
π̃t

+ τπ̃t − 1)Y π̃t ). � update estimated

reward
22: Set Y � ← maxk∈I{Y k − Uk(τk,B;D)}. � update largest reward lower

bound
23: else
24: Eliminate arm k from active arm set: I ← I \ {k}.
25: end if
26: end for
27: end if
28: end loop
29: Output: policy {π̃t }t≥1, arm pull counts {(τt,k)k∈It }t≥1, sets of active arms {It }t≥1.

Therefore, when the covariate shift is mild, Algorithm 1 can construct more accurate local
estimators for the reward functions. This aids in distinguishing the optimal arm, thereby re-
ducing the cumulative regret. Additionally, the confidence bound Uk(τ,B;D) in (9) for arm
k in bin B depends on the number of source samples nP

k (B;D) such that the covariate falls
within bin B and arm k is pulled. This number depends on the source marginal distribution
PX and, consequently, the transfer exponent γ . As γ approaches zero, nP

k (B;D) tends to
increase with high probability, leading to a tighter confidence bound Uk(τ,B;D). According
to the elimination criterion in Algorithm 1 and Procedure 1, this enhances the accuracy of
distinguishing the optimal arm, resulting in a reduction in the cumulative regret. Moreover,
Algorithm 1 guarantees that in each bin B , each arm k is played for a maximum of τ �

k (B;D)

times. As the upper bound on the number of pulls τ �
k (B;D) in (10) depends on the confidence
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bound Uk(τ,B;D), it is also influenced by the transfer exponent γ . As γ goes to zero, the
upper bound on the number of pulls τ �

k (B;D) decreases. Therefore, when the covariate shift
is slight, Algorithm 1 selects suboptimal arms less frequently, leading to a decrease in the
cumulative regret.

Finally, we note that Algorithm 1 takes the horizon length nQ as input that may be un-
known in practice. Fortunately, this issue can be circumvented by the well-known doubling
trick (see Auer et al. (1995)).

3.2. Minimax rate of convergence. We proceed to discuss the theoretical guarantees of
Algorithm 1. To begin with, Theorem 1 gives an upper bound on the regret of the Q-bandit.
The proof is postponed to Appendix B in the Supplementary Material (Cai, Cai and Li
(2024)).

THEOREM 1 (Upper bound). Assume that αβ ≤ d . Then the expected regret of the policy
π given by Algorithm 1 satisfies

sup

(K,β,α,γ,κ)

E
[
RnQ

(π)
] ≤ CnQ

(
nQ + (κnP )

d+2β
d+2β+γ

)− β(1+α)
d+2β ,(11)

where C > 0 is a constant independent of nQ and nP .

In addition, Theorem 2 below shows that the regret of Algorithm 1 matches the minimax
lower bound, thereby justifying Algorithm 1 is rate-optimal. The proof can be found in Ap-
pendix C in the Supplementary Material (Cai, Cai and Li (2024)).

THEOREM 2 (Lower bound). Assume that αβ ≤ d . Then one has

inf
π

sup

(K,β,α,γ,κ)

E
[
RnQ

(π)
] ≥ cnQ

(
nQ + (κnP )

d+2β
d+2β+γ

)− β(1+α)
d+2β ,(12)

where c > 0 is a constant independent of nQ and nP .

Here, the infimum is taken over the class of admissible policies obeying the selected arm πt

at time t depends only on observations prior to time t , that is, {(XQ
s ,πs, Y

Q,(πs))}s<t ∪{XQ
t }.

We now discuss several important implications.

• Theorems 1 and 2 together establish the minimax regret for transfer learning under the
covariate shift model when the number of arms K � 1:

inf
π

sup

(K,β,α,γ,κ)

E
[
RnQ

(π)
] � nQ

(
nQ + (κnP )

d+2β
d+2β+γ

)− β(1+α)
d+2β .(13)

• In the classical setting where one has no access to the source P -data, the minimax regret
is established in Perchet and Rigollet (2013), given by

inf
π

sup

(K,β,α)

E
[
RnQ

(π)
] � n

1− β(1+α)
d+2β

Q .(14)

We can see that (14) is a special case of (13) by setting nP = 0.
• Comparing the minimax regret (13) in the transfer learning setting with the minimax regret

(14) in the standard setting, it becomes evident that the incorporation of source data leads
to a faster convergence rate of the regret. The reduced regret quantifies the information
allowed to be transferred from the source data to the target bandit, with a precise charac-
terization of the dependence on the smoothness β , dimension d , transfer exponent γ and
exploration coefficient κ .
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• Due to the difference between the source and target distributions, it is reasonable to an-
ticipate that the value of the source data differs from that of the target data. This intuition

is elucidated in (13) where we can interpret (κnP )
d+2β

d+2β+γ as the effective sample size pro-
vided by the source data. Moreover, given that κ ∈ [0,1] and d+2β

d+2β+γ
≤ 1 for γ ≥ 0, the

minimax regret (13) further suggests that the samples from the source data set are always
inferior unless P = Q in the context of nonparametric contextual multi-armed bandits.

• We proceed to examine the roles of the parameters introduced for transfer learning. As
we intuitively discussed in Section 2, the challenge of transfer learning becomes more
formidable as the transfer exponent γ increases. This observation is validated theoretically
in (13), demonstrating that a smaller value of γ results in a faster convergence rate of the
regret.

• Shifting our focus to the exploration coefficient κ , we can see that the dependence of the
minimax rate (13) on κ underscores the importance of extensive exploration in the source
data in order to achieve reliable transfer learning. When κ = 0, the effective source sample
size is zero. To see this, let us consider a three-armed bandit problem where the policy
in the source domain exclusively selects arm 3. In such a case, even if the source sample
size nP were to go to infinity, which provides us with precise knowledge of the reward
function f3(x) of arm 3, we would still be confronted with a two-armed bandit problem,

with minimax rate of convergence of the regret given by n
1− β(1+α)

d+2β

Q . This indicates that
a substantial reduction in regret cannot be expected unless the source data set is highly
exploratory.

• We would like to remark that the minimax lower bound (12) in Theorem 2 is the same
as the one established for the classification setting in Kpotufe and Martinet (2021). This
means that even if we can observe the rewards generated by all the arms in each round, it
remains impossible to design a policy that can improve the regret upper bound (12) in terms
of nP and nQ. Intuitively, this implies that although we are faced with the challenge of
sequential decision-making, the hardness of nonparametric estimation ultimately dictates
the complexity of transfer learning for nonparametric contextual multi-armed bandits.

We conclude this section by comparing our work with some intimately connected prior
research in the literature on transfer learning. As mentioned earlier, the transfer exponent
used in the current paper was originally proposed in Kpotufe and Martinet (2021). Along
with its variants (see, e.g., Cai and Wei (2021), Pathak, Ma and Wainwright (2022)), they have
been broadly deployed in transfer learning for various supervised learning problems, where
the primary focus is on leveraging the source data set to develop optimal estimators for the
regression functions of interest. In contrast, the sequential decision-making nature of bandit
problems introduces new algorithmic and technical challenges in data integration compared
to these prior works. For example, in order to address the trade-off between exploration and
exploitation, it is essential not only to construct suitable reward function estimators but also
to utilize the source data intelligently to develop confidence intervals for their uncertainties.
Moreover, the samples for each arm are collected adaptively in the bandit setting. This results
in more complicated distributions of samples and reward function estimators, necessitating
more careful statistical analysis.

4. Adaptivity. The primary drawback of Algorithm 1 is its reliance on prior knowledge
of the smoothness parameter β and transfer parameters γ , κ , which are often unknown in
practical applications. Therefore, it is natural to ask if one can develop a data-driven algo-
rithm that achieves the minimax optimal rate of convergence while adapting to a wide range
of parameter spaces 
(K,β,α, γ, κ). However, it is widely acknowledged in the bandit lit-
erature that one cannot hope to develop a smoothness-adaptive algorithm that attains the
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minimax regret simultaneously over different classes of multi-armed bandits with varying
smoothness (Locatelli and Carpentier (2018), Gur, Momeni and Wager (2022), Cai and Pu
(2022b)). Additional structural assumptions on the reward functions are needed to achieve
smoothness adaptivity.

Given the general impossibility of adaptation, we focus on a setting where the reward
functions satisfy the self-similarity condition. This condition has been used for adaptive con-
fidence intervals in the nonparametric regression literature (Picard and Tribouley (2000),
Giné and Nickl (2010)) and the adaptive multi-armed bandit literature (Gur, Momeni and
Wager (2022), Cai and Pu (2022b)). In the remainder of this section, we first introduce the
self-similarity condition in Section 4.1 and subsequently present a data-driven algorithm with
theoretical guarantees in Section 4.2. As a side note, we believe it is also possible to develop
adaptive strategies for the bandits with shape-constrained reward functions (e.g., concavity),
and we defer the discussion to Section 5.

4.1. The self-similarity condition. For any function f (·) on X , bin B in X , and prob-
ability distribution λ over X , let Bf (·;λ) be the L2(λ)-projection of f onto the class of
piecewise-constant functions over B , namely

Bf (x;λ) := 1

λ(B)

∫
B

f (u)dλ(u)(15)

if λ(B) > 0, and Bf (x;λ) := 0 otherwise.
Recall that Bl denotes the partition of X that consists of bins with side length 2−l . We now

present the self-similarity condition as follows.

DEFINITION 3 (Self-similarity). Let f : X → R be a Hölder continuous function in
H(β,Cβ) with 0 < β ≤ 1. For any probability distribution λ and constants l0 ≥ 0, b > 0,
we say f is self-similar under λ with parameters l0 and b, if the following holds for any
integer l ≥ l0:

sup
B∈Bl

sup
x∈B

∣∣Bf (x;λ) − f (x)
∣∣ ≥ b2−βl.

In a nutshell, the self-similarity condition imposes a global lower bound on the approxima-
tion error of a function using piecewise-constant functions. Therefore, it can be viewed as a
complement to the Hölder smoothness condition, which implies an upper bound on the error.
We note that the difficulty of smoothness adaptation arises from the possibility of functions
being highly irregular on small scales, a scenario precluded by the self-similarity condition.
Interested readers are referred to Bull (2012), Nickl and Szabó (2016) for more in-depth dis-
cussions on the self-similarity conditions. Below, we present an example of the self-similar
functions.

EXAMPLE. Fix some constants a, c ∈ R. The function f (x) = axβ + c is self-similar
under the uniform distribution over [0,1] with parameters l0 = 0 and b = a

β+1 .

To verify this, let us fix an arbitrary l ≥ 0 and denote B0 = [0,2−l]. It is straightforward to
compute

sup
B∈Bl

sup
x∈B

∣∣Bf
(
x;Unif[0,1]) − f (x)

∣∣ ≥ ∣∣B0f
(
0;Unif[0,1]) − f (0)

∣∣
=

∣∣∣∣∫
B0

f (x)2l dx − c

∣∣∣∣ = a

∫ 2−l

0
xβ2l dx = a

β + 1
2−βl.

As a consequence, this shows that f (x) = axβ + c is self-similar by Definition 3.
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We now introduce the self-similarity assumption regarding the reward functions {fk}Kk=1
as follows.

ASSUMPTION 4 (Self-similarity). Assume that there exists some k ∈ [K] such that the
reward function fk is self-similar under both QX and PX |π=k with some parameters l0 ≥ 0
and b > 0.

We denote by 
(K,β,Cβ,α,Cα, q, q, γ, cγ , κ, l0, b) the class of nonparametric contex-
tual K-armed bandits that satisfy Assumptions 1–4 and Definitions 1–2. Whenever clear from
the context, the shorthand 
(K,β,α, γ, κ, l0, b) and 
 are used.

4.2. Adaptive algorithm. In this section, we present a two-stage adaptive transfer learn-
ing algorithm designed for contextual multi-armed bandits with self-similar reward functions.
In essence, this adaptive algorithm begins by computing a reasonably precise estimate β̂ for
the Hölder smoothness parameter β (see Procedure 2). It then uses β̂ as an input to a variant
of Algorithm 1, which guarantees a near-optimal statistical performance if given an accu-
rate smoothness estimate. A comprehensive description of this algorithm is summarized in
Algorithm 2.

In the first phase, our primary objective is to estimate the Hölder smoothness parameter β

under the self-similarity condition. The procedure is rooted in the critical insight that the local
piecewise-constant regression estimator of a function f over a bin B is sufficiently close to
its piecewise-constant projection Bf with high probability. Hence, when applying the lo-
cal piecewise-constant regression method to estimate the reward function, the self-similarity
condition ensures that the estimation bias does not decay too rapidly. Combined with the
Hölder smooth condition, this yields a tight bound on the estimation bias, which depends on
the smoothness parameter β . Even though we lack direct access to the estimation bias, we can
adapt Lepski’s method (Lepskii (1991, 1992, 1993), Lepski, Mammen and Spokoiny (1997))
suitably to obtain a reliable estimate by comparing the difference between estimators with
different bin side lengths. To this end, Procedure 2 first creates two partitions of the covariate
space by using bins of different sizes. Next, based on these two partitions, it collects indepen-
dent samples Dse to construct two separate local piecewise-constant regression estimators for
each reward function in each bin. Clearly, the estimation bias will be larger in the bin with
a larger side length. As long as we collect adequate samples such that the estimation bias
dominates the standard deviation, the maximal difference between the two regression esti-
mates is approximately of the same order as the larger estimation bias. This allows us to infer
the smoothness of the reward functions. In particular, with high probability, we can obtain
a smoothness estimate β̂ with statistical guarantee β − O(log2(log(n))/ log2(n)) ≤ β̂ ≤ β ,
which suffices to attain a near-optimal regret. The detailed smoothness estimation procedure
is presented in Procedure 2. It is worth noting that depending on the relationship between nP

and nQ, the samples for the smoothness estimation are collected from either the Q-bandit
or P -bandit. In the former case, the smoothness estimation phase only takes a vanishingly
small portion of the time horizon length nQ in the Q-bandit. Thus, the regret incurred during
this stage is negligible compared to the minimax regret. On the other hand, when nQ < nP ,
we split the source samples for the smoothness estimation and for the decision-making in
the target bandit separately. Similarly, the sample size used for the smoothness estimation is
considerably smaller than the total source sample size nP and has no impact on the minimax
regret.

With the smoothness estimate β̂ in hand, the second stage of Algorithm 2 takes it as an
input and operates in a manner similar to Algorithm 1. We would like to highlight several
pivotal differences. To begin with, as a portion of the source data may have been used in the
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Algorithm 2 Adaptive transfer learning algorithm for contextual multi-armed bandits

1: Input: arm set I , horizon length nQ, lower and upper bounds on smoothness β and β ,
upper bound on Lipschitz constant Cβ , upper bound on transfer exponent γ , P -data DP .

2: Run Procedure 2 (K , nQ, β , β , γ , DP ) to get the smoothness estimate β̂ , time steps sP
and sQ, and policy {πa

t }1≤t<sQ .

3: Split the source data DP
dm ← {(XP

i ,πP
i , YP,(πP

i ))}nP

i=sP
to aid in decision-making in the

Q-bandit.
4: Set LsQ ← {X }, and I(X ) ← I . � initialize partition and arm set
5: Initialize the policy π̃ (X ) by Procedure 1 (X ,I(X ), Û ,DP

dm).
6: Initialize N(X ) ← 0. � set time to 0 for policy π̃(X )

7: Initialize τk(X ) ← 0, and τ̂ �
k (X ;DP

dm) as in (18), ∀k ∈ I(X ). � initialize rounds and
round upper bounds

8: for t = sQ, . . . , nQ do
9: Draw a sample X

Q
t ∼ QX .

10: Find the bin B ∈ Lt such that X
Q
t ∈ B .

11: while |I(B)| > 1 and τk(B) ≥ τ̂ �
k (B;DP

dm), ∀k ∈ I(B) do � keep partitioning B

until reaching suitable scale
12: if τ̂ �

k (B;DP
dm) = 0, ∀k ∈ I(B) then � no exploration needed in B: discard

suboptimal arms

13: Set Y �(B;DP
dm) ← maxk∈I(B){YP

k (B;DP
dm) − Ûk(0,B;DP

dm)} � set largest
reward lower bound

14: Set I(B) ← {k ∈ I(B) : YP

k (B;DP
dm) + Ûk(0,B;DP

dm) ≥ Y �(B;DP
dm)}. �

update arm set
15: end if
16: for B ′ ∈ child(B) do
17: Set I(B ′) ← I(B). � assign remaining arms in B as initial arms in its

children
18: Initialize the policy π̃(B ′) by Procedure 1 (B ′,I(B ′), Û ,DP

dm).
19: Set N(B ′) ← 0. � initialize time for policy π̃(B ′)
20: Set τk(B

′) ← 0, and τ̂ �
k (B ′;DP

dm) as in (18), ∀k ∈ I(B ′). � initialize rounds
and round upper bounds

21: end for
22: Set Lt ← (Lt \ B) ∪ child(B). � replace B with its children in partition
23: Find the bin B ∈ Lt such that X

Q
t ∈ B .

24: end while
25: Set N(B) ← N(B) + 1. � update times X

Q
t ∈ B

26: Set πa
t ← π̃N(B)(B). � choose arm by policy π̃ (B)

27: Set I(B) ← ĨN(B)(B). � update arm set by policy π̃ (B)

28: Set τk(B) ← τ̃N(B),k(B),∀k ∈ I(B). � update numbers of rounds by policy π̃ (B)

29: end for
30: Output: policy πa = {πa

t }t≥1.

smoothness estimation process, Algorithm 2 utilizes a subset of the source data set DP
dm ⊂ DP

to assist in distinguishing the optimal arm in the target bandit. Additionally, note that the
confidence bound Uk(τ,B;D) (cf. (9)) used in Algorithm 1 requires the knowledge of the
unknown parameters γ and κ . To construct an adaptive procedure in Algorithm 2, we sub-
stitute it with the confidence bound Ûk(τ,B;D) defined as follows. Given a subset D of the
source data DP and the smoothness estimate β̂ returned by Procedure 2, for any nonnegative
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Procedure 2 Smoothness estimation procedure
1: Input: arm number K , horizon length nQ, lower and upper bounds on smoothness β and

β , upper bound on transfer exponent γ , P -data DP , tuning parameters C1, C2.
2: Set n ← nP ∨ nQ.
3: if nP > nQ then

4: Set l1 ←  β log2(n)

(d+2β+γ )2 �, l2 ← l1 +  1
d

log2(log(n))�, l3 ← β
β
l1 + 1

β
log2(log(n))�. �

bandwidths of reward function estimators

5: Set T ← C1Kn
β

d+2β log
d+γ

d (Kn)�. � sample size for smoothness estimation

6: Set Dse ← {(XP
i ,πP

i , Y
P,(πP

i )

i )}Ti=1, sP ← T + 1, sQ ← 1. � samples for
smoothness estimation

7: else
8: Set l1 ← β log2(n)

(d+2β)2 �, l2 ← l1 +  1
d

log2(log(n))�, l3 ← β
β
l1 + 1

β
log2(log(n))�. �

bandwidths of reward function estimators

9: Set T ← C1n
β

d+2β log(Kn)�. � sample size for smoothness estimation
10: for t = 1, . . . , T do
11: Draw a sample X

Q
t , pull arm πt uniformly at random from [K], and get the

reward Y
Q,(πt )
t .

12: end for
13: Set Dse ← {(XQ

t ,πt , Y
Q,(πt )
t )}Tt=1, sP ← 1, sQ ← T + 1. � samples for smoothness

estimation
14: end if
15: Define the grid M

M := {
x ∈ X : xi = (ki − 1/2)2−l3, ki = [

2l3
]
, i = [d]}.

16: for i ∈ {1,2}, k ∈ [K] do
17: Set D(k)

se ← {(Xt , Yt ) : (Xt ,πt , Yt ) ∈ Dse such that πt = k}.
18: for x ∈ M do
19: Find the bin Bi(x) ∈ Bli such that x ∈ Bi(x).
20: Define the reward function estimator f̂k(x;2−li ) := η̂k(x;Bi(x)), where

η̂k(x;B) :=
∑

(Xt ,Yt )∈D(k)
se

Yt1{Xt ∈ B}
1 ∨ ∑

(Xt ,Yt )∈D(k)
se

1{Xt ∈ B} ∀B ∈ Bli .(16)

21: end for
22: end for
23: Set b ← maxk∈[K] maxx∈M |f̂k(x;2−l1) − f̂k(x;2−l2)|.
24: Set β̂ ← − 1

l1
log(b) − C2

log2(log(n))

log2(n)
.

25: Output: smoothness estimate (β ∨ β̂) ∧ β , time steps sP and sQ, policy {πt }1≤t<sQ .

integer τ ≥ 0, bin B and arm k, we define

Ûk(τ,B;D) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

√√√√ 2

τ + nP
k (B;D)

log+
(

nQ|B|d
τ

)
∨ 2Cβ |B|β̂ if τ > 0,

2

√
2

nP
k (B;D)

log
(
n|B|d+2β̂

) ∨ 2Cβ |B|β̂ if τ = 0,

(17)
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where we recall the notation log+(x) := log(x) ∨ 1, n := nP ∨ nQ and 1/0 = ∞. The asso-
ciated nonnegative upper bound on play rounds is defined by

τ̂ �
k (B;D) := min

τ∈{0}∪N
{
τ : Ûk(τ,B;D) ≤ 2Cβ |B|β̂}

.(18)

It is noteworthy that the source sample size within each bin in the partition tree is highly
concentrated around its expectation, and that our choice of τ̂ �

k (B;D) achieves a balanced
bias-variance trade-off for estimating the reward functions in each bin. This allows Algo-
rithm 2 to automatically adapt to the unknown parameters γ and κ , leading to a near-optimal
regret.

Finally, it is worth mentioning that while Algorithm 2 requires an upper bound on the
transfer exponent γ , this information is solely utilized in the smoothness estimation stage
(i.e., Procedure 2). As previously discussed, our smoothness estimation procedure uses T

independent samples to evaluate the estimation bias of the local regression estimator under the
self-similarity condition. To guarantee a good statistical performance of the local estimator
in a bin with side length h, it is crucial to gather enough samples to balance the standard
deviation (of order (1/

√
T hd+γ ) with the estimation bias (of order hβ ). On the other hand,

we also need to ensure that the regret incurred during the smoothness estimation phase is
relatively small compared to the minimax regret. Therefore, achieving these two objectives
necessitates the knowledge of an upper bound on the transfer exponent γ . As an important
remark, once the smoothness parameter estimate β̂ is generated by Procedure 2, γ is no
longer used in the second phase of Algorithm 2.

We now present the theoretical guarantees of Algorithm 2. The proof is postponed to Ap-
pendix D in the Supplementary Material (Cai, Cai and Li (2024)).

THEOREM 3 (Upper bound). Let 0 < β < β ≤ 1 and γ ≥ 0. Suppose that κ � 1 and
αβ ≤ d . Then the policy πa given by Algorithm 2 satisfies that for all β ∈ [β,β] and γ ∈
[0, γ ],
(19) sup


(K,β,α,γ,κ,l0,b)

E
[
RnQ

(
πa)] ≤ C1nQ

(
nQ + (κnP )

d+2β
d+2β+γ

)− β(1+α)
d+2β logC2(nP + nQ),

for some constants C1 > 0 and C2 > 0 independent of nQ and nP .

All in all, Theorem 3 demonstrates that Algorithm 2 achieves the near-optimal minimax
regret simultaneously for all β ∈ [β,β] and γ ∈ [0, γ ] when K , κ � 1. In comparison with
Theorem 1, the regret upper bound (19) contains an additional logarithmic factor, which
can be viewed as the cost paid for smoothness adaptation. The condition κ � 1 essentially
assumes that the sample sizes corresponding to each arm in the source data are roughly of the
same order, where one can achieve the most effective transfer learning.

Moreover, Theorem 4 below shows that the self-similarity assumption does not reduce the
minimax complexity of the problem. The proof is deferred to Appendix C in the Supplemen-
tary Material (Cai, Cai and Li (2024)).

THEOREM 4 (Lower bound). Assume that αβ ≤ d . For any constant β ∈ (0,1] and l0 ≥
0, there exists a constant b > 0 that only depends on β , Cβ , q , q and d such that

inf
π

sup

(K,β,α,γ,κ,l0,b)

E
[
RnQ

(π)
] ≥ cnQ

(
nQ + (κnP )

d+2β
d+2β+γ

)− β(1+α)
d+2β ,(20)

for some constant c > 0 independent of nQ and nP .
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Similar to Theorem 2, the infimum is taken over the class of admissible policies. Recogniz-
ing that the self-similar function space 
(K,β,α, γ, κ, l0, b) is a subset of the general space

(K,β,α, γ, κ), Theorem 4 and 2 together demonstrates that the minimax regret under the
self-similar condition is the same as that in the general case. As a result, the self-similar
condition does not reduce the complexity of the problem.

REMARK 5. We would like to remark that Suk and Kpotufe (2021) has also studied non-
parametric contextual multi-armed bandits under the covariate shift model, with a particular
focus on Lipschitz reward functions (β = 1). However, several significant distinctions exist
between the analysis in our current work and that in Suk and Kpotufe (2021). For instance,
a central challenge in our work is achieving smoothness adaptivity. Integrating the source
data set to attain the minimax regret in the target bandit while at the same time adapting to
the unknown smoothness parameter requires a substantially more complicated algorithmic
design and technical analysis. Also, Suk and Kpotufe (2021) assumed the permission to col-
lect data from the source bandit, allowing for active exploration. In contrast, our work deals
with a fixed, precollected source data set. This limitation means that the source data might
have been generated by a certain behavior policy, which might not provide sufficiently many
data samples for important context-arm pairs. Effectively handling this limited data coverage
becomes a critical challenge that governs the statistical efficiency of transfer learning.

5. Discussion. In this paper, we have studied transfer learning for nonparametric con-
textual multi-armed bandits under the covariate shift model. We establish the minimax regret
that captures the amount of information transferred from the source domains to the target
domain. A novel transfer learning algorithm is proposed to attain the minimax regret. More-
over, we also develop a data-driven algorithm that achieves within a logarithmic factor of the
minimax regret while adapting to the unknown smoothness over a large class of parameter
spaces under the self-similarity assumption.

There are several possible extensions worth pursuing. To begin with, while the current
paper focuses on “rough” reward functions with smoothness parameter β ∈ (0,1], it is con-
ceivable to generalize the algorithmic ideas to the case β > 1—one can adaptively partition
the covariate space coupled with static multi-armed bandit procedures. However, we would
like to remark on several critical differences. First, in contrast to the case β ∈ (0,1] where
local piecewise constant estimators suffice to estimate the reward functions, one needs to
use more complicated local polynomial estimators in the case β > 1. In addition, in our
case β ∈ (0,1], as reward functions may be nondifferentiable, only samples close to the ob-
served covariate are informative about their corresponding reward functions. Consequently,
a fully localized learning strategy—running static multi-armed bandit procedures separately
within each bin—guarantees to attain the minimax regret. Unfortunately, this rate-optimality
no longer holds in the case β > 1. As the reward functions become smoother, we need to
leverage global information and utilize observations from neighboring bins to extrapolate the
reward functions efficiently, as introduced in Hu, Kallus and Mao (2022). Furthermore, since
samples are used across bins, this also leads to the statistical dependence between decision-
making in different bins. Therefore, the resulting policy is rather complicated and requires
more careful statistical analysis. We leave it to future investigation due to the space limit.

Additionally, the regret upper bound of our adaptive policy mismatches the minimax rate
by a logarithmic term. Whether this logarithmic factor is an inherent consequence of not
knowing smoothness or an artifact of the proof remains unclear. It has been widely recog-
nized in the literature on nonparametric function estimation that sharp adaptation is often
achievable under global integrated squared error and that a logarithmic penalty arises under
pointwise squared error. In contrast, when constructing confidence intervals, adaptation to
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unknown smoothness without additional structural assumptions is typically impossible un-
less self-similarity or shape constraints are present. Notably, it was shown in Cai, Low and
Xia (2013) that adaptive confidence intervals can be constructed for regression functions un-
der shape constraints, such as concavity, and are near optimal for every individual function.
Therefore, it is interesting to investigate further the cost of adaptation in the bandit prob-
lems, especially in the context of transfer learning. For example, developing adaptive transfer
learning procedures for nonparametric contextual multi-armed bandits with concave reward
functions presents an appealing direction.

Lastly, it is intriguing to study transfer learning for nonparametric contextual multi-armed
bandits under other models. For instance, one avenue for future study is the posterior drift
model, where the marginal distributions of the target and source bandits are identical whereas
the conditional reward distributions differ. In this framework, it is also of interest to character-
ize the similarity between the reward distributions, establish the minimax rate of convergence
that quantifies transferable information and develop data-driven adaptive algorithms.

SUPPLEMENTARY MATERIAL

Supplement to “Transfer learning for contextual multi-armed bandits” (DOI: 10.
1214/23-AOS2341SUPP; .pdf). In this supplementary material, we provide proofs of The-
orems 1–4, auxiliary lemmas and numerical experiments.
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