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TRANSFER LEARNING FOR COVARIANCE MATRIX ESTIMATION:
OPTIMALITY AND ADAPTIVITY

BY T. TONY CAI a,c, AND DONGWOO KIMb

Transfer learning, which leverages knowledge from an auxiliary source
dataset to improve performance in a primary target domain, has emerged as a
pivotal machine learning technique. In this paper, we consider minimax and
adaptive estimation of large bandable covariance matrices within the transfer
learning framework.

We first establish the minimax rate of convergence under the spectral norm
and propose a rate-optimal estimation procedure. Our findings reveal intrigu-
ing phase transition phenomena that highlight the effectiveness of transfer
learning and the use of source samples. We then address the problem of adap-
tation, establishing the adaptive rate of convergence up to a logarithmic factor.
Our results demonstrate that, in sharp contrast to conventional settings, the
cost of adaptation in transfer learning can be substantial in certain cases. We
propose a novel data-driven algorithm that dynamically adapts to unknown
model parameters. These theoretical insights are further validated by a sim-
ulation study, demonstrating the practicality and efficiency of the proposed
adaptive algorithm.

1. Introduction. In the realm of high-dimensional data analysis, understanding the co-
variance structure is fundamental. Covariance matrices underpin numerous statistical meth-
ods, including regression analysis, discriminant and clustering analyses, principal compo-
nent analysis, and Gaussian graphical models. However, their estimation in high dimensions
poses formidable challenges, primarily due to the rapid degradation of sample covariance
estimates. This issue has spurred extensive research efforts on estimation and inference for
high-dimensional covariance matrices. See Cai, Ren and Zhou [8] for an in-depth review of
large covariance matrix estimation and Cai [3] for a survey on global testing and large-scale
multiple testing for covariance structures.

To address the challenges posed by high dimensionality and motivated by scientific appli-
cations, several classes of structured covariance matrices—including bandable, sparse, and
spiked covariance matrices—have been studied in high-dimensional settings. In particular,
estimation of bandable covariance matrices, which capture the intrinsic ordering and met-
ric for variable indices that naturally emerge across various disciplines such as economics,
biology, phonetics, climatology, and engineering, has received significant attention in the lit-
erature. Noteworthy examples include financial market analysis [17], prostate cancer assess-
ment [34], phoneme examination [2], climate research [23], traffic prediction [21], and sonar
spectrum inspection [35, 45]. Several methods have been developed to exploit the bandable
structure, and minimax optimality has been investigated. See, for example, Bickel and Levina
[1], Cai, Zhang and Zhou [11], and Cai and Yuan [10].

Concurrently, transfer learning has emerged as a pivotal technique in machine learning. It
utilizes the knowledge acquired from an auxiliary source dataset to enhance the performance
of statistical tasks in a primary target domain. This approach has found important applica-
tions in various fields, including large language models [15], bioinformatics [32, 38], medical
imaging [27, 39], and recommendation systems [18, 30, 29]. It has thus established itself as a
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cornerstone for building efficient and high-performing machine learning models. For a more
detailed exploration, see Weiss, Khoshgoftaar and Wang [44] and Zhuang et al. [47]. In-
spired by these practical successes, there has been notable recent progress in the theoretical
quantification of statistical transfer learning. This includes work on nonparametric classifi-
cation [9, 19] and nonparametric regression [7, 26, 31], generalized linear models [25, 40],
contextual multi-armed bandits [4], and functional mean estimation [6].

When these two powerful concepts intersect, they create a synergy capable of address-
ing more complex and intriguing statistical problems. Integrating covariance matrix estima-
tion with transfer learning facilitates the utilization of different yet similar source datasets,
proving invaluable when target observations are limited or prohibitively expensive to collect.
Prominent examples include the analysis of Genotype-Tissue Expression (GTEx) data across
various organs [22, 33], electroencephalogram (EEG)-based brain-computer interface (BCI)
classification across different sessions and subjects [24, 28, 37, 46], and text classification us-
ing word co-occurrence patterns [36]. By transferring knowledge from source datasets, one
can significantly enhance the estimation accuracy of the target covariance matrix.

1.1. Formulation of the problem. Our discussion begins with an illustrative example of
covariance matrix estimation within the transfer learning context. We focus on phonemes,
which are the fundamental units of sound in language. The dataset, meticulously curated by
Hamooni and Mueen [14], comprises short audio recordings of 39 distinct English phonemes.
Each data point is represented as a periodogram vector, capturing sound intensity across
various frequencies.

Zooming in on a particular phoneme, say ZH, we are now given a target sample denoted as
{X(t)

1 , . . . ,X
(t)
nt }. These are d-dimensional random vectors that are independently and identi-

cally distributed. Within the context of our phoneme study, the dimensionality d corresponds
to the maximum frequency of the periodogram. Each observation has a target mean vector
µ(t) ∈ d and a target covariance matrix Σ(t) ∈ d×d. The conventional learning framework cen-
ters around finding an effective method to estimate the target covariance matrix based on the
available target sample.

An essential feature of the periodogram vector lies in its natural ordering from low to
high frequencies, which imparts a distinctive structure to the target covariance matrix Σ(t).
Entries near the diagonal denote covariances between intensities at proximate time points,
and they are thus anticipated to possess greater magnitudes. Conversely, entries distant from
the diagonal, representing covariances between widely separated time points, are expected to
approach zero. This covariance pattern is illustrated in Figure A.3 of Section A.12 by Bien,
Bunea and Xiao [2].

The described structure of the phoneme dataset aligns with a bandable structure, a concept
formulated by Bickel and Levina [1] and Cai, Zhang and Zhou [11]. We examine the away-
from-diagonal operator, denoted Ad, on the set of d× d matrices. Given a bandwidth u > 0,
the operator is defined by:

Ad(B;u) :=
(
bjk
(
|j − k|> u

))
j,k∈[d]

where B = (bjk)j,k∈[d] ∈ d×d.

Figure 2a in Section 2.1 provides a visual representation of the away-from-diagonal operator
Ad. It retains elements beyond a certain distance from the main diagonal. The bandwidth
u > 0 given in the operator specifies this threshold of distance. Under the bandable structure,
it is assumed that the magnitude of the away-from-diagonal part diminishes geometrically
as the bandwidth increases. We define the class Bα(M) for bandable covariance matrices
characterized by a decay rate α> 0 and radius M > 0 as follows:

Bα(M) :=
{

Σ ∈ +
d : ‖Ad(Σ;u)‖1 ≤Mu−α for any u > 0

}
,
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where +
d represents the collection of d × d symmetric and positive definite matrices and

‖ · ‖1 indicates the matrix `1-norm. We posit that the target covariance matrix conforms to
the bandable structure, meaning Σ(t) ∈ Bαt(Mt) for a target decay rate αt > 0 and a target
radius Mt > 0.

For covariance matrix estimation, we would encounter a significant challenge within the
conventional learning framework, particularly when it comes to the ZH phoneme. Data points
for this phoneme are typically derived from continuous speech recordings, such as the TIMIT
dataset provided by the Linguistic Data Consortium [13]. However, the phoneme ZH is the
least frequently occurring sound in everyday English speech [14, 16], making its recordings
scarce and the collection of additional data prohibitively expensive.

One way to address this limitation is to extend the conventional learning framework to
include the transfer learning strategy. This approach allows us to utilize recordings of other
phonemes that are different yet bear some similarities. For instance, both ZH and S phonemes
are categorized as obstruent and fricative sounds in the hierarchy of English phonemes
[12, 20]. Moreover, the phoneme S is significantly more common, ranking as the fifth most
frequent sound in English speech [14, 16]. Consequently, we can leverage the similarity and
larger sample size of the S phoneme to enhance the covariance matrix estimation for the ZH
phoneme.

From a statistical perspective, in addition to having an independently and identically dis-
tributed target sample {X(t)

1 , . . . ,X
(t)
nt } from a target distribution Q, we have an auxiliary

sample, {X(s)
1 , . . . ,X

(s)
ns }, comprising d-dimensional random vectors that are independently

and identically distributed from a source distribution P . The source sample is independent
of the target sample and is also characterized by its source mean vector µ(s) ∈ d and source
covariance matrix Σ(s) ∈ d×d. While our objective remains the same to find an optimal es-
timation method for the target covariance matrix Σ(t), our methodology may benefit from
leveraging the source sample alongside the target sample. Figure 1 gives an illustration of the
transfer learning strategy.

Tony Cai 55

Transfer Learning

Target sample 
!'()), …!+!

())~	&

Estimation under 
target distribution Q

Transfer 
Knowledge

……............................... Source distribution P

Source	sample
!'(,), …!+"

(,)~	2

Fig 1: An illustration for transfer learning.

The success of transfer learning is contingent upon the establishment of a substantive and
quantifiable relationship between the source and target samples. In this paper, we postulate
that:

• The source covariance matrix Σ(s) exhibits a bandable structure as well. Assuming a source
decay rate αs > 0 and a source radius Ms > 0, we have Σ(s) ∈ Bαs(Ms).

• The disparity matrix, ∆(s) := Σ(t)−Σ(s), representing the deviation between the target and
source covariance matrices, is sparse in terms of the matrix `1-norm. For a given disparity
threshold δ ≥ 0, we assume ‖∆(s)‖1 ≤ δ.
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1.2. Main results and our contribution. We first establish the minimax rate of conver-
gence. By letting n := nt + ns and αmax := αt ∨ αs, the minimax optimal rate under the
matrix `2-loss is expressed as:

Φαt,αs,δ(nt, ns, d) :=

(
n−2αmax/(2αmax+1) ∧ d

n

)
+

logd

n
(1)

+

(
n
−2αt/(2αt+1)
t ∧ d

nt
∧ δ2

)
+

(
logd

nt
∧ δ2

)
.

When there is no auxiliary source sample and no constraints on the disparity matrix, our
setting simplifies to the conventional learning framework and the corresponding minimax
rate Φαt,αs,∞(nt,0, d) reduces to the known result in the conventional setting as detailed in
Cai, Zhang and Zhou [11]. Moreover, by comparing the minimax rate to the baseline per-
formance, Φαt,αs,∞(nt,0, d), we can identify the necessary and sufficient conditions under
which the source sample and transfer learning are indeed effective. This identification reveals
interesting phase transition phenomena.

The disparity threshold δ emerges as a crucial factor in phase transition. Our finding indi-
cates that transfer learning loses its efficacy when δ exceeds a specific value. When δ is below
this critical value, the source sample size ns and the auto-smoothing effect become instru-
mental. Specifically, transfer learning proves advantageous with sufficient source samples,
while limited source samples necessitate the auto-smoothing benefit. Finally, an increase
in source sample size does not always enhance the performance of transfer learning. We
identify a secondary threshold for δ, below which a larger source sample size meaningfully
contributes to more effective transfer learning.

The minimax rate is achieved by our novel approach, termed the blockwise tridiagonal es-
timator. This method selectively utilizes either the target or pooled sample covariance matrix,
depending on the similarity between the target and source population covariance matrices.
The blockwise tridiagonal operator is then applied to the chosen sample covariance matrix,
retaining only the main, super, and subdiagonals from a blockwise standpoint. This approach
is logical, considering the bandable structure of the covariance matrix. In the end, the block-
wise tridiagonal estimator attains optimality by carefully choosing the appropriate block size
or bandwidth.

Although the blockwise tridiagonal estimator attains the minimax optimal rate, it depends
on the decay rates αt and αs as well as the disparity threshold δ, which are typically unknown
in practice. The second critical insight of this paper addresses the challenge of adaptation to
unknown parameters. We establish the following optimal adaptive rate of convergence in the
case where the model parameters are unknown:

ΦAD
αt,αs,δ(nt, ns, d) :=

(
n−2αmax/(2αmax+1) ∧ d

n

)
+

logd

n
(2)

+

(
ϕAD
αt,αs,δ(nt, ns, d)∧ d

nt
∧ δ2

)
+

(
logd

nt
∧ δ2

)
,

where it is further defined that αmin := αt ∧ αs and

(3) ϕAD
αt,αs,δ(nt, ns, d) :=

{
n
−2αt/(2αt+1)
t if ns ≤ nt,
n
−2αmin/(2αmin+1)
t if ns > nt.

It is worth noting that the adaptive rate of convergence, as given in Equation (2), is uni-
formly slower than the minimax rate presented in Equation (1). This inherent disparity is an
unavoidable aspect of adaptivity, as dictated by the principle of the adaptive rate. A fully data-
driven algorithm cannot achieve universal optimality across all models; it must inevitably
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sacrifice some degree of optimality for certain models and regimes. Furthermore, the adap-
tive rate essentially represents the minimum cost of adaptation associated with the absence
of knowledge of model parameters. An adaptive estimator that exceeds the adaptive rate for
certain models must fall short in others. Crucially, any performance gains from the adaptive
rate are consistently outweighed by the losses.

The cost of adaptation could be significant in certain settings. However, possessing addi-
tional information can refine the scope of the problem and potentially eliminate these costs.
For instance, as previously discussed, if it is known that ns = 0 and δ =∞, the problem sim-
plifies to the conventional learning framework under which adaptation can be realized at no
extra cost (see Cai and Yuan [10], for example). Beyond this basic case, we further explore
scenarios where adaptivity can be realized without additional costs.

The adaptive rate in Equation (2) is attained within a factor of logn by our proposed algo-
rithm, termed the adaptive tridiagonal block-thresholding estimator. This algorithm is entirely
data-driven and adjusts dynamically to unknown model parameters. The primary challenges
are optimal bandwidth selection and reduction of potential bias when incorporating the source
sample. The introduction of the superbanding operator addresses the former by partitioning
the high-dimensional bias into more manageable lower-dimensional segments. Meanwhile,
the latter challenge is tackled through disparity matrices and blockwise thresholding, both of
which are meticulously designed to minimize the adaptation costs.

1.3. Organization and notation. The rest of the paper is organized as follows. We con-
clude this section by introducing the basic notation. Section 2 explores optimal transfer learn-
ing for covariance matrix estimation, presenting the blockwise tridiagonal estimator and es-
tablishing the minimax rate of convergence. Section 3 focuses on adaptivity, introducing the
adaptive tridiagonal block-thresholding algorithm and establishing the adaptive rate of con-
vergence. Section 4 carries out numerical experiments to evaluate the effectiveness of the
proposed adaptive algorithm in various settings. Section 5 explores possible directions of fu-
ture research. Finally, the proofs of the main theorems and technical results are presented in
the Supplementary Material [5].

Throughout the paper, the primary asymptotic components are the sample sizes (nt, ns),
the dimensionality (d) and the disparity threshold (δ), while all other variables are treated
as constants. We conform to the conventional big-Oh(O), big-Omega(Ω) and big-Theta(Θ)
notations. For conciseness, we occasionally substitute these notations with the symbols .,
& and �, respectively. Additionally, we adhere to the convention of little-oh(o) notation and
simply write a� b or b� a to signify that a= o(b).

In addition, let us introduce several notations pertinent to covariance matrices. We define
the pooled covariance matrix Σ ∈ d×d, which represents the weighted average of the popu-
lation covariance matrices, Σ(t) and Σ(s). Concurrently, we define another disparity matrix
∆ ∈ d×d as the deviation of the target covariance matrix Σ(t) from the pooled covariance
matrix Σ. By letting n := nt + ns, these are mathematically represented as:

Σ :=
nt
n

Σ(t) +
ns
n

Σ(s), and ∆ := Σ(t) −Σ =
ns
n

∆(s).

We proceed to define the sample counterparts of the covariance matrices. The target sample
covariance matrix Σ̌(t) and the source sample covariance matrix Σ̌(s) are defined that for each
group indicator g ∈ {t, s},

Σ̌(g) :=
1

ng

ng∑
i=1

(
X

(g)
i − X̄

(g)
)(
X

(g)
i − X̄

(g)
)> where X̄(g) :=

1

ng

ng∑
i=1

X
(g)
i .
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Subsequently, we define the pooled sample covariance matrix Σ̌ as a weighted combination
of the target and source sample covariance matrices:

Σ̌ :=
nt
n

Σ̌(t) +
ns
n

Σ̌(s).

Finally, it is apparent to define the sample disparity matrices ∆̌(s) and ∆̌ as:

∆̌(s) := Σ̌(t) − Σ̌(s), and ∆̌ := Σ̌(t) − Σ̌ =
ns
n

∆̌(s).

2. Optimal transfer learning. In this section, our goal is to present an optimal method
for estimating the target covariance matrix Σ(t) within the transfer learning framework. In
particular, we first introduce a novel algorithm and evaluate its maximal risk in terms of the
squared matrix `2-norm, denoted as ‖ · ‖2, in Section 2.1. Subsequently, in Section 2.2, we
validate the optimality of the proposed approach by deriving a matching lower bound, thereby
establishing the minimax rate of convergence.

To explicate the concept of optimality in covariance matrix estimation, let us introduce a
statistical model, denoted by Pαt,αs,δ = Pαt,αsδ(Mt,Ms, ρ), which represents the collection
of joint distributions for the target and source observations. In particular, the target and source
samples are independently generated from the procedure outlined in Section 1.1. Moreover,
they conform to the uniform sub-Gaussianity assumption described as follows:

ASSUMPTION 1 (Uniform sub-Gaussianity). The target observations X(t)
1 , . . . ,X

(t)
nt and

the source observations X(s)
1 , . . . ,X

(s)
ns are uniformly sub-Gaussian random vectors with a

standard-deviation proxy ρ > 0. More specifically, we assume:∥∥a>(X(t)
1 −X

(t)
1

)∥∥
ψ2∥∥a>(X(s)

1 −X
(s)
1

)∥∥
ψ2

≤ ρ, for any unit vector a ∈ d,

where we denote by ‖ · ‖ψ2
the sub-Gaussian norm or Orlicz ψ2-norm. As per Vershynin [42]

and Wainwright [43], the sub-Gaussian norm of a random variable Z is defined by

‖Z‖ψ2
:= inf

{
r > 0 : eZ

2/r2 ≤ 1
}
.

2.1. Estimation method and minimax upper bound. We begin by introducing an operator
on matrices, called blockwise tridiagonal operator denoted by Td. This operator is defined
for an integer bandwidth u > 0 and can be expressed as follows. Here, bxc represents the
greatest integer not exceeding x ∈ .

Td(B;u) :=
(
bjk
(
|uj − uk| ≤ 1

))
j,k∈[d]

where

{
B = (bjk)j,k∈[d] ∈ d×d,
uj := 1 +

⌊
(j − 1)/u

⌋
, (j ∈ [d]).

Given a matrix B = (bjk)j,k∈[d] ∈ d×d and a bandwidth u > 0, we can segment B into
block matrices of size u× u. These blocks are sequentially denoted as Bxy (x, y = 1,2, . . .)
such that the block Bxy consists of every (j, k)-th entry, bjk, satisfying (uj , uk) = (x, y). It
is essential to note that the terminal blocks along each row and column may be smaller than
u× u, contingent upon the relationship between the bandwidth u and the dimension d.

The blockwise tridiagonal operator Td only retains elements satisfying |uj − uk| ≤ 1,
effectively preserving the main, super, and subdiagonals in a blockwise perspective. any
blocks beyond these specified diagonals are nullified by the operator Td. This mechanism
is graphically represented in Figure 2b. Consequently, the matrix, Td(B;u), produced by the
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blockwise tridiagonal operator can be viewed as a tridiagonal matrix from a block matrix
standpoint.

To facilitate subsequent discussions, we might extend the integer bandwidth. When the
bandwidth u > 0 is specified as a non-integer value, we will simply use its integer part, buc,
in the application of the blockwise tridiagonal operator. From now on, we will assume a
general bandwidth u > 0 when considering the blockwise tridiagonal operator Td( · ;u).

Ac
d(B;u)

Ad(B;u)

Ad(B;u)

(a) The output, Ad(B;u), of the
away-from-diagonal operator

B11 B12

B21 B22 B23

B32 B33 B34

B43 B44

. . .
...

· · ·

(b) The output, Td(B;u), of the
blockwise tridiagonal operator

Fig 2: A visual representation of important matrix operators

We are ready to introduce the estimator for the target covariance matrix Σ(t). The key con-
cept involves employing the blockwise tridiagonal operator Td with a suitable bandwidth.
Given that the bandable structure implies a geometric decay of the away-from-diagonal part,
it is logical to truncate the sample covariance matrices using the blockwise tridiagonal op-
erator. While the sample covariance matrices tend to underperform in high-dimensional sce-
narios, the individual blocks generated by the operator Td can preserve a low-dimensional
nature, provided the bandwidth is judiciously selected.

It is crucial to recognize in transfer learning that the inclusion of the source sample does
not invariably enhance performance. There should be a risk that the source sample may not
align with the target sample or could be adversarially generated to compromise the accuracy
of statistical inference. An intuitive approach involves selective inclusion based on any mea-
sure of similarity between the target and source samples. This strategy has been validated as
effective in various statistical challenges, including the contextual multi-armed bandit [4] and
the functional mean estimation [6]. Within our framework, the similarity is quantified by the
disparity threshold, δ. We can opt for either the target sample covariance matrix Σ̌(t) or the
pooled sample covariance matrix Σ̌ inside the blockwise tridiagonal operator Td, depending
on the magnitude of δ. The estimator suggested in Theorem 2.1 synthesizes these concepts
and achieves the rate Φ, as specified in Equation (1).

THEOREM 2.1 (Block tridiagonal estimator). Consider blockwise tridiagonal estimator
Σ̂(t) for the target covariance matrix Σ(t) as follows:

Σ̂(t) :=

Td(Σ̌
(t);u∗) if ntδ2 > (n

1/(2αt+1)
t ∧ d)∨ logd,

Td(Σ̌;v∗) if ntδ2 ≤ (n
1/(2αt+1)
t ∧ d)∨ logd,
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where the optimal bandwidths u∗, v∗ > 0 are judiciously selected such that:

u∗ � n1/(2αt+1)
t ∧ d and v∗ � n1/(2αmax+1) ∧ d.

The maximal risk of the blockwise tridiagonal estimator Σ̂(t) now satisfies:

sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 . Φαt,αs,δ(nt, ns, d),

as long as either of the following assumptions is true:

Assumption (a) logd≤ c1nt for a small enough constant c1 > 0.
Assumption (b) logd≤ c2n and δ ≤ c2 for a small enough constant c2 > 0.

According to the discussion following Theorem 2.2 , which presents a matching lower
bound, consistent estimation is feasible only if either Assumption (a∗) or Assumption (b∗)
does hold. Therefore, to ensure reliable estimation, it is essential to include analogous as-
sumptions, such as Assumption (a) or Assumption (b), in Theorem 2.1.

It should be emphasized that the transfer learning framework under the specific conditions,
ns = 0 and δ =∞, reduces to the conventional learning framework, as the source samples are
no longer available and the source population conveys no information to the target covariance
matrix. In such a scenario, the blockwise tridiagonal estimator introduced in Theorem 2.1 is
given by:

Σ̂(t) = Td(Σ̌
(t);u∗) where u∗ � n1/(2αt+1)

t ∧ d.

Given that the conventional learning problem for covariance matrix estimation has been
extensively studied, it presents an intriguing opportunity to compare our estimator with those
introduced in preceding research. Our blockwise tridiagonal estimator exhibits a comparable
structure with the tapering estimator proposed by Cai, Zhang and Zhou [11]. The principal
distinction lies in the thresholding type: our estimator employs a hard-thresholding strategy,
in contrast to the soft-thresholding approach utilized by the tapering estimator. Nonetheless,
both estimators achieve an identical rate of convergence, represented by Φαt,αs,∞(nt,0, d),
when operating under the optimal bandwidth u∗ of Theorem 2.1. Additionally, Cai, Zhang
and Zhou [11] demonstrate that Φαt,αs,∞(nt,0, d) is the minimax rate of convergence within
the conventional learning framework.

(4) Φαt,αs,∞(nt,0, d)�
(
n
−2αt/(2αt+1)
t ∧ d

nt

)
+

logd

nt
.

Bickel and Levina [1] also introduced an analogous estimator of hard-thresholding type,
known as the banding estimator. Instead of the blockwise tridiagonal operator Td, it utilizes
the banding operator, denoted by Ac

d and represented as the white area in Figure 2a. The
rationale behind their estimator is that the banding operator is complementary to the away-
from-diagonal operator Ad, satisfying the equation Ad(B;u) +Ac

d(B;u) =B for any square
matrix B ∈ d×d and bandwidth u > 0. However, the bandwidth they advocate in the banding
estimator is not optimal, resulting in a uniformly slower rate of convergence.

2.2. Matching lower bound. The following theorem characterizes a lower bound for the
minimax risk in estimating the target covariance matrix under the transfer learning paradigm.
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THEOREM 2.2 (Mimimax lower bound). Given any estimator Σ̂(t) of the target covari-
ance matrix Σ(t), we have

sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 &
(
n−2αmax/(2αmax+1) ∧ d

n

)
+

(
logd

n
∧ 1

)

+

(
n
−2αt/(2αt+1)
t ∧ d

nt
∧ δ2

)
+

(
logd

nt
∧ δ2 ∧ 1

)
.

According to Theorem 2.2, a consistent estimation is achievable only if at least one of the
following assumptions holds:

Assumption (a∗) logd� nt
Assumption (b∗) logd� n and δ� 1.

When either of these assumptions is fulfilled, the lower bound presented in Theorem 2.2
coincides exactly with the upper bound in Theorem 2.1. The upper and lower bounds together
yield the minimax rate of convergence, Φαt,αs,δ(nt, ns, d), as defined in Equation (1).

An essential inquiry arises concerning the effectiveness of the transfer learning and the
source sample. Our objective is to rigorously analyze the conditions under which, and the
extent to which, the transfer learning proves beneficial. What makes this analysis particularly
compelling is the presence of a phase transition under which the efficacy of transfer learning
undergoes a significant shift. The results are concisely encapsulated in Table 1.

TABLE 1
Does transfer learning offer benefits? If so, does increasing the source sample size offer benefits?

Minimal disparity
model (δ� δ∗1)

Moderate disparity model
(δ & δ∗1 and δ� δ∗2)

Strong disparity
model (δ & δ∗2)

Limited source
sampling regime

(ns . nt)

without auto-
smoothing benefit

No

No
with auto-

smoothing benefit
Yes / Yes Yes / NoAmple source

sampling regime
(ns� nt)

The disparity threshold δ plays a crucial role in the phase transition since it serves as a key
measure of similarity between the target and source covariance matrices. Let us define two
critical points δ∗1 . δ∗2 by

δ∗1 :=

(
n−

αmax
2αmax+1 ∧

√
d

n

)
+

√
logd

n
and δ∗2 :=

(
n
− αt

2αt+1

t ∧
√

d

nt

)
+

√
logd

nt
.

Depending on the level of the disparity threshold δ, we naturally classify our model into three
distinct categories: the minimal, the moderate and the strong disparity models as outlined in
Table 1.

Recall from Equation (4) that ΦLE := Φαt,αs,∞(nt,0, d) accords with the minimax rate of
convergence in the conventional learning scenario. It is noteworthy that the minimax rate Φ
must be no slower than ΦLE, as it is possible to construct an estimator that relies solely on
the target sample. Hence, the rate ΦLE serves as a baseline and can be regarded as the least
effective rate of convergence within the transfer learning framework.
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Our model experiences a notable transition at the critical point δ � δ∗2 , which dictates the
potential benefits of transfer learning compared to conventional learning. Specifically, under
the strong disparity model, characterized by δ & δ∗2 , the minimax rate of convergence aligns
exactly with ΦLE. Despite the availability of the source sample, the disparity threshold δ is
too substantial to facilitate the effective transfer of knowledge. Conversely, in the context of
the minimal or moderate disparity model, characterized by δ� δ∗2 , incorporating the source
sample presents an opportunity to enhance the accuracy of estimating the target covariance
matrix.

Given that the disparity threshold is sufficiently small as in the minimal or moderate dis-
parity models, the size of the source sample becomes a key factor in this enhancement. We
explore the necessary and sufficient conditions for the enhancement in two separate scenar-
ios: the ample and the limited source sampling regimes as presented in Table 1. Additionally,
a comparative analysis of these regimes reveals another phase transition phenomenon.

Within the ample source sampling regime where ns� nt does hold, it is readily verifiable
that the minimax rate of convergence diminishes more rapidly than the baseline rate ΦLE.
In other words, a substantial size of the source sample is conducive to effective transfer
learning, aligning with our expectations under the minimal or moderate disparity model. On
the contrary, under the limited source sampling regime, defined by ns . nt, the effectiveness
of the source sample may be compromised. Typically, the minimax rate of convergence aligns
with the baseline rate ΦLE. Nevertheless, the transfer learning can still benefit from the scarce
source sample if the following extra conditions are satisfied:

• The source covariance matrix exhibits an expedited decay, as indicated by αs >αt.
• The dimensionality is neither too small nor large, as n1/(2αs+1)

t � d� exp(n
1/(2αt+1)
t ).

These conditions give rise to the auto-smoothing effect, which allows the target covariance
matrix to be analyzed as if it possesses the source decay rate αs rather than the target decay
rate αt. If the source covariance matrix exhibits an expedited decay, the auto-smoothing now
facilitates the more accurate estimation for the target covariance matrix. Auto-smoothing is
akin to the concept of transferable smoothness described by Cai and Pu [7] in the context
of transfer learning for nonparametric regression. The dimensionality condition is equally
critical, ensuring that the improved decay rate effectively aids in estimation. Therefore, those
extra conditions are both essential and adequate to gain benefit from the auto-smoothing and
to ensure effective transfer learning under the limited source sampling regime as outlined in
Table 1.

Moving forward, our analysis now centers on regimes and models where transfer learning
proves advantageous. Pertaining to the magnitude of this advantage, a final phase transition is
observed at the critical point, δ � δ∗1 . Within the moderate disparity model, satisfying δ & δ∗1 ,
the minimax rate of convergence is simply established as δ2. Although the established rate
indicates an enhancement over the baseline rate ΦLE, the expansion of the source sample size
fails to accelerate the convergence rate as long as other conditions remain the same. On the
other hand, within the minimal disparity model, characterized by δ� δ∗1 , an increase in the
source sample size yields additional benefits. It can be demonstrated that the minimax rate of
convergence precisely matches the most efficient rate ΦME, defined as follows. By leveraging
a model with a negligible disparity threshold, we can extract greater benefits from the larger
source sample, leading to enhanced performance of estimation.

ΦME :=

(
n−2αmax/(2αmax+1) ∧ d

n

)
+

logd

n
.

Let us further examine the case where the minimax rate coincides with the most effective
rate ΦME. It is immediate that ΦME = Φαmax,αmax,0(nt, ns, d) holds, suggesting that the target
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and the source samples could be considered as originating from the same population. This
representation is underscored by the auto-smoothing effect, which arises from the condition
αt = αs = αmax. As we have discussed before, this effect equalizes the decay rates of the
target and source covariance matrices, ensuring both exhibit the fastest decay rate, αmax. Not
only that, another condition δ = 0 indicates that the source and target covariance matrices are
identical, effectively recasting the transfer learning framework into the conventional learning
framework with augmented sample size, n= nt+ns. While the source population may differ
from the target population, to estimate the target covariance matrix, the minimax rate of
convergence guarantees that they are fundamentally equivalent.

3. Adaptive transfer learning. While we have demonstrated in Section 2 that the block-
wise tridiagonal estimator, as described in Theorem 2.1, achieves the minimax convergence
rate Φ, its practical use is limited. The implementation of the blockwise tridiagonal estimator
necessitates knowledge of the model parameters, including decay rates αt and αs as well as
the disparity threshold δ, which are typically unknown in practice.

In this section, we aim to introduce a data-driven algorithm that automatically adapts to
unknown parameters over a broad range of parameter spaces, particularly αt, αs > 0 and
δ ≥ 0. However, it is important to recognize that in adaptive transfer learning, there is no free
lunch. The following proposition claims that no estimator can simultaneously attain both
adaptivity and optimality within the transfer learning context. This stands in stark contrast to
the conventional learning framework, where adaptive and optimal methods have been already
suggested (e.g. Cai and Yuan [10]).

PROPOSITION 3.1 (No free lunch in adaptive transfer learning). Consider an estimator
Σ̂(t) whose maximal risk is non-decreasing as a function of the source sample size:

ns 7→ sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 is monotonically decreasing.

Suppose that there exists a generic constant C1 > 0 satisfying:

(5) sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 ≤C1Φαt,αs,δ(nt, ns, d),

where the model Pαt,αs,δ and regime (nt, ns, d) meet the subsequent conditions:

(6)

ns > nt, 0<αs <αt, δ� n
−αt/(2αt+1)
t ,

n
1/(2αt+1)
t � d� exp

(
n

1/(2αs+1)
t ∧ (ntδ

2)
)
.

In this case, we can identify a generic constant c2 > 0 such that:

(7) sup
∈Pα0,α0,δ0

‖Σ̂(t) −Σ(t)‖22 ≥ c2n
2αsζ/(2αs+1)
t Φα0,α0,δ0(nt, n

1+ζ
s , d).

Although the optimal rate is given by Φ as discussed in Section 2, Proposition 3.1 delivers
a sobering message: no adaptive estimator cannot attain the optimal rate Φ. More specifically,
if any estimator Σ̂(t) achieves the minimax rate under a model Pαt,αs,δ and regime (nt, ns, d)

satisfying Equation (6), the same estimator Σ̂(t) should be sub-optimal under another model
Pα0,α0,δ0 and regime (nt, n

1+ζ
s , d) for any constant ζ > 0. In summary, Proposition 3.1 high-

lights the inherent trade-offs between adaptivity and optimality within the transfer learning
framework. Any adaptive estimator needs to compromise the optimal rate Φ or pay the cost
of adaptation.
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Having acknowledged this trade-off, our focus naturally shifts to the heart of the matter:
how can we minimize the compromise on the optimal rate Φ or the cost of adaptation in
the context of adaptive transfer learning? As an initial step, in Section 3.1, we introduce an
adaptive estimator and assess its maximal risk in terms of the squared matrix `2-norm. Sub-
sequently, in Section 3.2, we rigorously demonstrate that our proposed algorithm effectively
minimizes the cost of adaptation. By synthesizing insights from both sections, we establish
the adaptive rate of convergence.

3.1. Adaptive tridiagonal block-thresholding estimator. We will establish an adaptive
method for estimating bandable covariance matrices within the transfer learning framework.
Before diving into the primary algorithm, we define an important operator known as the
superbanding operator, denoted by Sd. Given two bandwidths u2 > u1 > 0, this operator is
formulated as:

Sd(B;u1, u2) :=
(
bjk
(
u1 < k− j ≤ u2

))
j,k∈[d]

where B =
(
bjk
)
j,k∈[d]

∈ d×d.

Recall that the banding operator Ac
d only maintains some specific regions around the main

diagonal, as illustrated in Figure 3a. The superbanding operator, Sd( · ;u1, u2), is configured
to pull out the superdiagonal of bandwidth (u2−u1), positioned just above and to the right of
the region pulled by the banding operator Ac

d( · ;u1). This functionality is graphically repre-
sented in Figure 3a, where the operator Sd( · ;u1, u2) preserves the elements within the grey
region while nullifying those in the white region. It is worth noting that the superbanding
operator Sd( · ;u1, u2) preserves a specific segment of the region that is also preserved by the
away-from-diagonal operator Ad( · ;u1).

Ac
d(B;u1)

Sd(B;u1, u2)

(a) The output, Sd(B;u1, u2), of the
superbanding operator

Ac
d(B;u)

Sd(B;u,2u)

Sd(B; 2u,4u)

Sd(B; 4u,8u)

(b) Approximation and partition of
the away-from-diagonal region

Fig 3: A key concept for adaptation: the superbanding operator Sd

Returning to the main problem of adaptivity, the blockwise tridiagonal estimator outlined
in Theorem 2.1 encounters two fundamental challenges in practice. The initial one involves
selecting the optimal bandwidths, a procedure intricately linked to the decay rates αt and αs.
This link becomes particularly outstanding when addressing the bias term or the away-from-
diagonal matrix Ad(Σ

(t);u) for a bandwidth u > 0. Given that the decay rates are typically
unknown in real-world scenarios, a data-driven method is required to control the bias. How-
ever, the away-from-diagonal matrix Ad(Σ

(t);u) intrinsically possesses a high-dimensional
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nature, unlike the blockwise tridiagonal matrix Td(Σ
(t);u). Directly replacing it with sample

covariance matrices thus leads to suboptimal performance.
To address this challenge, let us approximate the away-from-diagonal matrix Ad(Σ

(t);u)
with the superbanding matrix Sd(Σ

(t);u,2`
∗
u) for a suitably chosen integer `∗ ≥ 0. We

then divide it into smaller and more manageable segments by doubling the bandwidth of
the superbanding operator. This strategy not only encompasses the approximated area but
also reduces the approximation error when substituting with sample covariance matrices.
The outlined approach is both visually and mathematically elaborated in Figure 3b and the
following equation:

Ad(Σ
(t);u)≈Sd(Σ

(t);u,2`
∗
u) +S>d (Σ(t);u,2`

∗
u)

=

`∗∑
`=1

(
Sd(Σ

(t); 2`−1u,2`u) +S>d (Σ(t); 2`−1u,2`u)
)
.

On the other hand, as illustrated in Theorem 2.1, we have developed two blockwise tridiag-
onal estimators: one originated from the target sample covariance matrix and the other from
the pooled sample covariance matrix. The final estimator requires a selection technique based
on the disparity threshold δ, which introduces the second major challenge concerning adap-
tivity. Since the parameter δ is practically unknown, a data-driven strategy is necessary to
manage the disparity between the target and source covariance matrices. Block-thresholding
serves as a viable solution to achieve this goal.

We present the tridiagonal block-thresholding operator, denoted by Td, which is a block-
thresholding variant of the blockwise tridiagonal operator Td. To formally define this op-
erator, we consider the blockwise tridiagonal matrix Td(B;u) for a matrix B ∈ d×d and a
bandwidth u > 0. In accordance with its sub-matrix representation depicted in Figure 4a, we
establish the thresholded sub-matrices for a given threshold R> 0:

B̄ij :=Bij
(
‖Bij‖2 ≥R

)
for each sub-matrix Bij of Td(B;u).

The tridiagonal block-thresholding operator Td( · ;u,R) is now depicted in Figure 4b. It
mirrors the structure of the blockwise tridiagonal operator Td, with the distinction that each
sub-matrix Bij of Td(B;u) is substituted by its thresholded counterpart B̄ij . The tridiago-
nal block-thresholding operator reduces certain sub-matrices to zero, which are depicted as
white squares in Figure 4b. This contrasts with the representation of the blockwise tridiagonal
operator in Figure 4a, where all sub-matrices are gray squares.

B11 B12

B21 B22 B23

B32 B33 B34

B43 B44

. . .
...

· · ·

(a) Revisited: the output, Td(B;u), of the
blockwise tridiagonal operator

B̄11 B̄12

B̄21 B̄22 B̄23

B̄32 B̄33 B̄34

B̄43 B̄44

. . .
...

· · ·

(b) The output, Td(B;u,R), of the
tridiagonal block-thresholding operator

Fig 4: A key concept for adaptation: the tridiagonal block-thresholding operator Td
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Algorithm 1 Adaptive blockwise tridiagonal estimator for conventional learning

Require: Target sample {X(t)
1 , . . . ,X

(t)
nt }.

1: Compute the target sample covariance matrix Σ̌(t).
2: For any large enough constant λ > 0, solve the following optimization problem:

û := argmin
umin≤u≤umax

(
`u∑
`=1

‖Sd(Σ̌
(t); 2`−1u,2`u)‖2 + λρ2

√
u+ logd

nt

)
,

where we define umin = logd, umax =
(
(nt log−1 nt)∧ d

)
∨ logd and

`u := max{` ∈ + : 2`−1u≤ nt log−1 nt}.

3: Output the final estimator:

Σ̂(t) := T(Σ̌(t); û).

Algorithm 2 Adaptive tridiagonal block-thresholding estimator for transfer learning

Require: Target sample {X(t)
1 , . . . ,X

(t)
nt } and source sample {X(s)

1 , . . . ,X
(s)
ns }.

1: Compute the target and source sample covariance matrices, Σ̌(t) and Σ̌(s).
2: Define the pooled sample covariance matrix Σ̌ and sample disparity matrix ∆̌ by:

Σ̌ :=
nt
n

Σ̌(t) +
ns
n

Σ̌(s) and ∆̌ := Σ̌(t) − Σ̌.

3: For any large enough constant τ > 0, solve the following optimization problem:

v̂ := argmin
vmin≤v≤vmax

(
`v∑
`=1

‖Sd(Σ̌; 2`−1v,2`v)‖2 + τρ2

√
v+ logd

n

)
,

where it is defined that vmin = logd, vmax = (n log−1 n∧ d)∨ logd and

`v := max{` ∈ + : 2`−1u≤ n log−1 n}.

4: For any large enough constants ξ1, solve another optimization problem:

ŵ := argmin
wmin≤w≤wmax

(
`w∑
`=1

‖Sd(∆̌; 2m−1w,2mw)‖2 + ξ1ρ
2

√
w+ lognd

nt

)
,

where it is defined that wmin = logd, wmax = (nt log−1 nt ∧ d)∨ logd, and

`w := max{m ∈ + : 2m−1w ≤ nt log−1 nt}.

5: Output the final estimator:

Σ̂(t) :=

{
Td(Σ̌; v̂) +Td(∆̌; ŵ,Rŵ) if logd≤ nt log−1 nt,

Td(Σ̌; v̂) if logd > nt log−1 nt.

where the threshold Rw > 0 corresponding to the bandwidth w > 0 is defined as:

Rw := ξ2ρ
2

√
w+ lognd

nt
for any large enough constant ξ2 > 0.
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Building on the adaptation principles previously discussed, we shall introduce two distinct
methodologies for the adaptive estimation of the target covariance matrix: Algorithm 1 and
Algorithm 2. The necessity for two separate algorithms stems from the fact that integration of
the source sample does not always enhance performance in transfer learning. Analogous to
Theorem 2.1, Algorithm 1 exclusively leverages the target sample, while Algorithm 2 utilizes
both the target and source samples.

Central to both algorithms is an optimization step for identifying the adaptive bandwidth.
In Algorithm 1, we establish the adaptive bandwidth û for the target sample covariance ma-
trix. In Algorithm 2, we identify two adaptive bandwidths, v̂ and ŵ, for the pooled sample
covariance matrix and the sample disparity matrix, respectively. The objective function for
each optimization consists of two components: the bias term, approximated and segmented
by the superbanding matrices, and the penalty term, which increases as the bandwidth ex-
pands. Notably, these optimization problems are tractable, as the effective search space for
each objective function is the set of discrete integer bandwidths up to nt or n.

On the other hand, the tridiagonal block-thresholding operator Td is vital in Algorithm 2,
as opposed to Algorithm 1. Such a distinction arises because Algorithm 2 aims to integrate
the source sample, which requires addressing the potential bias in the process. Consequently,
we add an extra step to apply the tridiagonal block-thresholding operator to the sample dis-
parity matrix. It automatically adjusts for bias only when the disparity exceeds a predefined
threshold.

Ultimately, given that the integration of the source sample does not consistently improve
performance in transfer learning, we will carefully combine Algorithm 1 and Algorithm 2. As
outlined in Theorem 3.2, this combination must be adaptive as well, independent of unknown
model parameters. The final estimator is called the adaptive tridiagonal block-thresholding
estimator.

THEOREM 3.2 (Adaptive tridiagonal block-thresholding estimator). Consider the output
of Algorithm 1 and Algorithm 2, denoted by Σ̂

(t)
ADC and Σ̂

(t)
ADT, respectively. The following

estimator is then introduced:

Σ̂(t) :=

Σ̂
(t)
ADC if ns ≤ nt and logd≤ nt log−1 nt,

Σ̂
(t)
ADT otherwise.

The maximal risk of this estimator Σ̂(t) is bounded from above as follows:

sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 .
(
n−2αmax/(2αmax+1) ∧ d

n

)
+

logd

n

+

(
ϕAD
αt,αs,δ(nt, ns, d)∧ d

nt
∧ δ2

)
+

(
logn logd

nt
∧ δ2

)
,

provided either of the following assumptions is true:

Assumption (c) logd≤ c1n and logn≤ c1nt for a small enough constant c1 > 0.
Assumption (d) δ ≤C2 for a large enough constant C2 > 0.

The adaptive tridiagonal block-thresholding estimator, as we described in Theorem 3.2,
is entirely data-driven. This includes Algorithm 1 and Algorithm 2, along with the criterion
for their selection. As evidenced by Theorem 3.2, this estimator achieves the adaptive rate
ΦAD, up to a factor of logn, as explicated in Equations (2) and (3). Our next step involves
a thorough analysis of the adaptive rate ΦAD and its comparison with the corresponding
minimax rate Φ.
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When both conditions ns = 0 and δ =∞ are met, the transfer learning paradigm simplifies
to the conventional learning framework, as we have discussed following Theorem 2.1. In this
situation, the adaptive tridiagonal block-thresholding estimator in Theorem 3.2 corresponds
to the result of Algorithm 1. Moreover, as indicated by Theorem 3.2, this estimator achieves
the minimax rate of convergence under the conventional learning framework:

ΦAD
αt,αs,∞(nt,0, d)�Φαt,αs,∞(nt,0, d).

Given the comprehensive analysis of the adaptive covariance matrix estimation in the con-
ventional learning setting, it offers a valuable chance to benchmark our estimator against
those established in prior studies. Cai and Yuan [10] have conducted an in-depth study on the
adaptive estimation of bandable covariance matrices within the same context, culminating
in the development of a block-thresholding estimator. It has been demonstrated to be data-
driven and achieve the optimal rate over a broad collection of bandable covariance matrices in
the conventional setting. However, its accessibility is hindered by the complex nature of the
sub-matrix constructions. On the contrary, the proposed Algorithm 1 produces the blockwise
tridiagonal matrix with a more straightforward interpretation, even though the optimal band-
width is selected via a sophisticated optimization process. Therefore, the adaptive tridiagonal
block-thresholding estimator represents a logical and more user-friendly advancement in the
realm of transfer learning.

Fig 5: Comparison between the adaptive rate ΦAD and the minimax rate Φ

It is significant to highlight that the adaptive rate ΦAD is slower than the minimax rate Φ
if and only if all the conditions specified in Equation (6) hold. When our model and regime
satisfy these conditions, both rates can be expressed in the following manner:

Φαt,αs,δ(nt, ns, d)� n−2αt/(2αt+1)
t +

(
logd

nt
∧ δ2

)
,

ΦAD
αt,αs,δ(nt, ns, d)�

(
n
−2αs/(2αs+1)
t ∧ d

nt
∧ δ2

)
.

In the context at hand, Figure 5 illustrates the discrepancy between the adaptive rate ΦAD

and the minimax rate Φ, with the former depicted in dark green curve and the latter in light
green curve. The graphical representation considers the dimension d as a variable while the
sizes of the target and the source sample, nt and ns, remain constant. As we have discussed in
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Proposition 3.1, this discrepancy represents an essential compromise to tackle the challenges
of adaptivity within our transfer learning framework. The shaded green region in Figure 5
emphasizes that the adaptive tridiagonal block-thresholding estimator falls short of achieving
the optimal rate of convergence. This region therefore serves as a visual representation of the
cost of adaptation, an indispensable investment to ensure that our estimation remains flexible
across a diverse spectrum of models.

We turn our attention to the underlying reasons behind the observed discrepancy between
the adaptive rate ΦAD and the minimax rate Φ. This discrepancy hinges on the term ϕAD, as
defined in Equation (3). Upon closer examination, we find that ϕAD gives a sub-optimal rate
when there are more source observations than target observations:

ϕAD
αt,αs,δ(nt, ns, d) = n

−2αmin/(2αmin+1)
t , if ns > nt.

In this scenario, integrating the source sample becomes essential by adaptively handling the
disparity matrix ∆(s) to achieve the optimal rate of convergence. Nonetheless, this dynamic
process introduces an intriguing phenomenon known as auto-unsmoothing, as reflected in
the behavior of ϕAD. Remarkably, the target covariance matrix behaves as if it possesses the
decay rate of αmin, even if its true decay rate αt may be more rapid than αmin. This stands in
stark contrast to the auto-smoothing effect delineated in Section 2.2.

The condition αs < αt, as expressed in Equation (6), now becomes pivotal. It serves as
the gateway to incurring the cost of adaptation through auto-unsmoothing. The remaining
conditions in Equation (6), regarding the disparity threshold δ and dimension d, reserve the
impact of auto-unsmoothing and induce the discrepancy between two rates, ΦAD and Φ.

3.2. Adaptive lower bound. We are well aware, thanks to Proposition 3.1, that no adap-
tive estimator can achieve optimality; it is inevitable to compromise the optimal rate Φ or pay
the cost of adaptation. It is now reasonable to ask whether this cost is effectively minimized
by the adaptive tridiagonal block-thresholding estimator. Astonishingly, while there may ex-
ist estimators that outperform the proposed approach, it comes at a considerable expense. The
subsequent theorem provides a mathematical rationale for this assertion.

THEOREM 3.3 (Adaptive lower bound). Consider an estimator Σ̂(t) whose maximal risk
is non-decreasing as a function of the source sample size:

(8) ns 7→ sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 is monotonically decreasing.

For this estimator, we can assert the existence of two sufficiently small constants c1, c2 > 0
such that the subsequent statement is true: if the estimator Σ̂(t) attains the following maximal
risk under some model Pαt,αs,δ and some regime (nt, ns, d):

(9) sup
∈Pαt,αs,δ

‖Σ̂(t) −Σ(t)‖22 ≤ c1ΦAD
αt,αs,δ(nt, ns, d),

then we can identify another model Pα0,α0,δ0 such that

(10) sup
∈Pα0,α0,δ0

‖Σ̂(t) −Σ(t)‖22 ≥ c2n
2αsζ/(2αs+1)
t ΦAD

α0,α0,δ0(nt, n
1+ζ
s , d),

under the regime (nt, n
1+ζ
s , d) for any constant ζ > 0.

In light of Theorem 3.3, any sensible estimator for the target covariance matrix is expected
to meet the monotonicity assumption as outlined in Equation (8). According to the premise in
Equation (9), within certain models and regimes, this estimator could realize a more rapid rate
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of convergence compared to the adaptive rate ΦAD at a minimum by the order of a constant.
However, as stipulated by Equation (10), within an alternate model and regime, the given
estimator must yield a slower rate of convergence relative to the adaptive rate ΦAD at least
by some polynomial order of nt. In summary, any reasonable attempt to refine the adaptive
rate ΦAD comes with considerable trade-offs.

By integrating the insights from Theorem 3.3 with those from Theorem 3.2, the rate ΦAD

can be rightfully termed as the adaptive rate of convergence over the class of entire models,
{Pαt,αs,δ : αt, αs > 0, δ ≥ 0}, in accordance with the definition provided by Tsybakov [41].

(i) An estimator Σ̂(t) attains the convergence rate ΦAD. In particular, Theorem 3.2 introduces
the adaptive tridiagonal block-thresholding estimator, which achieves the rate ΦAD up to
the factor of logn.

sup
αt,αs>0
δ≥0

sup
∈Pαt,αs,δ

(
ΦAD
αt,αs,δ(nt, ns, d)

)−1 ‖Σ̂(t) −Σ(t)‖22 ≤O(logn).

(ii) We consider an alternative rate of convergence, denoted as Φ̃AD, such that the mapping
ns 7→ Φ̃AD

αt,αs,δ
(nt, ns, d) is monotonically decreasing and the following is satisfied. These

assumptions suggest the potential to devise a novel methodology for estimating the target
covariance matrix that achieves the given rate Φ̃AD across the entire spectrum of models.

sup
αt,αs>0
δ≥0

inf
Σ̂(t)

sup
∈Pαt,αs,δ

(
Φ̃AD
αt,αs,δ(nt, ns, d)

)−1 ‖Σ̂(t) −Σ(t)‖22 ≤O(1).

Suppose that within a certain model Pαt,αs,δ , this alternative rate Φ̃AD is more rapid rate
than the adaptive rate ΦAD. From a mathematical standpoint,

(11)
Φ̃AD
αt,αs,δ

(nt, ns, d)

ΦAD
αt,αs,δ

(nt, ns, d)
→ 0, as nt, ns→∞.

In this context, Theorem 3.3 guarantees the identification of an alternative model Pα0,α0,δ0

where the alternative rate Φ̃AD is slower than the adaptive rate ΦAD. In particular, any
attempt to refine the adaptive rate ΦAD for some model Pαt,αs,δ comes with considerable
trade-offs. This includes a disproportionately larger loss in the model Pα0,α0,δ0 compared
to the gains in the model Pαt,αs,δ under the identical regime:

(12)
Φ̃AD
α0,α0,δ0

(nt, n
1+ζ
s , d)

ΦAD
α0,α0,δ0

(nt, n
1+ζ
s , d)

·
Φ̃AD
αt,αs,δ

(nt, n
1+ζ
s , d)

ΦAD
αt,αs,δ

(nt, n
1+ζ
s , d)

→∞, as nt, ns→∞,

for any constant ζ > α−1
s (2αt + 1)−1(αt − αs). In fact, we have ζ > 0 because αt > αs

is a necessary condition for the model Pαt,αs,δ to fulfill the assumption in Equation (11).

The concept of adaptive rate of convergence introduces a distinct form of optimality among
adaptive estimators. We can now assert that the cost of adaptation associated with the adap-
tive tridiagonal block-thresholding estimator, as introduced in Theorem 3.2, is inherently
minimal. Any effort to reduce this cost within a particular model inevitably results in a sig-
nificantly increased cost within another model. In conclusion, the suggested estimator stands
out as a superior estimation method within our framework, supported by the adaptive rate of
convergence, ΦAD.

On the other hand, exploring scenarios where adaptation incurs no cost presents an in-
triguing avenue of research. As previously established, the adaptive rate ΦAD coincides with
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the minimax rate Φ if and only if at least one condition specified in Equation (6) is violated.
Consequently, we can investigate several sufficient conditions and examine their practical
implications. This study not only enhances our theoretical understanding but also provides
valuable insights into the feasibility of applying our estimator in various practical contexts.

(Scenario I: ns ≤ nt)
This regime would be perceived as an extension of the conventional learning framework
which parallels the transfer learning framework under the supplementary conditions of
ns = 0 and δ =∞. Analogous to the conventional learning framework, we achieve the
adaptivity without incurring additional costs, as the integration of the source sample is
unnecessary. Nevertheless, the condition ns ≤ nt restricts the core potential of transfer
learning—a framework that leverages an augmented sample size to enhance estimation
accuracy.

(Scenario II: αt ≤ αs)
Within this model, the adaptive incorporation of the source sample remains unaffected by
auto-unsmoothing. In particular, due to the condition αmin = αt, we can treat the target
covariance matrix as possessing its true decay rate, αt. As a consequence, the term ϕAD

in the adaptive rate consistently yields the optimal rate, allowing us to benefit from cost-
free adaptivity. This model is particularly pragmatic when the source covariance matrix
demonstrates faster decay as one moves away from the diagonal.

ϕAD
αt,αs,δ(nt, ns, d) = n

−2αt/(2αt+1)
t , under Scenario II.

(Scenario III: δ ≤Cδn
−αt/(2αt+1)
t for any constant Cδ > 0)

This model is applicable when one reasonably assumes that the target covariance matrix
aligns closely with the source covariance matrix. In this context, auto-unsmoothing does
not adversely impact adaptive estimation. Exploiting the proximity between the target and
source covariance matrices, the target covariance matrix is invariably treated as possessing
its true decay rate, αt. As a result, adaptivity can be achieved for free.

ϕAD
αt,αs,δ(nt, ns, d)∧ δ2 � n−2αt/(2αt+1)

t ∧ δ2, under Scenario III.

(Scenario IV: d≤Cdn
1/(2αt+1)
t or logd≥Cdn

1/(2αs+1)
t for any constant Cd > 0)

In this regime, the dimension d is either too small or too large relative to the target sample
size. Analogous to other scenarios, there is no cost of adaptation here, as the decay rate
does not influence the optimal rate of convergence. Importantly, this sufficient condition
is independent of the source sample size. The cost of adaptation arises primarily from the
auto-unsmoothing effect, which is closely tied to the target covariance matrix.

4. Numerical experiments. In this section, we evaluate the numerical performance and
practical applicability of the data-driven adaptive estimator in Theorem 3.2, which is formu-
lated based on Algorithm 1 and Algorithm 2. Notably, this estimator is characterized by its
computational efficiency and straightforward implementation. We substantiate these charac-
teristics through an extensive simulation study.

We consider the target and source covariance matrices as follows:

Σ(t) :=
(
σ

(t)
jk

)
j,k∈[d]

where σ(t)
jk :=

{
1 if j = k,

Ct|j − k|−3ξ
(t)
jk if j 6= k,

Σ(s) :=
(
σ

(s)
jk

)
j,k∈[d]

where σ(s)
jk :=

{
1 if j = k,

σ
(t)
jk +Cs|j − k|−2ξ

(s)
jk if j 6= k.
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In this context, ξ(t)
jk and ξ(s)

jk (1 ≤ j < k ≤ d) represent independent Rademacher variables

with ξ(t)
jk = ξ

(t)
kj and ξ(s)

jk = ξ
(s)
kj (j, k ∈ [d]). The constant Ct is set at 0.1, while the other

constant Cs > 0 is adjusted in accordance with the disparity threshold δ := ‖Σ(t) − Σ(s)‖1.
Notably, the target covariance matrix Σ(t) exhibits a target decay rate of αt = 2, whereas
the source covariance matrix Σ(s) presents a source decay rate of αs = 1. This configuration
merits careful attention as the condition αs < αt introduces additional challenges, including
the cost of adaptation, in the estimation of the target covariance matrix.

The target sample size nt and the dimensionality d remain fixed at (nt, d) = (50,50),
reflecting their non-critical role in the effectiveness of transfer learning. Our investigation
instead includes various combinations of the source sample size ns and the disparity thresh-
old δ. The source sample size is assessed at ns ∈ {50,100,200,400,800}, and the disparity
threshold is evaluated at δ ∈ {0,0.1,0.4,0.7,1,1.3}. Importantly, we introduce the scenario
(ns, δ) = (0,∞) for comparative analysis. This scenario represents the conventional learning
paradigm and thus, establishes the baseline performance for our simulation study.

For each specified configuration, we repeat 1,000 simulations to generate target and source
samples from mean-zero Gaussian distributions. Upon each simulated dataset, we employ the
adaptive tridiagonal block-thresholding estimator, as described in Theorem 3.2, and calculate
its squared matrix `2-loss. The comprehensive results are visually represented in Figure 6,
which unveils several intriguing patterns and corroborates our theoretical findings.
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Fig 6: The results of numerical experiments under αt = 2 and αs = 1

First of all, it is observed that when δ = 1.3, transfer learning fails to demonstrate any
enhancement over the baseline scenario, where (ns, δ) = (0,∞). This lack of improvement
persists despite an increase in the source sample size ns. Due to the substantial discrepancy
between the target and source covariance matrices, the source sample fails to provide any
pertinent information for the estimation of the target covariance matrix. This phenomenon
can be interpreted within the strong disparity model, which inherently limits the utility of
transfer learning as detailed in Table 1.

Our theoretical framework suggests that adaptivity across the full spectrum of models re-
quires a compromise on the optimal rate of convergence within certain models. In particular,
the model characterized by δ = 1.3 is quite close to the compromised models, as detailed in



TRANSFER LEARNING FOR COVARIANCE MATRIX ESTIMATION 21

Equation (6). Nevertheless, as depicted in Figure 6, the performance of the adaptive tridiag-
onal block-thresholding estimator under δ = 1.3 does not markedly deteriorate compared to
the baseline scenario of (ns, δ) = (0,∞). This observation implies that, in practical terms,
the cost associated with adaptation may not be as substantial as theorized.

Conversely, when δ is set below 1.3, Figure 6 exhibits an evident improvement relative
to the baseline scenario, where (ns, δ) = (0,∞). This improvement amplifies as the source
sample size ns expands or as the disparity threshold δ diminishes. Remarkably, the model’s
performance at δ = 0.1 is nearly indistinguishable from that at δ = 0, suggesting that the
source sample generated with δ = 0.1 is as potent as one with δ = 0. These empirical findings
are consistent with our theoretical assertions and validate in practice the effectiveness of the
adaptive tridiagonal block-thresholding estimator.

5. Discussions. This paper explores minimax and adaptive estimation of high-dimensional
bandable covariance matrices within the transfer learning framework. We establish the min-
imax rate of convergence under the squared spectral norm loss and introduce a blockwise
tridiagonal estimator that achieves the optimal rate. The minimax rate reveals intriguing
phase transition phenomena, highlighting the effectiveness of transfer learning, and the uti-
lization of source samples. Conversely, the adaptive rate of convergence shows that, unlike in
conventional learning where the minimax optimal rate can be adaptively achieved, the cost of
adaptation in transfer learning can be substantial in certain cases. Furthermore, we develop a
novel data-driven algorithm that automatically adapts to unknown parameters.

Our study focuses on estimation under the squared spectral norm loss. In conventional
settings, bandable covariance matrix estimation has been investigated under other error mea-
sures, including the matrix `1 norm, Frobenius norm, and more general Bregman divergences.
It would be interesting to explore the estimation of bandable covariance matrices under these
error measures within the transfer learning framework.

As mentioned in the introduction, several classes of structured covariance matrices, in-
cluding sparse and spiked covariance matrices, have been studied in the conventional high-
dimensional settings. Extending transfer learning to the estimation of these types of covari-
ance matrices is a promising area for future research. Another interesting direction is the
estimation of the bandable precision matrix, the inverse of the covariance matrix, within the
transfer learning framework.

These topics are left for future investigation. We anticipate that the framework, insights,
and theoretical results presented in this paper will serve as valuable resources for subsequent
studies in this domain.

Funding. The research was supported in part by NIH grants R01-GM123056 and R01-
GM129781.

SUPPLEMENTARY MATERIAL

Supplement to “Transfer Learning for Covariance Matrix Estimation: Optimality
and Adaptivity”
(doi: 0000000; .pdf). This supplementary material contains the complete proofs of the main
theorems and technical results presented in the paper titled “Transfer Learning for Covariance
Matrix Estimation: Optimality and Adaptivity.” The structure of the material is as follows.
Supplementary Material A begins by introducing some fundamental notations and then han-
dles the proof of main theorems: Theorem 2.1–2.2, Proposition 3.1 and Theorem 3.2–3.3.
Next, Supplementary Material B covers the proof of technical results concerning the opti-
mality arguments: Proposition A.1–A.2, Lemma A.4 and Lemma B.1–B.8. Lastly, Supple-
mentary Material C includes the proofs of technical results relevant to adaptivity arguments
such as Proposition A.5–A.8, Proposition C.1–C.5 and Lemma C.6–C.8.
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