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Abstract

Transfer learning provides a powerful tool for incorporating related data into a
target study of interest. In epidemiology and medical studies, the classification of a
target disease could borrow information across diseases and populations. In this work,
we consider transfer learning for high-dimensional generalized linear models (GLMs).
A novel algorithm, TransGLM, that incorporates data from the target study as well
as the auxiliary studies is proposed. Minimax rate of convergence for estimation is
established and the proposed estimator is shown to be rate-optimal.

Statistical inference for the target regression coefficients is also studied. Asymp-
totic normality for a debiased estimator is established and confidence intervals are
constructed. Numerical studies show significant improvements in estimation and in-
ference accuracy. Proposed methods are applied to a real data study concerning the
classification of colorectal cancer using microbiomes, and are shown to enhance the
classification accuracy in comparison to the single-task methods.
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1 Introduction

Generalized linear models (GLMs) are widely used in many areas of statistical applica-

tions (Hastie et al., 2009). In genetic applications and other medical studies, the number

of covariates can be quite large and high-dimensional GLMs are frequently adopted for

classifying diseases and health-related outcomes. In the age of big data, the availability

of public datasets makes it possible to improve the learning performance of a new study

by incorporating information from the existing ones. This is the goal of transfer learning,

which aims to incorporate the knowledge from different but related studies to enhance the

accuracy of the target study of interest (Torrey and Shavlik, 2010). Transfer learning has

been successfully applied in a range of different fields, including pattern recognition, natural

language processing, and drug discovery (Pan and Yang, 2009; Turki et al., 2017; Bastani,

2018). In particular, transfer learning for the GLMs has been used in image classification

and disease diagnosis (Hosny et al., 2018; Sevakula et al., 2018). However, little is known

about their statistical guarantees.

In this paper, we study transfer learning for high-dimensional GLMs in the setting

where the data are available from a target study and multiple auxiliary studies. In the

target study, we observe n0 i.i.d. samples x
(0)
i ∈ Rp and y

(0)
i ∈ Y ⊆ R, i = 1, . . . , n0 drawn

from a GLM with parameter β ∈ Rp. The negative log-likelihood for the target data is

L(0)(β) =

n0∑
i=1

{ψ((x
(0)
i )>β)− y(0)

i · (x
(0)
i )>β}, (1)

where ψ is the link function that satisfies certain smoothness conditions. Additionally, we

have observations from K different auxiliary studies. For k = 1, . . . , K, let (x
(k)
i , y

(k)
i ),

i = 1, . . . , nk, denote the observations from the k-th study drawn from a GLM with the

parameter w(k) ∈ Rp and link function ψ. The similarity between the k-th study and

the target study is captured by the contrast vector δ(k) = w(k) − β. The smaller the
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magnitude of δ(k), the higher the similarity. Let h denote the similarity level such that

max1≤k≤K ‖δ(k)‖q ≤ h for some fixed q ∈ [0, 1]. Specifically, q = 0 corresponds to the exact

sparse contrast vectors and when q > 0, δ(k) can have many nonzero coefficients but their

magnitude decays relatively fast. The range of q in consideration is flexible in applications

and our proposed method can adapt to q.

The goal is to optimally estimate and make inference for the target parameter β ∈ Rp

based on the available data from the target and auxiliary studies.

1.1 Related work

In the conventional setting where only data from the target study is available, estimation

for high-dimensional GLMs has been well-studied. Van de Geer (2008) uses `1-penalty and

derives an oracle inequality and estimation error rates. Negahban et al. (2012) studies M-

estimators and proves estimation error rates under the restricted strong convexity condition.

Huang and Zhang (2012) considers convex loss functions with weighted Lasso penalties.

van de Geer et al. (2014) proposes a debiasing procedure for inference by computing the

correction score via another Lasso on the Hessian matrix. Cai et al. (2020a) introduces a

debiasing procedure for the GLMs with binary outcomes via quadratic optimization. The

idea of debiasing has also been generalized to tackle high-dimensional proportional hazards

models (Fang et al., 2017), mixed-effects models (Bradic et al., 2020; Li et al., 2019), and

for multiple testing (Zhang and Cheng, 2017; Dezeure et al., 2017; Javanmard and Javadi,

2019; Ma et al., 2020).

Transfer learning has been studied in different models. Cai and Wei (2021) considers

nonparametric classification and establishes the minimax optimal rate and proposes an

adaptive classifier. Tripuraneni et al. (2020a) proposes an algorithm in linear models that

assumes all the auxiliary studies and the target study share a common, low-dimensional
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linear representation. Transfer learning in general functional classes has been studied in

Tripuraneni et al. (2020b) and Hanneke and Kpotufe (2020). Li et al. (2020a) proposes

methods for transfer learning in high-dimensional linear models and establishes the mini-

max optimal rate. Li et al. (2020b) introduces a method for estimation and edge detection

in high-dimensional Gaussian graphical models with knowledge transfer. However, the

methods established in the aforementioned two papers cannot be directly used as the link

functions in GLMs are nonlinear in general. Liang et al. (2020) studies high-dimensional

classification with auxiliary outcomes in the setting that the same set of individuals are

used to generate different outcomes, which is different from our setting.

A related but different problem is multi-task learning (Zhang and Yang, 2017), where

the goal is to jointly estimate all the parameters for multiple tasks. Multi-task learning

has been studied in various settings, including linear regression (Agarwal et al., 2012;

Dondelinger et al., 2020) and graphical models (Chen et al., 2010; Danaher et al., 2014).

An optimal multi-task procedure does not necessarily yield an optimal estimator for the

target task in transfer learning.

1.2 Our contributions

A novel algorithm is developed for estimation and inference in high-dimensional GLMs with

knowledge transfer. The proposed method estimates the target parameter and contrast

vectors jointly via constrained `1-minimization. Minimax rate of convergence is established

and the proposed estimator is shown to attain the optimal rate under mild conditions. The

optimal rate for transfer learning is faster than the corresponding rate in the single-task

setting under mild similarity conditions between the auxiliary and target tasks.

A debiasing method is introduced in the transfer learning setting. The debiased esti-

mator of an individual coefficient is shown to be asymptotically normal and is then used
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for constructing confidence intervals. It is shown that this debiased estimator has a smaller

magnitude of remaining bias in comparison to the one in the single-task setting. As a

result, the asymptotic normality holds under weaker sparsity conditions on β in transfer

learning when the auxiliary studies are sufficiently informative. Consequently, inference for

a given coefficient βj is no longer restricted to the “ultra-sparse” regime for β. This reveals

the benefit of transfer learning for statistical inference.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we introduce a transfer learning

algorithm using a constrained `1-minimization approach for estimation in GLMs. Sec-

tion 3 provides the theoretical guarantees for our proposal and establishes the minimax

lower bound. In Section 4, we introduce a debiasing procedure for inference of βj and

prove its asymptotic normality. To guarantee positive transfer, an aggregation procedure

is developed in Section 5. Section 6 considers the numerical performance of our proposed

algorithms in comparison to some existing methods. The results provide empirical evidence

of the gain of transfer learning. The proposed methods are applied to analyze a micro-

biome data set for classifying colorectal cancer in Section 7. The results demonstrate the

advantage of transfer learning. The proofs and additional numerical results are given in

the supplementary materials (Li et al., 2021).

1.4 Notation

For two sequences of positive numbers {an} and {bn}, we write an . bn if an ≤ cbn for

some universal constant c ∈ (0,∞), and an & bn if an ≥ c′bn for some universal constant

c′ ∈ (0,∞). We say an � bn if an . bn and an & bn. We use c, C, c0, c1, c2, · · · , and so on

to denote universal constants. Their specific values may vary from place to place. For an
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integer k > 0, [k] denotes the set {1, 2, ..., k}. For a vector v ∈ Rd and a subset S ⊆ [d],

we use vS to denote the restriction of vector v to the index set S. We write supp(v) :=

{j ∈ [d] : vj 6= 0}. Let ‖v‖p = (
∑d

j=1 |vj|p)1/p for 0 < p ≤ ∞, and let ‖v‖0 denote the

number of non-zero coordinates of v. For a function f : R → R, ‖f‖∞ denotes the the

essential supremum of |f | and ḟ and f̈ denote the first and second derivatives respectively.

The sub-Gaussian norm of a random variable u ∈ R is ‖u‖ψ2 = supl≥1 l
−1/2E1/l[|u|l] and

the sub-Gaussian norm of a random vector U ∈ Rn is ‖U‖ψ2 = sup‖v‖2=1,v∈Rn ‖〈U ,v〉‖ψ2 .

Let zα be the (1− α)-th quantile of the standard normal distribution.

2 Transfer learning via constrained `1-minimization

In this section, we introduce our proposed algorithm via constrained `1-minimization. We

begin with preliminaries and model setup in Section 2.1. The rationale behind the proposed

method is described in Section 2.2 and the algorithm for estimating β is introduced in

Section 2.3. The theoretical guarantees, including both the upper and matching lower

bounds, are provided in Section 3.

2.1 Model setup

Formally, the target model can be written as

fβ(y
(0)
i |x

(0)
i ) = h(y, σ(0)) exp

(
(x

(0)
i )>β · y(0)

i − ψ((x
(0)
i )>β)

c(σ(0))

)
, (2)

where β ∈ Rp is the target parameter of interest, c(σ(0)) is a nuisance scale parameter

and ψ(·) is the cumulant generating function of y given x. The GLM is, first of all, a

generalization of the linear model: setting ψ(µ) = µ2/2 and c(σ) = σ2 in (2) recovers the

(Gaussian) linear model. Model (2) also includes other popular models such as logistic,
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multinomial and Poisson regression models. In the high-dimensional regime where p can

be much larger than the sample size n0, β is often assumed to be sparse such that the

number of nonzero elements of β, denoted by s, is much smaller than p. With i.i.d.

samples {(y(0)
i ,x

(0)
i )}n0

i=1 drawn from the model (2), the general approach is to minimize the

negative log-likelihood function (1) with some sparsity-induced penalty.

In the context of transfer learning, we additionally observe {(y(k)
i ,x

(k)
i )}nk

i=1, k = 1, ..., K,

generated from the auxiliary models

fw(k)(y
(k)
i |x

(k)
i ) = h(y

(k)
i , σ(k)) exp

(
(x

(k)
i )>w(k) · y(k)

i − ψ((x
(k)
i )>w(k))

c(σ(k))

)
, (3)

where w(k) ∈ Rp is the coefficient vector for the k-th study satisfying w(k) = β + δ(k). For

convenience, we define δ(0) = 0. As described in Section 1, we assume max1≤k≤K ‖δ(k)‖q ≤ h

for some constant q ∈ [0, 1]. We will introduce the estimator for β in the sequel.

2.2 Rationale from moment equations

To estimate β and {δ(k)}Kk=1, we start with the moment equations. Let ψ̇(µ) = ∂ψ(µ)/∂µ.

The function ψ̇(µ) is nonlinear in general. For instance, ψ̇(µ) = 1/(1+exp(−µ)) for logistic

regression. The score functions based on the likelihood functions (2) and (3) satisfy

E
[
x

(k)
i

{
y

(k)
i − ψ̇

(
(x

(k)
i )>(β + δ(k))

)}]
= 0, k = 0, . . . , K. (4)

These (K+1)×p moment equations guarantee the identifiability of the unknown parameters

β and {δ(k)}Kk=1. As β and {δ(k)}Kk=1 are assumed to be (approximately) sparse, we will

consider a sparsity-induced estimator based on the moment equations.

As opposed to transfer learning for linear models, we see from (4) that there is no way

to separate the estimation of β and {δ(k)}Kk=1 in GLMs. This brings additional challenges
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in devising the algorithm and in the theoretical analysis. We propose a constrained op-

timization algorithm for jointly estimating the target parameter β and contrast vectors

{δ(k)}Kk=1. For a parameter vector b ∈ Rp, we denote the empirical score function by

L̇(k)(b) =
∑nk

i=1 x
(k)
i (y

(k)
i − ψ̇((x

(k)
i )>b)). We consider

(β̂, δ̂(1), ..., δ̂(K)) = arg min
β,{δ(k)}Kk=1

{
λβ‖β‖1 +

K∑
k=1

λk‖δ(k)‖1

}
(5)

subject to


∥∥∥L̇(k)(β + δ(k))

∥∥∥
∞
≤ λk, for 0 ≤ k ≤ K∥∥∥∥L̇(0)(β) +

K∑
k=1

L̇(k)(β + δ(k))

∥∥∥∥
∞
≤ λβ,

where λβ and λk, 1 ≤ k ≤ K are the tuning parameters and will be specified later. The

objective function in (5) encourages sparse solutions. Notice that there are (K + 2) × p

constraints in (5) while there are (K+1)×p unknown parameters. All these constraints are

essential. Specifically, the constraint ‖L̇(0)(β)‖∞ ≤ λ0 is inherited from the target model,

imposing that β should be identified as the true parameter for the target model. The

constraint ‖L̇(k)(β+δ(k))‖∞ ≤ λk comes from the score functions from k-th auxiliary study,

imposing that δ(k) should be identified as w(k) − β. The last constraint in (5) aggregates

the moment equations for all the studies in use. It ensures that the estimation of β borrows

information across auxiliary studies. Specifically, imagining {δ(k)}Kk=1 are known, the last

constraint ensures that β is estimated based on N independent samples and hence can lead

to a faster convergence rate. We formalize the transfer learning algorithm in Section 2.3.

2.3 Estimation of the target parameter

Our proposed algorithm for estimating β is a detailed version of (5). In Step 1, an initial

estimator of β is constructed by minimizing an `1-penalized negative likelihood based only

on the target data. In Step 2, we modify (5) by adding one more constraint using the initial
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estimator. We now introduce the detail algorithm and then provide further comments on

the algorithm. Let x
(k)
i be the i-th row of X(k) and y

(k)
i be the i-th element of y(k),

k = 0, . . . , K.

Algorithm 1: TransGLM, transfer learning via constrained `1-minimization

Input : Target data (X(0),y(0)), auxiliary data {(X(k),y(k))}Kk=1, tuning parameter

λk = c2

√
log p

n0 ∧ nk
, 0 ≤ k ≤ K, and λβ as in (8).

Output: β̂.

Step 1: Compute an initial estimator

β̂(init) = arg min
b∈Rp

{
L(0)(b) + λ0‖b‖1

}
.

Step 2:

(β̂, δ̂(1), ..., δ̂(K)) = arg min
β,‖δ(k)‖2≤C

{
λβ‖β‖1 +

K∑
k=1

λk‖δ(k)‖1

}
(6)

subject to



∥∥∥L̇(k)(β + δ(k))
∥∥∥
∞
≤ λk,∀ 0 ≤ k ≤ K∥∥∥∥L̇(0)(β) +

K∑
k=1

L̇(k)(β + δ(k))

∥∥∥∥
∞
≤ λβ∥∥∥β − β̂(init)

∥∥∥
1
≤ λ−1

0 .

(7)

In comparison to (5), the last `1-constraint
∥∥∥β − β̂(init)

∥∥∥
1
≤ λ−1

0 in (7) is needed for

technical convenience when ψ̇(µ) is nonlinear. This constraint is mild as λ0 = o(1). This

condition can be removed if the target parameter satisfies ‖β‖1 ≤ cλ−1
0 for some positive

constant c. Computationally, the joint optimization in (6) is still a convex programming.

The proposed algorithm can also be used for multi-task GLM learning, where the goal is

to jointly estimate β and {w(k)}Kk=1 (Zhang and Yang, 2017). Specifically, after fitting β and

9



δ(k) with the proposed algorithm, one can estimate w(k) with β̂ + δ̂(k). The corresponding

convergence rate is implied by the results in Section 3.

3 Theoretical guarantees for estimation

In this section, we establish the minimax optimal rate and show that the proposed estimator

is rate optimal. Define the population Hessian matrices as

Σβ = E[x
(0)
i (x

(0)
i )>ψ̈((x

(0)
i )>β)], Σw(k) = E

[
x

(k)
i (x

(k)
i )>ψ̈((x

(k)
i )>w(k))

]
, k = 1, . . . , K.

We introduce two regularity conditions.

Condition 3.1 (Sub-Gaussian designs and positive definite Hessians). For k = 0, . . . , K,

x
(k)
i are independent distributed with mean zero and covariance Σ(k) such that Λmax(Σ(k)) ≤

c1. For k = 0, . . . , K, the population Hessian matrices Σβ and Σw(k) satisfy that Λmin(Σβ) ≥

c2 > 0 and Λmin(Σw(k)) ≥ c2 > 0. For k = 0, . . . , K, x
(k)
i have finite sub-Gaussian norms.

Condition 3.2 (Sub-Gaussian random errors). For any k = 0, . . . , K, the random errors

y
(k)
i − ψ̇((x

(k)
i )>w(k)) are independent and have finite sub-Gaussian norms.

Condition 3.3 (Lipschitz condition for ψ). The derivatives ψ̇(a) and ψ̈(a) exist for a ∈ R.

Moreover, ψ̈(a) is uniformly bounded and | log ψ̈(a+ b)− log ψ̈(a)| ≤ C|b| for all a, b ∈ R.

Condition 3.1 assumes independent sub-Gaussian designs with positive definite co-

variance matrices. The positive definiteness of Hessian Σw(k) essentially requires that

ψ̈((x
(k)
i )>w(k)) is bounded away from zero with high probability and it is mild for sub-

Gaussian designs. The covariance matrix Σ(k) for different studies can be different, i.e., the

distributions of the covariates in different tasks are allowed to be heterogeneous. Condition

3.2 requires the random noises to be sub-Gaussian, which is typical in high-dimensional
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analysis for fast convergence rates. Condition 3.3 is a Lipschitz condition on the link func-

tion. Conditions 3.1, 3.2, and 3.3 are common in the study of the GLMs, see Huang and

Zhang (2012); Negahban et al. (2012); Cai et al. (2020b) and the reference therein. It holds

for linear, logistic, and multinomial models. Beyond the GLMs, some other models for

binary outcomes can also applicable, such as model (1.1) in Cai et al. (2020a). The Poisson

or log-linear models have heavy-tailed distributions and may not satisfy Condition 3.2. We

comment that our method is still applicable but the convergence rate may not be as sharp

as what we will establish in Theorem 3.1.

We now analyze the convergence rate of the estimator obtained in Algorithm 1. For-

mally, the parameter space we consider is

Θq(s, h) =

{
(β, δ(1), . . . , δ(K)) : ‖β‖0 ≤ s, max

1≤k≤K
‖δ(k)‖q ≤ h

}
,

where q ∈ [0, 1] enforces either a hard (q = 0) or soft (q ∈ (0, 1]) form of sparsity on the

contrast vectors. Let nmin = min0≤k≤K nk and N =
∑K

k=0 nk. In our theoretical analysis,

we take the tuning parameter λβ as

λβ =

 c2N(
√

log p
N

+
√

h log p
n0s

) if q = 0

c2N(
√

log p
N

+ h
q
2 ( log p

n0
)
1
2
− q

4/
√
s) if q ∈ (0, 1].

(8)

This tuning parameter λβ depends on the sparsity parameter s and h. This is mainly for

establishing a desirable `1-error bound for the proposed estimator, which is needed in the

debiasing step for statistical inference. As we will prove in Remark 3.1, if β is sufficiently

sparse, then it suffices to choose λβ = c1

√
N log p, which is independent of h and s. In

practice, the tuning parameters can be chosen by cross-validation. Next, we define the

following quantity that will be used to characterize the rate of convergence.

Tn0,q =


h log p
n0

if q = 0

hq( log p
n0

)1−q/2 if q ∈ (0, 1].
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We are now ready to present the theoretical guarantees for the output β̂ of Algorithm 1.

Theorem 3.1 (Convergence rate of β̂). Let q ∈ [0, 1] be a fixed constant. Assume Con-

ditions 3.1, 3.2, and 3.3 and the true parameters are in Θq(s, h). Suppose s log p ≤

c1n0 ∧
√
N, Tn0,q ≤ c1, s log pTn0,q ≤ c1, and Kn0 ≤ c1N , for some small enough constant

c1. Taking λβ as in (8), then with probability at least 1−exp(−c2 min{log p, nmin}), it holds

that

‖β̂ − β‖2
2 ≤ c3(

s log p

N
+ Tn0,q ∧ h2) (9)

‖β̂ − β‖1 ≤ c4s

√
log p

N
+
√
sTn0,q. (10)

Remark 3.1. Assume the conditions of Theorem 3.1 and (s log p)2 ≤ c1n0. Then for λβ =

c2

√
N log p, expression (9) still holds with probability at least 1−exp(−c2 min{log p, nmin}).

Theorem 3.1 establishes the convergence rate of β̂ under mild regularity conditions

for any fixed q ∈ [0, 1]. We first highlight the gain of transfer learning over the single-

task GLM estimation. We know that the minimax optimal rate for single-task GLM is

s log p/n0. Theorem 3.1 implies that when N � n0 and Tn0,q ∧ h2 � s log p/n0, β̂ would

admit a faster convergence rate than the single-task minimax rate. This result implies that

a significant amount of knowledge can be transferred from auxiliary tasks to the target

task when the similarities between target and auxiliary studies are high. In fact, Tn0,q ∧ h2

is the minimax error rate for estimating a p-dimensional vector with sample size n0 and

`q-sparsity h. This term comes from the estimation of contrast vectors. The condition

Tn0,q ∧ h2 � s log p/n0 is guaranteed by h � s when q = 0 and by h � s
√

log p/n0

when q = 1. Hence, when the similarity between auxiliary studies and the target study is

high, the estimation performance can be improved by transfer learning. When q = 1, (9)

recovers the convergence rate of Oracle Trans-Lasso in linear models (Li et al., 2020a). We
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also remark that the `1-error in Theorem 3.1 is useful for conducting statistical inference

for the target parameters. We will illustrate this further in Section 4.

We now provide some discussion on the regularity conditions in Theorem 3.1. The

condition s log p ≤ n0 is standard for single-task sparse regression. The condition s log p ≤
√
N is mild in the regime of interest N � n0. As h is relatively small, bounded Tn0,q is

not hard to satisfy in applications. Finally, the condition s log pTn0,q ≤ c1 guarantees the

consistency of β̂ in `1-norm.

Moreover, we establish the following lower bound result showing that our proposed

algorithm makes full use of the auxiliary information as the convergence rate obtained in

3.1 is in fact minimax rate-optimal.

Theorem 3.2 (Minimax lower bound). Suppose β̂ is an estimator based on n0 i.i.d. samples

{(x(0)
i , y

(0)
i )}n0

i=1 drawn from model (2), and auxiliary samples {(x(k)
i , y

(k)
i )}nk

i=1 drawn from

model (3) for 1 ≤ k ≤ K. For Tn0,q ∧ h2 ≤ s log p/n0 = o(1), we have

P

(
inf
β̂

sup
β∈Θq(s,h)

‖β̂ − β‖2
2 &

s log p

N
+ Tn0,q ∧ h2

)
≥ 1

2
.

4 Inference for the target parameters

In this section, we consider statistical inference of βj for a given j ∈ [p] in the transfer

learning setting. A debiasing method for the proposed estimator is introduced in Section

4.1 and its asymptotic normality is established in Section 4.2.

4.1 A debiased estimator

We introduce a debiased estimator for βj based on β̂, the output of Algorithm 1. We will

use the target data for debiasing. Specifically, following the general debiasing recipe (Zhang
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and Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari, 2014), define

β̂
(db)
j = β̂j +

∑n0

i=1(x
(0)
i )>γ̂j{y(0)

i − ψ̇((x
(0)
i )>β̂)}

n0

, (11)

where γ̂j ∈ Rp is the correction score approximating the j-th column of the inverse Hessian

Σ−1
β . To obtain γ̂j ∈ Rp, we estimate Σβ by Σ̂β̂ = 1

n0

∑n0

i=1 ψ̈((x
(0)
i )>β̂)x

(0)
i (x

(0)
i )>, and

then solve γ̂j by the following constrained optimization

γ̂j = arg min
γ∈Rp

‖γ‖1 (12)

subject to


∥∥∥Σ̂β̂γ − ej

∥∥∥
∞
≤ c1

√
log p
n0
.

max1≤i≤n0 |(x
(0)
i )>γ| ≤ c2

√
log n0,

where c1 and c2 are two tuning parameters. In (12), the correction score γ̂j is obtained

via a constrained `1-optimization based on the target Hessian matrix. The two constraints

are linear and therefore the optimization is convex and computationally efficient. The

first constraint guarantees that γ̂j approximates the j-th column of Σ−1
β . The population

Hessian matrix Σβ is approximated by an empirical estimator based on the design of the

target model and β̂. The second constraint is on the magnitude of |(x(0)
i )>γ̂j|. This

constraint is employed in justifying the Lyapunov central limit theorem for the sum of

independent noises. Additionally, we would like to point out that while the `1-minimization

in (12) encourages a sparse solution, the probabilistic limit of γ̂j is not necessarily sparse.

Indeed, we will see that the optimization in (12) is effective no matter the j-th column of

the true inverse Hessian Σ−1
β is sparse or not. In other words, any feasible solution to (12)

is a proper correction score for the debiasing task. A similar constraint has been studied in

Zhu and Bradic (2018) for hypothesis testing in single-task high-dimensional linear models.

Here we extend this idea for constructing confidence intervals in high-dimensional GLMs,

and further to the transfer-learning setting.
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Our proposed debiasing scheme can also be used in single-task GLMs, in which case one

can replace β̂ with, say, the single-task generalized Lasso estimator (Van de Geer, 2008).

In comparison, the Lasso-based debiasing for the GLMs (van de Geer et al., 2014) requires

Σ−1
β to be sparse. Another method, Cai et al. (2020a), computes the correction score

under the same constraints as in (12) but the objective function is a quadratic function

of γ. The theoretical benefits of the current method will be demonstrated in detail in the

next subsection.

Next, we provide a variance estimator for the debiased estimator (11). In GLMs, the

variance estimation necessitates to estimate σ2
i = Var(y

(0)
i |(x

(0)
i )>β) for each individual

1 ≤ i ≤ n0. Our variance estimator is given as follows. For linear models, let σ̂2
i =∑n0

i=1 ‖y
(0)
i − (x

(0)
i )>β̂‖2

2/n0. For models with c(σ) = 1 in (2), which includes logistic,

multinomial, Poisson, and log-linear models, let σ̂2
i = ψ̈((x

(0)
i )>β̂). We now define the

variance estimate of β̂
(db)
j :

V̂j =
1

n0

n0∑
i=1

{(x(0)
i )>γ̂j}2σ̂2

i . (13)

We establish the asymptotic distribution of β̂
(db)
j for some 1 ≤ j ≤ p and show the

variance estimator V̂j is consistent in the next subsection.

4.2 Asymptotic normality

We next study the asymptotic distribution of β̂
(db)
j for some 1 ≤ j ≤ p. We first show that

the limiting distribution of β̂
(db)
j is normal in linear models, and present the result beyond

linear models afterward.

In the following lemma, we prove that, with high probability, the variance estimator V̂j

in (13) converges to its limit and its limit is lower bounded by a positive constant.
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Lemma 4.1 (Asymptotic property of the variance estimator in linear models). Assume the

conditions of Theorem 3.1 and ψ̇(µ) = µ. For V̂j defined in (13), Vj = 1
n0

∑n0

i=1{(x
(0)
i )>γ̂j}2σ2

i ,

and some positive constant c0, it holds that

|V̂j − Vj| = oP (1) and Vj ≥ c0 − oP (1).

By Lemma 4.1, Vj is the probabilistic limit of V̂j and it is only a function of {x(0)
i }

n0
i=1

in linear models. In fact, Vj is the asymptotic variance of β̂
(db)
j conditioning on {x(0)

i }
n0
i=1

in linear models.

Theorem 4.1 (Asymptotic normality of β̂
(db)
j for linear models). For any fixed 1 ≤ j ≤ p,

under the same conditions as those in Theorem 3.1 and ψ̇(µ) = µ. It holds that

β̂
(db)
j − βj = remj + zj,

where

remj = OP

(
s log p√
Nn0

+ T 1/2
n0,q

√
s log p

n0

)
and √

n0

V̂j
zj

D−→ N(0, 1).

In Theorem 4.1, we decompose the limiting distribution of β̂
(db)
j into two parts: an

asymptotically normal part zj and a remaining bias part remj. To have the asymptotic

normality, one needs the asymptotically normal part to dominate the bias term, that is,

remj = oP (n
−1/2
0 ). This leads to the following sparsity conditions for asymptotic normality,

which are

s log p�
√
N and s log pTn0,q � 1. (14)

In the single-task setting, the minimax optimal rate in Cai and Guo (2017) implies that it

is necessary to require s log p� √n0. We see that the requirement in (14) is much weaker
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when we have a large amount of auxiliary data (N � n0) and these data share the similarity

with our target (
√
n0Tn0,q � 1). The condition

√
n0Tn0,q � 1 holds when h = o(

√
n0/ log p)

if q = 0 and when h
√

log p = o(1) for q = 1. In words, when the similarity of the auxiliary

studies are sufficiently large, i.e., when h is sufficiently small, the asymptotic normality

of β̂
(db)
j requires weaker sparsity conditions than the debiased estimator in the single-task

setting. Additionally, while we require a much weaker condition, the length of the proposed

confidence interval in the transfer learning setting has the same order (n
−1/2
0 ) as that in the

single-task setting. In applications, these results imply more accurate coverage probabilities

with the debiased transfer learning estimator without inflating the lengths of confidence

intervals. To summarize, the confidence interval in (16) is asymptotically valid for linear

models when the conditions of Theorem 4.1 and (14) hold.

We remark that the results of Theorem 4.1 do not require the sparsity of inverse Hessian

Σ−1. When {Σ−1}.,j is sufficiently sparse, standard arguments can be leveraged to show

that ‖γ̂j − {Σ−1}.,j‖1 = oP (1). That is, β̂
(db)
j can adapt to the sparsity of the inverse

Hessian. The advantage of γ̂j is that it is robust to non-sparse inverse Hessian and can

achieve semi-parametric efficiency (van de Geer et al., 2014) for sparse inverse Hessian. In

comparison, the quadratic optimization-based debiasing (Javanmard and Montanari, 2014)

does not assume sparse Σ−1 but the semi-parametric efficiency is not shown.

We now derive the asymptotic normality for the proposed β̂
(db)
j beyond linear models.

In this case, γ̂j depends on β̂ and hence depends on y
(0)
i given x

(0)
i . This leads to technical

difficulties in justifying the asymptotic normality in GLMs. For the GLMs, we first impose

a high-level Condition 4.1 and prove the main theorem. We will later verify this condition

in different settings.

Condition 4.1 (Independence of the correction score). There exists some γoj ∈ Rp such

that conditioning on γoj and {x(0)
i }

n0
i=1, y

(0)
i − ψ̇((x

(0)
i )>β) are independent with mean zero.
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Assume that the correction score computed via (12) satisfies ‖γ̂j − γoj ‖1 = oP ((log p)−1/2).

Condition 4.1 essentially requires that the estimated γ̂j converges to a “deterministic”

vector γoj in `1-norm. Here, “deterministic” means that γoj is independent of the ran-

dom noises y
(0)
i − ψ̇((x

(0)
i )>β). We will demonstrate the realization of Condition 4.1 after

presenting the following main theorem on the asymptotic normality for β̂
(db)
j .

We first establish the consistency of the proposed variance estimator V̂j in (13).

Lemma 4.2 (Asymptotic property of the variance estimator in GLMs). Assume the condi-

tions of Theorem 3.1 and Condition 4.1. For V̂j defined in (13), V o
j = 1

n0

∑n0

i=1((x
(0)
i )>γoj )

2σ2
i ,

and some positive constant c0, we have

|V̂j − V o
j | = oP (1) and V o

j ≥ c0 − oP (1).

By Lemma 4.2, V o
j is the probabilistic limit of V̂j and it is independent of the random

noises by Condition 4.1 in GLMs. In fact, V o
j is the variance of β̂

(db)
j conditioning on

{x(0)
i }

n0
i=1 and γoj . We mention that Lemma 4.2 can be viewed as a generalization of Lemma

4.1 beyond linear models. This is because, in the case that ψ̇(µ) = µ, Condition 4.1 always

holds with γoj = γ̂j. Hence, Lemma 4.2 recovers Lemma 4.1 when ψ̇(µ) = µ, i.e., in linear

models.

Theorem 4.2 (Asymptotic normality for β̂
(db)
j in GLMs). Assume the conditions of The-

orem 3.1 and Condition 4.1. It holds that

β̂
(db)
j − βj = remj + zj,

where

remj = OP

(
s log p

√
log n0√

Nn0

+ T 1/2
n0,q

√
s log p log n0

n0

)
and √

n0

V̂j
zj

D−→ N(0, 1).
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In Theorem 4.2, we see that the remaining bias term remj has an extra
√

log n0 term

comparing to the results for linear models (Theorem 4.1). This inflation comes from the

uncertainty in the weights of the Hessian matrix, which is estimated based on β̂. This extra

term also appears in Cai et al. (2020a) for the single-task debiased estimator. Implied by

Theorem 4.2, the sparsity condition for asymptotic normality in GLMs is

s log p�
√
N/ log n0 and Tn0,q log n0s log p� 1. (15)

With the target study only, the analysis in Cai et al. (2020a) requires s log p�
√
n0/ log n0

for the asymptotic normality. Again, this shows that transfer learning helps reduce the

remaining bias when the auxiliary studies are sufficiently similar to the target one. We can

conclude that the confidence interval in (16) is asymptotically valid for the GLMs when

the conditions of Theorem 4.2 and (18) hold.

In the following, we verify Condition 4.1 in different cases.

Lemma 4.3 (Sufficient conditions for Condition 4.1). Condition 4.1 holds if one of the

following three statements hold:

(i) ψ̈ is a positive constant.

(ii) We first split n0 samples into two folds such that β̂ is independent of the debiasing

samples {x̃(0)
i , ỹ

(0)
i }ñi=1. Replace {x(0)

i , y
(0)
i }

n0
i=1 in (11) with {x̃(0)

i , ỹ
(0)
i }ñi=1.

(iii) The j-th column of Σ−1
β has at most sj nonzero elements such that (sj log p)2 = o(n0)

and N & n0 log n0.

To summarize, for linear models, Condition 4.1 holds for free. For the GLMs, Condition

4.1 can be guaranteed by a sample splitting argument or by the sparsity of {Σ−1
β }.,j.

The third statement demonstrates the benefit of the optimization (12) over the quadratic
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programming in Cai et al. (2020a). That is, when sj is sufficiently small, the sample splitting

technique can be avoided. In fact, sample splitting always leads to sub-optimal empirical

performance, especially when the samples are limited. We will see from the numerical

experiments that our proposal has reliable performance for both sparse and non-sparse

inverse Hessian matrices.

We conclude this subsection by summarizing the algorithm of constructing a two-sided

(1− α)-level confidence interval for βj in Algorithm 2.

Algorithm 2: (1− α)-level confidence interval for βj

Input : β̂ obtained in Algorithm 1, target data (X(0),y(0)), tuning parameters c1

and c2.

Output: Ij.

Compute Σ̂β̂ = 1
n0

∑n0

i=1 ψ̈((x
(0)
i )>β̂)x

(0)
i (x

(0)
i )>.

Compute β̂
(db)
j via (11) with γ̂j computed via (12).

Compute

Ij = [β̂
(db)
j − zα/2

√
V̂j/n0, β̂

(db)
j + zα/2

√
V̂j/n0], (16)

where V̂j is defined in (13).

5 Aggregated TransGLM with positive transfer war-

ranty

As seen in the theoretical analysis, the performance of transfer learning always depends

on the level of similarity, h, which is typically unknown. When h is large, incorporating

the auxiliary studies into the analysis can potentially reduce the estimation and inference

accuracy of the target parameter. To guard against such “negative transfer”, we propose

an additional aggregation step based on the likelihood.
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Given a collection of initial estimators, an aggregation procedure (Rigollet and Tsy-

bakov, 2011; Dai et al., 2012) selects the best or a convex combination of the initial esti-

mators by minimizing certain empirical risk measures based on the observed data. Here

our primary goal is to prevent negative transfer and we propose a simple step to aggregate

two initial estimators, the estimator obtained by using the target samples only, and the

estimator obtained using combined dataset. More specifically, we propose our final proce-

dure, aggregated TransGLM, shorthanded as “aTransGLM”, that aggregates the transfer

learning estimator β̂ with the single-task GLM Lasso β̂(init), which is formally given below.

Algorithm 3: aTransGLM, an aggregated transfer learning algorithm

Input : β̂(init), β̂, and some samples from the target study which are independent

of (β̂(init), β̂), denoted by {((x̃(0)
i )>, ỹ

(0)
i )}ñi=1 for ñ � n0.

Output: β̌.

Step 1: Thresholding β̂:

β̂tj = β̂j1(|β̂j| ≥ λβ/N). (17)

Step 2: Aggregation based on the likelihood. For B̂ = (β̂(init), β̂t) ∈ Rp×2,

η̂ = arg min
η∈a positive simplex

ñ∑
i=1

{
ỹ

(0)
i · (x̃

(0)
i )>B̂η − ψ((x̃

(0)
i )>B̂η)

}
.

Output β̌ = B̂η̂.

We show in the supplement (Li et al., 2021) that the truncated estimators β̂t has the

same convergence rate as β̂ but β̂t has sparsity no larger than the order of s. This facilitates

upper-bounding the `1-error of β̌ and further prepares β̌ for the downstream statistical

inference. In Step 2 of Algorithm 3, the independent target samples can be obtained by

a sample splitting of the target samples before the analysis. Hence, we consider ñ � n0.

The computed η̂ is a weight vector to combine two initial estimators. We also comment

21



that the optimization of η̂ can be replaced with the Q-aggregation (Dai et al., 2012) or

its variations, which can achieve the same convergence rate but sharper constants. As an

illustration, we focus on a more intuitive aggregation based on the likelihood as in Step 2.

Theorem 5.1 shows that the aggregated estimator β̌ is guaranteed to be no worse than

the single-task estimator with high probability, which demonstrates that it provides a

positive transfer warranty.

Theorem 5.1 (Consequences of aggregation). Assuming Conditions 3.1, 3.2, and 3.3 hold.

Let q ∈ [0, 1] be a fixed constant. Assume that the true parameters are in Θq(s, h), s log p ≤

c1n0 ∧
√
N, Tn0,q ≤ c1, s log pTn0,q ≤ c1, and N ≥ c2Kn0, for some positive constants c1

and c2. Then with probability at least 1− exp(−c1 log p)− exp(−c1nmin)− exp(−c1t),

‖β̌ − β‖2
2 ≤ c2

s log p

N
+ c3Tn0,q ∧ h2 ∧ s log p

n0

+
c4t

n0

‖β̌ − β‖1 ≤ c5

√
s‖β̌ − β‖2.

Theorem 5.1 essentially shows that the aggregated estimator β̌ has no slower con-

vergence rate than the those obtained by β̂(init) and β̂t. Theorem 5.1 guarantees that

‖β̌−β‖2
2 . s log p/n0 with high probability as long as s 6= 0. Hence, the performance of β̌

is robust to a large h, i.e. low similarity levels. We also obtained the convergence rate in

`1-norm by utilizing the sparsity of β̂(init) and the sparsity of the thresholded estimator β̂t.

The cost of aggregation is of order 1/n0, which is negligible in most scenarios of interest.

For example, when q = 0, as long as h ≥ 1 and s ≥ 1, the cost of aggregation is always

dominated by the second term. Hence, in practice, it is almost no harm to perform an

aggregation step.

The inference results based on β̌ can be similarly proved. Let β̌
(db)
j be the debiased

estimator in (11) with β̂ replaced by β̌. The score γ̂j for β̌
(db)
j is computed based on Σ̂β̌

instead of Σ̂β̂. In the following, we establish the asymptotic normality of β̌
(db)
j .
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Theorem 5.2 (Asymptotic normality for β̌
(db)
j in GLMs). Assume the conditions of The-

orem 5.1 and Condition 4.1. It holds that

β̌
(db)
j − βj = remj + zj,

where

remj = OP

(
s log p

√
log n0√

Nn0

+ T 1/2
n0,q

√
s log p log n0

n0

∧ s log p
√

log n0

n0

)
+ oP (n

−1/2
0 )

and for V̂j defined in (13), √
n0

V̂j
zj

D−→ N(0, 1).

Implied by Theorem 5.2, the sparsity condition for asymptotic normality is s log p�
√
N/ log n0 and Tn0,qs log p log n0 � 1 if Tn0,q � n

−1/2
0

s log p�
√
n0/ log n0 otherwise.

(18)

The requirement in (18) is always no worse than the sparsity requirement in the single-task

setting as a consequence of aggregation. The verification of Condition 4.1 can be similarly

proved as in Lemma 4.3. In the next section, we evaluate the numerical performance of β̌

and β̌
(db)
j .

6 Simulation studies

We study the numerical performance of our proposal and other comparable methods. We

set n0 = · · · = nK = 200, p = 500, and s = 10. We set β1:s = (0.8, 0.65, 0.50, . . . ,−0.55)>

and βj = 0 for j > s. For k = 0, . . . , K, we generate x
(k)
i ∼ N(0,Σ(k)) independently. We

consider two configurations of the covariance matrices.

(a) For k = 0, . . . , K, we consider Toeplitz matrices {Σ(k)}j,l = (k/(K + 2))|j−l|.
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(b) We consider equi-correlated Σ
(0)
j,k = 0.3 for j 6= k and Σ

(0)
j,j = 1. For each k = 1, . . . , K,

we generate a random matrix A(k) where each entry equals 0.1 with probability 0.1

and equals 0 with probability 0.9. We set Σ(k) = (A(k))>A(k) + Ip, k = 1, . . . , K.

In both (a) and (b), the design matrices are heterogeneous among studies. The target

covariance matrix Σ(0) is sparse in (a) but not in (b). Hence, (b) provides a challenging

setting for statistical inference.

To accommodate the practical setting that some auxiliary studies can be very far from

the target study, we define A ⊆ {1, . . . , K} to be the set of informative studies. Specifically,

we generate δ(k) in two ways.

(i) For k ∈ A, let Hk be a random subset of {1, . . . , p} with |Hk| = h ∈ {2, 6, 10}. For

k /∈ A, let Hk be a random subset of {1, . . . , p} with |Hk| = 50. For k = 1, . . . , K, we

set δ
(k)
j = 0.3 for j ∈ Hk and δ

(k)
j = 0 otherwise.

(ii) For k ∈ A, δ
(k)
j ∼ N(0, (h/50)2) for j ≤ 100 and h ∈ {2, 6, 10} and δ

(k)
j = 0 otherwise.

For k 6∈ A, δ
(k)
j ∼ N(0, 0.52) for j ≤ 100 and δ

(k)
j = 0 otherwise.

We see that in both (i) and (ii), {δ(k)}k∈A are sparser than {δ(k)}k∈Ac . Moreover, {δ(k)}k∈Ac

are even denser than β and we treat studies in Ac as non-informative studies. In (i), δ(k)

is exact sparse and in (ii), δ(k) are approximately sparse. We will consider four scenarios

generated by (a) and (b) crossing (i) and (ii), denoted by (a-i), (a-ii), (b-i) and (b-ii),

respectively. Each configuration is replicated with 300 independent experiments. In the

main paper, we report two settings generated by (a-i) and (b-i). The results for (a-ii) and

(b-ii) are analogous and are reported in the supplementary materials (Section E).

We compare five methods numerically. The first one is generalized Lasso based on

the target study, denoted as “GLM Lasso”. The second one is Algorithm 1, denoted by

“TransGLM”. The third method is Algorithm 1 based on target and informative auxiliary
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studies. That is, we apply Algorithm 1 with {1, . . . , K} replaced by A. We denote this

method by “oracle TransGLM” as it depends on the oracle A. The fourth method is

Algorithm 3, denoted by “aTransGLM”. The last one is a simple aggregated estimator,

denoted by “Simple-Agg”. It first applies the GLM Lasso to each task and then aggregate

these K + 1 estimators using the optimization in Section 5. This method can be viewed

as a meta-analysis paradigm with adaptive weights. It is widely used in applications for

its simplicity and we include it as another benchmark method. For the inference results,

we construct confidence intervals with oracle TransGLM, aTransGLM, and the single-task

method in van de Geer et al. (2014). The detailed implementation of different methods is

illustrated in the supplementary materials.

6.1 Classification errors

In every experiment, we evaluate the classification errors in an independent target sample

with a sample size 200. From Figure 1, we see that the performance of single-task GLM

Lasso does not change as the informative sample size changes. The oracle TransGLM signif-

icantly reduces the classification errors in comparison to the GLM Lasso as the informative

sample size increases. It is always no worse than the GLM Lasso because it never incorpo-

rates non-informative samples. The TransGLM method reduces classifications errors when

a significant proportion of the auxiliary samples are informative. This is because it uses

all the auxiliary studies and when few studies are informative, the errors can be large ac-

cording to Section 4. The aTransGLM method also improves classification accuracy when

the informative sample size is relatively large. On the other hand, the aggregation step in

aTransGLM achieves robustness to negative transfer in the sense that the performance of

aTransGLM is always no worse than the single-task GLM Lasso. When |A| is close to K,

the TransGLM has slightly smaller errors than aTransGLM. This is because TransGLM
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does not split the samples for aggregation but aTransGLM does. However, robustness

can be more important than the mild gain in accuracy and hence aTransGLM should be

favorable over TransGLM in most practical applications. The “Simple-Agg” method has

limited improvement when the informative samples are large and its performance is very

sensitive to the levels of h. By comparing the plots at different levels of h, we see that the

performances of Oracle TransGLM, TransGLM, and aTransGLM are getting slightly worse

as h increases, which agrees with our theoretical analysis. The overall performance also

demonstrates that our method is robust to heterogeneous design matrices. The estimation

errors are reported in the supplementary materials (Section E).

6.2 Confidence intervals

We construct 95% two-sided confidence intervals for βj, j = 1, . . . , p. We compare our pro-

posed debiased oracle TransGLM and debiased aTransGLM with the single-task inference

method for the GLMs (van de Geer et al., 2014).

In Table 1, we report the results in setting a-i, where the inverse Hessian matrix Σ−1
β

is relatively sparse. All the methods have reliable coverages for βj = 0. For βj = 0.5, we

see that the single-task method has coverage probabilities lower than the nominal level.

This is mainly due to the large remaining bias of the single-task debiased estimators, which

have been studied in Li (2020). The proposed debiased oracle TransGLM and debiased

aTransGLM have improvements in coverage probabilities for βj 6= 0 without inflating the

length of confidence intervals. The increased coverage probabilities are due to the smaller

remaining bias of the debiased transfer learning estimator, which agrees with our theoretical

results. In Table 2, we report the inference results in b-i which gives a non-sparse Σ−1
β . For

the true signals, the debiased transfer learning estimators have significantly higher coverage

probabilities than the single-task debiased method. This again demonstrates the smaller
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Figure 1: Classification errors in setting a-i (first row) and in setting b-i (second row). The

dotted horizontal line is the average classification errors given by oracle β.

remaining bias of the debiased transfer learning estimators.

27



Table 1: Average coverage probabilities (standard deviations) for β3 = 0.5 and β13 = 0 in

setting a-i.

h |A|
van de Geer et al. (2014) Debiased oracle TransGLM Debiased aTransGLM

0.5 0 0.5 0 0.5 0

2 1 0.937(0.154) 0.987(0.153) 0.947(0.154) 0.983(0.152) 0.930(0.150) 0.987(0.149)

2 2 0.920(0.156) 0.977(0.153) 0.930(0.156) 0.967(0.152) 0.933(0.152) 0.967(0.149)

2 3 0.897(0.155) 0.973(0.153) 0.913(0.156) 0.970(0.153) 0.900(0.152) 0.970(0.151)

2 4 0.950(0.155) 0.970(0.153) 0.967(0.157) 0.957(0.153) 0.963(0.154) 0.967(0.151)

2 5 0.917(0.155) 0.987(0.154) 0.927(0.156) 0.980(0.154) 0.930(0.156) 0.980(0.154)

6 1 0.943(0.155) 0.973(0.154) 0.947(0.152) 0.980(0.151) 0.947(0.151) 0.973(0.150)

6 2 0.933(0.157) 0.977(0.155) 0.947(0.152) 0.980(0.151) 0.937(0.150) 0.977(0.150)

6 3 0.933(0.156) 0.983(0.155) 0.937(0.152) 0.983(0.151) 0.933(0.150) 0.980(0.150)

6 4 0.910(0.156) 0.973(0.154) 0.917(0.153) 0.963(0.151) 0.927(0.151) 0.963(0.151)

6 5 0.933(0.156) 0.967(0.154) 0.947(0.153) 0.967(0.151) 0.957(0.153) 0.967(0.151)

10 1 0.950(0.156) 0.957(0.154) 0.937(0.152) 0.957(0.150) 0.937(0.152) 0.953(0.150)

10 2 0.953(0.157) 0.980(0.155) 0.967(0.152) 0.973(0.150) 0.957(0.150) 0.970(0.149)

10 3 0.920(0.158) 0.963(0.156) 0.923(0.152) 0.967(0.150) 0.923(0.151) 0.963(0.150)

10 4 0.943(0.157) 0.970(0.155) 0.963(0.151) 0.970(0.150) 0.957(0.152) 0.970(0.150)

10 5 0.913(0.156) 0.987(0.154) 0.933(0.152) 0.977(0.150) 0.933(0.153) 0.973(0.151)
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Table 2: Average coverage probabilities (standard deviations) for β3 = 0.5 and β13 = 0 in

setting b-i.

h |A|
van de Geer et al. (2014) Debiased oracle TransGLM Debiased aTransGLM

0.5 0 0.5 0 0.5 0

2 1 0.893(0.178) 0.967(0.176) 0.917(0.174) 0.960(0.173) 0.910(0.173) 0.963(0.172)

2 2 0.883(0.176) 0.957(0.175) 0.913(0.175) 0.957(0.174) 0.907(0.172) 0.947(0.171)

2 3 0.903(0.176) 0.963(0.174) 0.927(0.176) 0.957(0.172) 0.913(0.171) 0.950(0.169)

2 4 0.933(0.176) 0.977(0.174) 0.963(0.175) 0.973(0.172) 0.960(0.172) 0.963(0.170)

2 5 0.927(0.176) 0.963(0.176) 0.953(0.176) 0.963(0.174) 0.953(0.176) 0.967(0.175)

6 1 0.913(0.179) 0.960(0.178) 0.920(0.173) 0.980(0.172) 0.917(0.177) 0.973(0.172)

6 2 0.920(0.177) 0.960(0.177) 0.927(0.172) 0.957(0.173) 0.920(0.172) 0.960(0.172)

6 3 0.903(0.176) 0.970(0.175) 0.913(0.172) 0.960(0.171) 0.903(0.171) 0.957(0.171)

6 4 0.920(0.177) 0.967(0.175) 0.937(0.172) 0.960(0.171) 0.933(0.171) 0.963(0.170)

6 5 0.920(0.175) 0.967(0.175) 0.927(0.171) 0.967(0.171) 0.927(0.172) 0.970(0.171)

10 1 0.883(0.177) 0.960(0.176) 0.890(0.172) 0.960(0.171) 0.880(0.172) 0.960(0.171)

10 2 0.900(0.176) 0.970(0.177) 0.910(0.171) 0.973(0.171) 0.910(0.171) 0.973(0.172)

10 3 0.903(0.177) 0.983(0.174) 0.917(0.172) 0.980(0.170) 0.913(0.172) 0.983(0.169)

10 4 0.910(0.178) 0.980(0.176) 0.940(0.171) 0.980(0.171) 0.930(0.171) 0.980(0.170)

10 5 0.890(0.177) 0.977(0.176) 0.917(0.172) 0.973(0.171) 0.917(0.172) 0.973(0.171)
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7 Application to the colorectal cancer data

We apply our method to several human gut microbiome studies concerning colorectal cancer

(CRC). These are case-control studies where the response indicates whether an individual

has CRC and the covariates are the common genera and phyla of the microbiomes and three

other covariates (age, gender, and BMI). The raw data is publicly available at https://

zenodo.org/record/840333#.X6qTRS9h3u2 and has been studied in Duvallet et al. (2017).

We analyze the data from three studies, referred to as Zackular, Zeller, and Baxter, where

are collected in USA/Canada, France, and USA, respectively. These studies are all related

to the CRC but are measured in different populations. Hence, it is likely that these studies

share some similarities but the underlying true models may not be identical. Therefore,

it is proper to apply transfer learning to these studies. The sample sizes of Zackular,

Zeller, and Baxter studies are 83, 127, and 488, respectively. Some genera and phyla of the

microbiomes are relatively rare and are removed from the analysis if their abundance are

zero in more than 90% of the samples in each study. Altogether, 146 genera and phyla of

the microbiomes and three covariates (p = 149) remain in the analysis. The covariates are

standardized before analysis.

We consider Zackular, Baxter, and Zeller as the target study individually and use the

other two studies as auxiliary studies. We first look at the classification errors given by our

proposed transfer learning method and the single-task method, the GLM Lasso. The results

based on leave-one-out prediction are reported in Table 3. Specifically, we iteratively use one

sample from the target data as the test sample and the rest of the data as training samples.

We see that the TransGLM, aTransGLM, and Simple-Agg all have smaller classification

errors for the target Zackular. This demonstrates the improvement of transfer learning.

Furthermore, we see that aTransGLM is robust in the sense that its classification error is

always no larger than the single-task method. Both TransGLM and Simple-Agg are not
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as robust as aTransGLM. This demonstrates the benefit of aggregation. We also see the

improvement of transfer learning in Zackular study is the most significant. One potential

reason is that the sample size of Zackular study is the smallest and transfer learning has

the potential to contribute more improvements. In the Baxter study, the target sample size

is significantly larger than the overall auxiliary sample size. Hence, one would expect that

transfer learning may not lead to significant improvements.

Table 3: Misclassification rates given by the single-task method (GLM Lasso), TransGLM,

aTransGLM, and a simple aggregation method (Simple-Agg) described in Section 6 based

on leave-one-out prediction for three studies.

Target Sample Size GLM Lasso TransGLM aTransGLM Simple-Agg

Zackular 83 33.7% 26.7% 25.3% 26.7%

Zeller 127 29.1% 31.5% 27.6% 31.5%

Baxter 488 23.0% 21.3% 21.3% 24.6%

We also construct 95% confidence intervals for each regression coefficient in the target

study. We calculate the confidence intervals using the single-task method (van de Geer

et al., 2014) and our proposed debiased aTransGLM. In the Zackular study (Table 4),

two covariates are significant at 95% confidence level using the single-task method and

three covariates are significant at 95% confidence level using the debiased aTransGLM.

Our findings agree with some existing studies on CRC. For example, BMI has been shown

to be positively correlated with the risk of CRC in multiple studies (Zheng et al., 2018;

Campbell et al., 2021). Clostridium group XVIII has been found negatively correlated with

the occurrence of CRC (Baxter et al., 2014) and Enterobacter can potentially promote CRC

(Yurdakul et al., 2015). The results for Zeller study and Baxter Study are reported in Table

3 and Table 4 in the supplementary files, respectively. In the Zeller study, ten covariates are
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selected using the single-task method with the 95% CI not including zero and 18 covariates

are selected using the transfer learning method with the 95% CI not including zero. In the

Baxter Study, 13 covariates are selected using the single-task method with the 95% CI not

including zero and 16 covariates are selected using the transfer learning method with the

95% CI not including zero.

Table 4: Significant covariates based on the single-task method or the proposed method

at 95% confidence level in the Zackular study. The p-values with ∗ are significant at 95%

confidence level.

no Variables
van de Geer et al. (2014) Debiased aTransGLM

CI p-value CI p-value

1 BMI 0.595± 0.46 0.011* 0.536± 0.45 0.020*

2 Clostridium.XVIII −0.681± 0.51 0.009* −0.555± 0.47 0.021*

3 Enterobacter 0.432± 0.44 0.052 0.445± 0.44 0.047*
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