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Abstract. This paper considers estimation and prediction of a high-
dimensional linear regression in the setting of transfer learning where,
in addition to observations from the target model, auxiliary samples from
different but possibly related regression models are available. When the
set of informative auxiliary studies is known, an estimator and a predictor
are proposed and their optimality is established. The optimal rates of con-
vergence for prediction and estimation are faster than the corresponding
rates without using the auxiliary samples. This implies that knowledge
from the informative auxiliary samples can be transferred to improve the
learning performance of the target problem. When the set of informa-
tive auxiliary samples is unknown, we propose a data-driven procedure
for transfer learning, called Trans-Lasso, and show its robustness to non-
informative auxiliary samples and its efficiency in knowledge transfer. The
proposed procedures are demonstrated in numerical studies and are ap-
plied to a dataset concerning the associations among gene expressions.
It is shown that Trans-Lasso leads to improved performance in gene ex-
pression prediction in a target tissue by incorporating data from multiple
different tissues as auxiliary samples.
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1. Introduction

Modern scientific research is characterized by massive and diverse data
sets. It is of significant interest to integrate different data sets to make a
more accurate prediction and statistical inference. Given a target prob-
lem to solve, transfer learning (Torrey and Shavlik, 2010) aims at trans-
ferring the knowledge from different but related samples to improve the
learning performance of the target problem. A typical example of trans-
fer learning is that one can improve the accuracy of recognizing cars by
using not only the labeled data for cars but some labeled data for trucks
(Weiss et al., 2016). Besides classification, another important transfer
learning problem is linear regressions with auxiliary samples. In biomed-
ical studies, some clinical or biological outcomes are hard to obtain due
to ethical or cost issues, in which case transfer learning can be lever-
aged to boost the prediction and estimation performance by effectively
utilizing information from related studies.

Transfer learning has been applied to problems in medical and bio-
logical studies, including predictions of protein localization (Mei et al.,
2011), biological imaging diagnosis (Shin et al., 2016), drug sensitivity
prediction (Turki et al., 2017), and integrative analysis of “multi-omics”
data, see, for instance, Sun and Hu (2016), Hu et al. (2019), and Wang
et al. (2019). It has also been applied to natural language processing
(Daumé III, 2007) and recommendation systems (Pan and Yang, 2013)
in machine learning. The application that motivated the present paper
is the integration of the gene expression measurements in different issues
for understanding the gene regulations using the Genotype-Tissue Ex-
pression (GTEx) data (https://gtexportal.org/). These datasets are
always high-dimensional with relatively small sample sizes. When study-
ing the gene regulation relationships of a specific tissue or cell-type, it
is possible to incorporate information from other tissues to enhance the
learning accuracy. This motivates us to consider transfer learning in
high-dimensional linear regression.

1.1. Transfer Learning in High-dimensional Linear Regression
Regression analysis is one of the most widely used statistical methods
to understand the association of an outcome with a set of covariates.
In many modern applications, the dimension of the covariates is usually

https://gtexportal.org/
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very high as compared to the sample size. Typical examples include
genome-wide association and gene expression studies. In this paper, we
consider transfer learning in high-dimensional linear models. Formally,
the target model can be written as

y
(0)
i = (x

(0)
i )ᵀβ + ε

(0)
i , i = 1, . . . , n0, (1)

where ((x
(0)
i )ᵀ, y

(0)
i ), i = 1, . . . , n0, are independent samples, β ∈ Rp is

the coefficient vector of interest, and ε
(0)
i , i = 1, . . . , n0 are independently

distributed random noises with E[ε
(0)
i |x

(0)
i ] = 0. In the high-dimensional

regime, where p can be larger and much larger than n0, β is often assumed
to be sparse such that the number of nonzero elements of β, denoted by
s, is much smaller than p.

In the context of transfer learning, we observe additional samples from

K auxiliary studies, That is, we observe ((x
(k)
i )ᵀ, y

(k)
i ) generated from the

auxiliary model

y
(k)
i = (x

(k)
i )ᵀw(k) + ε

(k)
i , i = 1, . . . , nk, k = 1, . . . ,K, (2)

where w(k) ∈ Rp is the regression vector for the k-th study, and ε
(k)
i is the

random noise such that E[ε
(k)
i |x

(k)
i ] = 0. The regression coefficients w(k)

are unknown and different from our target β in general. The number of
auxiliary studies, K, is allowed to grow but practically K may not be
too large. We will study the estimation and prediction of target model

(1) utilizing the primary data ((x
(0)
i )ᵀ, y

(0)
i ), i = 1, . . . , n0, as well as the

data from K auxiliary studies ((x
(k)
i )ᵀ, y

(k)
i ), i = 1, . . . , nk, k = 1, . . . ,K.

If an auxiliary model is “similar” to the target model, we say that
this auxiliary sample/study is informative. In this work, we characterize
the informative level of the k-th auxiliary study using the sparsity of the
difference between w(k) and β. Let δ(k) = β − w(k) denote the contrast
between w(k) and β. The set of informative auxiliary samples are those
whose contrasts are sufficiently sparse:

Aq = {1 ≤ k ≤ K : ‖δ(k)‖q ≤ h}, (3)

for some q ∈ [0, 1]. The set Aq contains the auxiliary studies whose con-
trast vectors have `q-sparsity at most h and is called the informative set.
It will be seen later that as long as h is relatively small compared to the
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sparsity of β, the studies in Aq can be useful in improving the predic-
tion and estimation of β. In the case of q = 0, the set Aq corresponds
to the auxiliary samples whose contrast vectors have at most h nonzero
elements. We also consider approximate sparsity constraints (q ∈ (0, 1]),
which allows all of the coefficients to be nonzero but their magnitude de-
cays at a relatively rapid rate. For any q ∈ [0, 1], smaller h implies that
the auxiliary samples in Aq are more informative; larger cardinality of
Aq (|Aq|) implies that a larger number of informative auxiliary samples.
Therefore, smaller h and larger |Aq| should be favorable. We allow Aq
to be empty in which case none of the auxiliary samples is informative.
For the auxiliary samples outside of Aq, we do not assume sparse δ(k)

and hence w(k) can be very different from β for k /∈ Aq.

In polygenic risk score (PRS) prediction and gene-expression partial-
correlation analysis, this similarity characterization of two different high
dimensional regression models is motivated by commonly adopted as-
sumptions. In PRS prediction, for example, high-dimensional sparse re-
gression models are commonly assumed (Mak et al., 2017). In addition,
it has been observed that many complex traits have a shared genetic eti-
ology, including various autoimmune diseases (Li et al., 2015; Zhernakova
et al., 2009) and psychiatric disorders (Lee et al., 2013; Cross-Disorder
Group of the Psychiatric Genomics Consortium, 2019). The similarity
characterization we proposed captures the sparse nature of genome-wide
association data and shared genetic etiology of multiple genetically re-
lated traits. In the gene expression data analysis, one is interested in
understanding how a set of genes regulate another gene based on data
measured in different tissues. Such an analysis provides useful insights
into gene regulatory networks, which are often sparse. In addition, many
tissues have shared regulatory relationships among the genes (Pierson
et al., 2015; Fagny et al., 2017). In such applications, we also expect
sparse and similar regression coefficients for the models assumed for dif-
ferent tissues.

There is a paucity of methods and fundamental theoretical results for
high-dimensional linear regression in the transfer learning setting. In the
case where the set of informative auxiliary samples Aq is known, there is
a lack of rate optimal estimation and prediction methods. A closely re-
lated topic is multi-task learning (Ando and Zhang, 2005; Lounici et al.,
2009; Agarwal et al., 2012), where the goal is to estimate multiple mod-
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els simultaneously. The multi-task learning considered in Lounici et al.
(2009) estimates multiple high-dimensional sparse linear models under
the assumption that the supports of all the regression coefficients are the
same. In multi-task learning, different regularization formats have been
considered to model the similarity among different studies (Chen et al.,
2010; Danaher et al., 2014; Dondelinger et al., 2020).

The goal of transfer learning is however different, as one is only in-
terested in estimating the target model and this remains to be a largely
unsolved problem. Cai and Wei (2021) studied the minimax and adaptive
methods for nonparametric classification in the transfer learning setting
under the assumption that all the auxiliary samples are similar to the
target distribution (Cai and Wei, 2021, Definition 5). In a more challeng-
ing setting where the set Aq is unknown as is typical in real applications,
it is unclear how to avoid the effects of adversarial auxiliary samples.
Bastani (2020) studied estimation and prediction in high-dimensional
linear models with one informative auxiliary study and q = 1, where the
sample size of the auxiliary study is larger than the number of covari-
ates. The current work considers more general scenarios under weaker
assumptions. Specifically, the sample size of auxiliary samples can be
smaller than the number of covariates and some auxiliary studies can
be non-informative, which is more practical in applications. Additional
challenges include the heterogeneity among the design matrices, which
does not arise in the conventional high-dimensional regression problems
and hence requires novel proposals.

The problem we study here is certainly related to the high-dimensional
prediction and estimation in the conventional settings where only sam-
ples from the target model are available. Several penalized or constrained
minimization methods have been proposed for prediction and estima-
tion for high-dimensional linear regression; see, for example, Tibshirani
(1996); Fan and Li (2001); Zou (2006); Candes and Tao (2007); Zhang
(2010). The minimax optimal rates for estimation and prediction are
studied in Raskutti et al. (2011) and Verzelen (2012).

1.2. Our Contributions
In the setting where the informative set Aq is known, we propose a
transfer learning algorithm, called Oracle Trans-Lasso, for estimation
of the target regression vector and prediction and prove its minimax
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optimality under mild conditions. The results demonstrate a faster rate
of convergence when Aq is non-empty and h is sufficiently smaller than
s, in which case the knowledge from the informative auxiliary samples
can be optimally transferred to substantially improve estimation and
prediction of the regression problem under the target model.

In the more challenging setting where Aq is unknown a priori, we
introduce a data-driven algorithm, called Trans-Lasso, to adapt to the
unknown Aq. The adaption is achieved by aggregating a number of can-
didate estimators. The desirable properties of the aggregation methods
guarantee that the Trans-Lasso does not perform much worse than the
best one among the candidate estimators. We construct the candidate
estimators and demonstrate the robustness and the efficiency of Trans-
Lasso under mild conditions. In terms of robustness, the Trans-Lasso is
guaranteed to be not much worse than the Lasso estimator using only
the primary samples no matter how adversarial the auxiliary samples
are. In terms of efficiency, the knowledge from a subset of the informa-
tive auxiliary samples can be transferred to the target problem under
proper conditions. Furthermore, If the contrast vectors in the informa-
tive samples are sufficiently sparse, the Trans-Lasso estimator performs
as if the informative set Aq is known.

When the distributions of the design matrices are distinct in differ-
ent samples, the effect of heterogeneous designs in transfer learning is
studied. The performance of the proposed algorithm is investigated the-
oretically and numerically in various settings.

1.3. Organization and Notation
The rest of this paper is organized as follows. Section 2 focuses on the
setting where the informative set Aq is known and with the sparsity
in (3) measured in `1-norm. A transfer learning algorithm is proposed
for estimation and prediction of the target parameter and its minimax
optimality is established. In Section 3, we study the estimation and pre-
diction of the target model when Aq is unknown for q = 1. In Section 4,
we justify the theoretical performance of our proposals under heteroge-
neous designs. In Section 5, the numerical performance of the proposed
methods is studied in various settings. In Section 6, the proposed algo-
rithms are applied to the GTEx data to investigate the association of one
gene with other genes in a target tissue by leveraging data measured on



Transfer learning in high-dimensional regression 7

other related tissues or cell types. The proofs and results for `q-sparse
contrasts with q ∈ [0, 1) are provided in the supplementary materials (Li
et al., 2020).

We finish this section with notation. Let X(0) ∈ Rn0×p and y(0) ∈ Rn0

denote the design matrix and the response vector for the primary data,
respectively. Let X(k) ∈ Rnk×p and y(k) ∈ Rnk denote the design matrix
and the response vector for the k-th auxiliary data, respectively. For
a class of matrices Rl ∈ Rnl×p0 , l ∈ L, we use {Rl}l∈L to denote Rl,
l ∈ L. Let nAq

=
∑

k∈Aq
nk. For a generic semi-positive definite matrix

Σ ∈ Rm×m, let Λmax(Σ) and Λmin(Σ) denote the largest and smallest
eigenvalues of Σ, respectively. Let Tr(Σ) denote the trace of Σ. Let ej
be such that its j-th element is 1 and all other elements are zero. Let
a∨ b denote max{a, b} and a∧ b denote min{a, b}. We use c, c0, c1, . . . to
denote generic constants which can be different in different statements.
Let an = O(bn) and an . bn denote |an/bn| ≤ c for some constant c when
n is large enough. Let an � bn denote |an/bn| → c for some constant c
as n → ∞. Let an = OP (bn) and an .P bn denote P(|an/bn| ≤ c) → 1
for some constant c < ∞. Let an = oP (bn) denote P(|an/bn| > c) → 0
for any constant c > 0.

2. Estimation with Known Informative Auxiliary Samples

We consider in this section transfer learning for high-dimensional linear
regression when the informative set Aq is known. The focus is on the
`1-sparse characterization of the contrast vectors. The notation A1 will
be abbreviated as A in the sequel without special emphasis. Section
C in the supplementary materials generalizes the sparse contrasts from
`1-constraint to `q-constraint for q ∈ [0, 1) and presents a rate-optimal
estimator in this setting.

2.1. Oracle Trans-Lasso Algorithm
We propose a transfer learning algorithm, called Oracle Trans-Lasso, for
estimation and prediction when A is known. As an overview, we first
compute an initial estimator using all the informative auxiliary samples.
However, its probabilistic limit is biased from β as w(k) 6= β in general.
We then correct its bias using the primary data in the second step. Al-
gorithm 1 formally presents our proposed Oracle Trans-Lasso algorithm.
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Algorithm 1: Oracle Trans-Lasso algorithm

Input : Primary data (X(0), y(0)) and informative auxiliary
samples {X(k), y(k)}k∈A

Output: β̂
Step 1. Compute

ŵA = arg min
w∈Rp

{ 1

2nA

∑
k∈A
‖y(k) −X(k)w‖22 + λw‖w‖1

}
(4)

for λw = c1

√
log p/nA with some constant c1.

Step 2. Let

β̂ = ŵA + δ̂A, (5)

where

δ̂A = arg min
δ∈Rp

{
1

2n0
‖y(0) −X(0)(ŵA + δ)‖22 + λδ‖δ‖1

}
(6)

for λδ = c2

√
log p/n0 with some constant c2.

In Step 1, ŵA is realized based on the Lasso (Tibshirani, 1996) using
all the informative auxiliary samples. Its probabilistic limit is wA, which
can be defined via the following moment condition

E

[∑
k∈A

(X(k))ᵀ(y(k) −X(k)wA)

]
= 0.

Denoting E[x
(k)
i (x

(k)
i )ᵀ] = Σ(k), wA has the following explicit form:

wA = β + δA (7)

for δA =
∑

k∈A αkδ
(k) and αk = nk/nA given that Σ(k) = Σ(0) for all

k ∈ A. That is, the probabilistic limit of ŵA, wA, has bias δA, which is
a weighted average of δ(k). Step 1 is related to the approach for high-
dimensional misspecified models (Bühlmann and van de Geer, 2015) and
moment estimators. The estimator ŵA converges relatively fast as the
sample size used in Step 1 is relatively large. Step 2 corrects the bias, δA,
using the primary samples. In fact, δA is a sparse high-dimensional vector
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whose `1-norm is no larger than h. Hence, the error of step 2 is under
control for a relatively small h. The choice of the tuning parameters λw
and λδ will be further specified in Theorem 1.

We compare the proposed Oracle Trans-Lasso method to the multi-
task regression methods, say Section 3.4.3 of Agarwal et al. (2012) and
Danaher et al. (2014). The Oracle Trans-Lasso does not penalize the dif-
ferences among the regression coefficients in the auxiliary studies. This
is again because the focus of transfer learning is only the target study.
Theoretically, extra penalization terms and the joint analysis of multiple
estimators may not help improve the estimation accuracy of the param-
eter of interest.

2.2. Theoretical Properties of Oracle Trans-Lasso
Formally, the parameter space we consider can be written as

Θq(s, h) =

{
B = (β, δ(1), . . . , δ(K)) : ‖β‖0 ≤ s, max

k∈Aq

‖δ(k)‖q ≤ h
}

(8)

for Aq ⊆ {1, . . . ,K} and q ∈ [0, 1]. We study the rate of convergence for
the Oracle Trans-Lasso algorithm under the following two conditions.

Condition 1. For each k ∈ A∪{0}, each row of X(k) is i.i.d. Gaus-
sian distributed with mean zero and covariance matrix Σ. The smallest
and largest eigenvalues of Σ are bounded away from zero and infinity,
respectively.

Condition 2. For each k ∈ A∪ {0}, E[(y
(k)
i )2] is finite and the ran-

dom noises ε
(k)
i are i.i.d. sub-Gaussian with mean zero and variance

σ2
k. For some constant C0, it holds that maxk∈A∪{0} E[exp{tε(k)

i }] ≤
exp{t2C0} for all t ∈ R.

Condition 1 assumes Gaussian designs, which provides convenience
for bounding the restricted eigenvalues of sample covariance matrices.
Moreover, the designs are identically distributed for k ∈ A ∪ {0}. This
assumption simplifies some technical conditions and will be relaxed in
Section 4. We mention that the conditions on the eigenvalues of Σ can
be replaced with some eigenvalue conditions restricted to a convex cone.
Condition 2 assumes sub-Gaussian random noises for primary and infor-
mative auxiliary samples and the second moment of the response vector



10 Li, Cai and Li

is finite. Conditions 1 and 2 make no assumptions on the non-informative
auxiliary samples as they are not used in the Oracle Trans-Lasso algo-
rithm. In the next theorem, we prove the convergence rate of the Oracle
Trans-Lasso. Let ηh = h

√
log p/n0 ∧ h2.

Theorem 1 (Convergence Rate of Oracle Trans-Lasso).
Assume that Condition 1 and Condition 2 hold true. Suppose that A is
known with h . s

√
log p/n0 and n0 . nA. We take λw =

maxk∈A c1

√
E[(y

(k)
i )2] log p/nA and λδ = c2

√
log p/n0 for some suffi-

ciently large constants c1 and c2. If s log p/nA + h(log p/n0)1/2 = o(1),
then there exists some positive constant c1 such that

inf
B∈Θ1(s,h)

P
(

1

n0
‖X(0)(β̂ − β)‖22 ∨ ‖β̂ − β‖22 .

s log p

nA + n0
+
s log p

n0
∧ ηh

)
≥ 1− exp(−c1 log p). (9)

where B = {β,w(1), . . . , w(k)} denotes all the unknown parameters. The-

orem 1 provides the convergence rate of β̂ for any true parameters in
Θ1(s, h) when an informative set A is known. We illustrate Theorem 1
by contrasting to the estimation results of the Lasso. First, the results
of Theorem 1 hold under a weaker condition on s, i.e., s log p = o(nA)
when nA & n0, while s log p = o(n0) is always assumed in the single-task
regression. Hence, the Oracle Trans-Lasso can deal with more challeng-
ing scenarios with less sparse target parameter. Second, the right-hand
side of (9) is sharper than the convergence rate of Lasso, s log p/n0, if

h � s
√

log p/n0 and nA � n0. That is, if the informative auxiliary
samples have contrast vectors sufficiently sparser than β and the total
sample size is significantly larger than the primary sample size, then the
knowledge from the auxiliary samples can significantly improve the learn-
ing performance of the target model. The condition for improvement,
h � s

√
log p/n0, allows a wide range of h. For example, the typical

regime for single-task regression is s log p/n0 = O(1) and it implies that

s
√

log p/n0 can be as large as
√
n0/ log p. Hence, the condition for im-

provement of Theorem 1 allows h to be as large as
√
n0/ log p. Larger

the s, weaker the condition for improvement.
The sample size requirement in Theorem 1 guarantees the lower re-

stricted eigenvalues of the sample covariance matrices in use are bounded
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away from zero with high probability. The proof of Theorem 1 involves
an error analysis of ŵA and that of δ̂A. While wA may be neither `0-
nor `1-sparse, it can be decomposed into an `0-sparse component plus an
`1-sparse component as illustrated in (7). Exploiting this sparse struc-
ture is a key step in proving Theorem 1. Regarding the choice of tuning

parameters, λw depends on the second moment of y
(k)
i , which can be

consistently estimated by ‖y(k)‖22/nk. The other tuning parameter λδ
depends on the noise levels, which can be estimated by the scaled Lasso
(Sun and Zhang, 2012). In practice, cross validation can be performed
for selecting tuning parameters.

We now establish the minimax lower bound for estimating β in the
transfer learning setup, which shows the minimax optimality of the Or-
acle Trans-Lasso algorithm in Θ1(s, h).

Theorem 2 (Minimax lower bound for q = 1). Assume Condi-
tion 1 and Condition 2. If max{s log p/(nA+n0), h(log p/n0)1/2} = o(1),
then

inf
β̂

sup
B∈Θ1(s,h)

P
(
‖β̂ − β‖22 ≥ c1

s log p

nA + n0
+ c2

s log p

n0
∧ ηh

)
≥ 1

2

for some positive constants c1 and c2.

Theorem 2 implies that β̂ obtained by the Oracle Trans-Lasso algorithm
is minimax rate optimal in Θ1(s, h) under the conditions of Theorem 1.
To understand the lower bound, the term s log p/(nA+n0) is the optimal
convergence rate when w(k) = β for all k ∈ A. This is an extremely ideal
case where we have nA + n0 i.i.d. samples from the target model. The
second term in the lower bound is the optimal convergence rate when
w(k) = 0 for all k ∈ A, i.e., the auxiliary samples are not helpful at
all. Let Bq(r) = {u ∈ Rp : ‖u‖q ≤ r} denote the `q-ball with radius
r centered at zero. In this case, the definition of Θ1(s, h) implies that
β ∈ B0(s) ∩ B1(h) and the second term in the lower bound is indeed the
minimax optimal rate for estimation when β ∈ B0(s) ∩ B1(h) with n0

i.i.d. samples (Tsybakov, 2014).

3. Unknown Set of Informative Auxiliary Samples

The Oracle Trans-Lasso algorithm is based on the knowledge of the infor-
mative set A. In some applications, the informative set A is not given,
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which makes the transfer learning problem more challenging. In this
section, we propose a data-driven method for estimation and prediction
when A is unknown. The proposed algorithm is described in detail in
Sections 3.1 and 3.2. Its theoretical properties are studied in Section 3.3.

3.1. The Trans-Lasso Algorithm

Our proposed algorithm, called Trans-Lasso, consists of two main steps.
First, we construct a collection of candidate estimators, each of which
is based on an estimate of A. Second, we perform an aggregation step
(Rigollet and Tsybakov, 2011; Dai et al., 2012, 2018) on these candidate
estimators. Under proper conditions, the aggregated estimator is guar-
anteed to be not much worse than the best candidate estimator under
consideration in terms of prediction. For technical reasons, we need the
candidate estimators and the samples for aggregation to be independent.
Hence, we start with sample splitting. We need some more notation. For
a generic estimate of β, b, denote its sum of squared prediction error as

Q̂(I, b) =
∑
i∈I
‖y(0)
i − (x

(0)
i )ᵀb‖22,

where I is a subset of {1, . . . , n0}. Let ΛL+1 = {ν ∈ RL+1 : νl ≥
0,
∑L

l=0 νl = 1} denote an L-dimensional simplex. The Trans-Lasso al-
gorithm is presented in Algorithm 2.

As an illustration, steps 2 and 3 of the Trans-Lasso algorithm con-
struct some initial estimates of β, β̂(Ĝl). They are computed using the

Oracle Trans-Lasso algorithm by treating each Ĝl as the set of infor-
mative auxiliary samples. We construct Ĝl to be some estimates of A
using the procedure provided in Section 3.2. Step 4 is based on the
Q-aggregation proposed in Dai et al. (2012) with a uniform prior, a
Kullback–Leibler penalty, and a simplified tuning parameter. The Q-
aggregation can be viewed as a weighted version of least square aggre-
gation and exponential aggregation (Rigollet and Tsybakov, 2011) and
it has been shown to be rate optimal both in expectation and with high



Transfer learning in high-dimensional regression 13

probability for model selection aggregation problems.

Algorithm 2: Trans-Lasso Algorithm

Input : Primary data (X(0), y(0)) and samples from K auxiliary
studies {X(k), y(k)}Kk=1.

Output: β̂θ̂.
Step 1. Let I be a random subset of {1, . . . , n0} such that
|I| ≈ c0n0 with some constant 0 < c0 < 1. Let Ic = {1, . . . , n0} \ I.

Step 2. Construct L+ 1 candidate sets of A,
{
Ĝ0, Ĝ1, . . . , ĜL

}
such that Ĝ0 = ∅ and Ĝ1, . . . , ĜL are based on (14) using(
X

(0)
I,. , y

(0)
I

)
and {X(k), y(k)}Kk=1.

Step 3. For each 0 ≤ l ≤ L, run the Oracle Trans-Lasso algorithm

with primary sample (X
(0)
I,. , y

(0)
I ) and auxiliary samples

{X(k), y(k)}k∈Ĝl
. Denote the output as β̂(Ĝl) for 0 ≤ l ≤ L.

Step 4. Compute

θ̂ = (10)

arg min
θ∈ΛL+1

{
Q̂
(
Ic,

L∑
l=0

β̂(Ĝl)θl
)

+

L∑
l=0

θlQ̂(Ic, β̂(Ĝl)) +
2λθ
n0

L∑
l=0

θl log(θl)

}

for some λθ > 0. Output

β̂θ̂ =

L∑
l=0

θ̂lβ̂(Ĝl). (11)

Model selection aggregation is an effective method for the transfer
learning task under consideration. On one hand, it guarantees the ro-
bustness of Trans-Lasso in the following sense. Notice that β̂(Ĝ0) cor-
responds to the single-task Lasso estimator and it is always included in
our dictionary. The purpose is that, invoking the property of model se-

lection aggregation, the performance of β̂θ̂ is guaranteed to be not much
worse than the performance of the original Lasso estimator under mild
conditions. This shows that the performance of Trans-Lasso will not be
ruined by adversarial auxiliary samples. Formal statements are provided
in Section 3.3. On the other hand, the gain of Trans-Lasso relates to the
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qualities of Ĝ1, . . . , ĜL. If

P
(
Ĝl ⊆ A, for some 1 ≤ l ≤ L

)
→ 1, (12)

i.e., Ĝl is a non-empty subset of the informative set A, then the model

selection aggregation property implies that the performance of β̂θ̂ is
not much worse than the performance of the Oracle Trans-Lasso with∑

k∈Ĝl
nk informative auxiliary samples. Ideally, one would like to achieve

Ĝl = A for some 1 ≤ l ≤ L with high probability. However, it can rely on
strong assumptions that may not be guaranteed in practical situations.

To motivate our constructions of Ĝl, let us first point out a naive con-
struction of candidate sets, which consists of 2K candidates. These candi-
dates are all different combinations of {1, . . . ,K}, denoted by Ĝ1, . . . , Ĝ2K .
It is obvious that A is an element of these candidate sets. However, the
number of candidates is too large and it can be computationally bur-
densome. Furthermore, the cost of aggregation can be significantly high,
which is of order K/n0 as will be seen in Lemma 1. In contrast, we would
like to pursue a much smaller number of candidate sets such that the cost
of aggregation is almost negligible and (12) can be achieved under mild
conditions. We introduce our proposed construction of candidate sets in
the next subsection.

3.2. Constructing the Candidate Sets for Aggregation
As illustrated in Section 3.1, the goal of Step 2 is to have a class of candi-
date sets, {Ĝ0, . . . , ĜL}, that satisfy (12) under certain conditions. Our
idea is to exploit the sparsity patterns of the contrast vectors. Recall that
the definition of A implies that {δ(k)}k∈A are sparser than {δ(k)}k∈Ac ,
where Ac = {1, . . . ,K}\A. This property motivates us to find a sparsity

index R(k) and its estimator R̂(k) for each 1 ≤ k ≤ K such that

max
k∈Ao

R(k) < min
k∈Ac

R(k) and P
(

max
k∈Ao

R̂(k) < min
k∈Ac

R̂(k)

)
→ 1, (13)

where Ao is some subset of A. In words, the sparsity indices in Ao are
no larger than the sparsity indices in Ac and so are their estimators with
high probability. To utilize (13), we can define the candidate sets as

Ĝl =
{

1 ≤ k ≤ K : R̂(k) is among the first l smallest of all
}

(14)
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for 1 ≤ l ≤ K. That is, Ĝl is the set of auxiliary samples whose estimated
sparsity indices are among the first l smallest. A direct consequence of
(13) and (14) is that P(Ĝ|Ao| = Ao) → 1 and hence the desirable prop-
erty (12) is satisfied. To achieve the largest gain with transfer learning,
we would like to find proper sparsity indices such that (13) holds for∑

k∈Ao nk as large as possible. Notice that ĜK+1 = {1, . . . ,K} is always
included as candidates according to (14). Hence, in the special cases
where all the auxiliary samples are informative or none of the auxiliary
samples are informative, it holds that Ĝ|A| = A and the Trans-Lasso
is not much worse than the Oracle Trans-Lasso. The more challenging
cases are 0 < |A| < K.

As {δ(k)}k∈Ac are not necessarily sparse, the estimation of δ(k) or
functions of δ(k), 1 ≤ k ≤ K, is not trivial. As an example, an intuitive
sparsity index can be ‖δ(k)‖1 and its estimate is ‖β̂(Ĝ0)− ŵ(k)‖1, where
ŵ(k) is the Lasso estimate of w(k) based on the k-th study. However, such
a Lasso-based estimate is not guaranteed to converge to the oracle ‖δ(k)‖1
when δ(k) is non-sparse. Therefore, we consider using R(k) = ‖Σδ(k)‖22,
which is a function of the population-level marginal statistics, as the ora-
cle sparsity index for k-th auxiliary sample. The advantage of R(k) is that
it has a natural unbiased estimate even when δ(k) is non-sparse. Let us re-
late R(k) to the sparsity of δ(k) using a Bayesian characterization of sparse

vectors assuming Σ(k) = Σ for all 0 ≤ k ≤ K. If δ
(k)
j are i.i.d. Laplacian

distributed with mean zero and variance ν2
k for each k, then it follows

from the properties of Laplacian distribution (Liu and Kozubowski, 2015)
that E[‖δ(k)‖1] � E1/2[‖Σδ(k)‖22]. Hence, the rank of E[‖Σδ(k)‖22] is the
same as the rank of E[‖δ(k)‖1]. As maxk∈A ‖δ(k)‖1 < mink∈Ac ‖δ(k)‖1, it
is reasonable to expect maxk∈A ‖Σδ(k)‖22 < mink∈Ac ‖Σδ(k)‖22. The above
derivation holds for many other zero mean prior distributions besides
Laplacian. This illustrates our motivation for considering R(k) as the
oracle sparsity index.

We next introduce the estimated version, R̂(k), based on the pri-

mary data {(x(0)
i )ᵀ, y

(0)
i }i∈I (after sample splitting) and auxiliary sam-

ples {X(k), y(k)}Kk=1. We first perform a SURE screening (Fan and Lv,
2008) on the marginal statistics to reduce the effects of random noises.
We summarize our proposal for Step 2 of the Trans-Lasso as follows
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(Algorithm 3). Let n∗ = min0≤k≤K nk.

Algorithm 3: Step 2 of the Trans-Lasso Algorithm

Step 2.1. For 1 ≤ k ≤ K, compute the marginal statistics

∆̂(k) =
1

nk

nk∑
i=1

x
(k)
i y

(k)
i −

1

|I|
∑
i∈I

x
(0)
i y

(0)
i . (15)

For each k ∈ {1, . . . ,K}, let T̂k be obtained by SURE screening
such that

T̂k =
{

1 ≤ j ≤ p : |∆̂(k)
j | is among the first t∗ largest of all

}
for a fixed t∗ = nα∗ , 0 ≤ α < 1.
Step 2.2. Define the estimated sparse index for the k-th auxiliary
sample as

R̂(k) =
∥∥∥∆̂

(k)

T̂k

∥∥∥2

2
. (16)

Step 2.3. Compute Ĝl as in (14) for l = 1, . . . , L.

One can see that ∆̂(k) are empirical marginal statistics such that
E[∆̂(k)] = Σδ(k) for k ∈ A. The set T̂k is the set of first t∗ largest
marginal statistics for the k-th sample. The purpose of screening the
marginal statistics is to reduce the magnitude of noise. Notice that the
un-screened version ‖∆̂(k)‖22 is a sum of p random variables and it con-
tains noise of order p/(nk ∧ n0), which diverges fast as p is much larger
than the sample sizes. By screening with t∗ of order nα∗ , α < 1, the errors
induced by the random noises is under control. In practice, the auxiliary
samples with very small sample sizes can be removed from the analysis
as their contributions to the target problem is mild. Desirable choices
of T̂k should keep the variation of Σδ(k) as much as possible. Under
proper conditions, SURE screening can consistently select a set of strong
marginal statistics and hence is appropriate for the current purpose. In
Step 2.2, we compute R̂(k) based on the marginal statistics which are se-
lected by SURE screening. In practice, different choices of t∗ may lead to
different realizations of Ĝl. One can compute multiple sets of {R̂(k)}Kk=1

with different t∗ which give multiple sets of {Ĝl}Kl=1. It will be seen from
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Lemma 1 that a finite number of choices on t∗ does not affect the rate of
convergence.

3.3. Theoretical Properties of Trans-Lasso
In this subsection, we derive the theoretical guarantees for the Trans-
Lasso algorithm. We first establish the model selection aggregation type

of results for the Trans-Lasso estimator β̂θ̂.

Lemma 1 (Q-aggregation for Trans-Lasso). Assume that Con-

dition 1 and Condition 2 hold true. Let θ̂ be computed via (10) with
λθ ≥ 4σ2

0. With probability at least 1− t, it holds that

1

|Ic|

∥∥∥X(0)
Ic,.(β̂

θ̂ − β)
∥∥∥2

2
≤ min

0≤l≤L

1

|Ic|

∥∥∥X(0)
Ic,.(β̂(Ĝl)− β)

∥∥∥2

2
+
λθ log(L/t)

n0
. (17)

If L ≤ c1n0 for some small enough constant c1, then∥∥∥β̂θ̂ − β∥∥∥2

2
.P min

0≤l≤L
‖β̂(Ĝl)− β‖22 +

logL

n0
. (18)

Lemma 1 implies that the performance of β̂θ̂ only depends on the best
candidate regardless of the performance of other candidates under mild
conditions. As commented before, this result guarantees the robustness
and efficiency of Trans-Lasso, which can be formally stated as follows. As

the original Lasso is always in our dictionary, (17) and (18) imply that β̂θ̂

is not much worse than the Lasso in prediction and estimation. Formally,
“not much worse” refers to the last term in (17), which can be viewed as
the cost of “searching” for the best candidate model within the dictionary
which is of order logL/n0. This term is almost negligible, say, when
L = O(K), which corresponds to our constructed candidate estimators.

This demonstrates the robustness of β̂θ̂ to adversarial auxiliary samples.
Furthermore, if (12) holds, then the prediction and estimation errors of
Trans-Lasso are comparable to the Oracle Trans-Lasso using the auxiliary
samples in Ao.

The prediction error bound in (17) follows from Corollary 3.1 in Dai
et al. (2012). However, the aggregation methods do not have theoretical
guarantees in estimation errors in general. Indeed, an estimator with
`2-error guarantee is crucial for more challenging tasks, such as out-of-
sample prediction and inference. For our transfer learning task, we show
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in (18) that the estimation error is of the same order if the cardinality of
the dictionary is L ≤ cn0 for some small enough c. For our constructed
dictionary, it suffices to require K ≤ cn0. In many practical applica-
tions, K is relatively small compared to the sample sizes and hence this
assumption is not very restrictive.

In the following, we provide sufficient conditions such that the de-
sirable property (13) holds with R̂(k) defined in (16) and hence (12) is
satisfied. For each k ∈ Ac, define a set

Hk =
{

1 ≤ j ≤ p : |Σ(k)
j,. w

(k) − Σ
(0)
j,. β| > n−κ∗ , κ < α/2

}
. (19)

Recall that α < 1 is defined such that t∗ = nα. In fact, Hk is the set of
“strong” marginal statistics that can be consistently selected into T̂k for

each k ∈ Ac. We see that Σ
(k)
j,. w

(k) − Σ
(0)
j,. β = Σj,.δ

(k) if Σ(k) = Σ(0) for

k ∈ Ac. The definition of Hk in (19) allows for heterogeneous designs
among non-informative auxiliary samples.

Condition 3. (a) For each k ∈ Ac, each row of X(k) is i.i.d. Gaus-
sian with mean zero and covariance matrix Σ(k) and maxk∈Ac Λmax(Σ(k))

is finite. For each k ∈ Ac, the random noises ε
(k)
i are i.i.d. Gaussian

with mean zero and variance σ2
k and E[(y

(k)
i )2] is finite.

(b) It holds that log p ∨ logK ≤ c1
√
n∗ for a small enough constant

c1. Moreover,

min
k∈Ac

∑
j∈Hk

|Σ(k)
j,. w

(k) − Σ
(0)
j,. β|

2 ≥ c2 log p

n1−α
∗

(20)

for some constant c2 > 0.

The Gaussian assumptions in Condition 3(a) guarantee the desirable
properties of SURE screening for the non-informative auxiliary studies.
In fact, the largest eigenvalue of Σ(k), k ∈ Ac can grow as O(nτ∗) for
some τ ≥ 0 and τ + α < 1 following the proof in Fan and Lv (2008).
The Gaussian assumption can be relaxed to be sub-Gaussian random
variables according to some recent studies (Ahmed and Bajwa, 2019). For
the conciseness of the proof, we consider Gaussian distributed random
variables with bounded eigenvalues. Condition 3(b) puts a constraint

on the relative dimensions. It is trivial in the regime that p ∨ K ≤ nξ∗
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for any finite ξ > 0. The expression (20) requires that for each k ∈
Ac, there exists a subset of strong marginal statistics with not-so-small
cardinality. This condition is mild by choosing α such that log p� n1−α

∗
and α = 1/2 is an obvious choice revoking the first part of Condition

3(b). For instance, if mink∈Ac ‖E[∆̂(k)]‖∞ ≥ c0 > 0, then (20) holds with
any α ≤ 1/2. In words, a sufficient condition for (20) is that at least one
marginal statistic in the k-th study is of constant order for k ∈ Ac. We
see that larger n∗ makes Condition 3 weaker. As mentioned before, it
is helpful to remove the auxiliary samples with very small sample sizes
from the analysis.

In the next theorem, we demonstrate the theoretical properties of R̂(k)

and provide a complete analysis of the Trans-Lasso algorithm. Let Ao
be a subset of A such that

Ao =

k ∈ A : ‖Σ(0)δ(k)‖22 ≤ c1 min
k∈Ac

∑
j∈Hk

|Σ(k)
j,. w

(k) − Σ
(0)
j,. β|

2


for some small constant c1 < 1 and Hk defined in (19). In general, one
can see that the informative auxiliary samples with sparser δ(k) are more
likely to be included intoAo. Specially, the fact that maxk∈A ‖Σ(0)δ(k)‖22 ≤
‖Σ(0)‖22h2 implies Ao = A when h is sufficiently small. We will show (13)

for such Ao with R̂(k) defined in (16). Let nAo =
∑

k∈Ao nk.

Theorem 3 (Convergence Rate of the Trans-Lasso). Assume
Conditions 1, 2, and 3. Then

P
(

max
k∈Ao

R̂(k) < min
k∈Ac

R̂(k)

)
→ 1. (21)

Let β̂θ̂ be computed using the Trans-Lasso algorithm with λθ ≥ 4σ2
0. If

s log p/(nAo + n0) + {h(log p/n0)1/2} ∧ (s log p/n0) = o(1) and K ≤ cn0

for a sufficiently small constant c > 0, then

inf
B∈Θ1(s,h)

P
(

1

|Ic|

∥∥∥X(0)
Ic,.(β̂

θ̂ − β)
∥∥∥2

2
∨
∥∥∥β̂θ̂ − β∥∥∥2

2
.

s log p

nAo + n0
+

s log p

n0
∧ ηh +

logK

n0

)
→ 1 (22)

as (n0, nAo , p)→∞.
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Remark 1. Under the conditions of Theorem 3, if

‖Σ(0)‖22h2 ≤ c min
k∈Ac

∑
j∈Hk

|Σ(k)
j,. w

(k) − Σ
(0)
j,. β|

2 for some c < 1,

then P
(

maxk∈A R̂
(k) < mink∈Ac R̂(k)

)
→ 1 and as (n0, nA, p)→∞,

inf
B∈Θ1(s,h)

P
(

1

|Ic|

∥∥∥X(0)
Ic,.(β̂

θ̂ − β)
∥∥∥2

2
∨
∥∥∥β̂θ̂ − β∥∥∥2

2
.

s log p

nA + n0
+

s log p

n0
∧ ηh +

logK

n0

)
→ 1.

Theorem 3 establishes the convergence rate of the Trans-Lasso when A
is unknown. The result in (21) implies the estimated sparse indices in
Ao and in Ac are separated with high probability. As illustrated before,
a consequence of (21) is (12) for the candidate sets Ĝl defined in (14).
Together with Theorem 1 and Lemma 1, we arrive at (22).

It is worth mentioning that Condition 3 is only employed to show
the gain of Trans-Lasso. The robustness property of Trans-Lasso holds
without any conditions on the non-informative samples (Lemma 1). In
practice, missing a few informative auxiliary samples may not be a grave
concern. One can see that when nAo is large enough such that the first
term on the right-hand side of (22) no longer dominates, increasing the
number of auxiliary samples will not improve the convergence rate. In
contrast, it is more important to guarantee that the estimator is not
affected by the adversarial auxiliary samples. The empirical performance
of Trans-Lasso is carefully studied in Section 5.

4. Extensions to Heterogeneous Designs

In this section, we extend the algorithms and theoretical results devel-
oped in Sections 2 and 3 to the case where the covariates have different
covariance structures in different studies.

The Oracle Trans-Lasso algorithm proposed in Section 2 can be di-
rectly applied to the setting where the design matrices are moderately
heterogeneous. Formally, we first introduce a relaxed version of Condi-
tion 1 as follows. Define

CΣ = 1 + max
j≤p

max
k∈A

∥∥∥eᵀj (Σ(k) − Σ(0)
)(∑

k∈A
αkΣ

(k)
)−1∥∥∥

1
,
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which characterizes the differences between Σ(k) and Σ(0) for k ∈ A.
Notice that CΣ is a constant if max1≤j≤p ‖eᵀj (Σ(k) − Σ(0))‖0 ≤ C < ∞
for all k ∈ A, where examples include block diagonal Σ(k) with constant
block sizes or banded Σ(k) with constant bandwidths for k ∈ A.

Condition 4. For each k ∈ A∪{0}, each row of X(k) is i.i.d. Gaus-
sian with mean zero and covariance matrix Σ(k). The smallest eigenvalue
of Σ(k) are bounded away from zero for all k ∈ A∪{0}. The largest eigen-
value of Σ(0) is bounded away from infinity.

The following theorem characterizes the rate of convergence of the Or-
acle Trans-Lasso estimator in terms of CΣ. Let ηh,Σ = (CΣh

√
log p/n0)∧

(C2
Σh

2).

Theorem 4 (Oracle Trans-Lasso with heterogeneous designs).
Assume that Condition 2 and Condition 4 hold true. Suppose A is known
with CΣh . s

√
log p/n0 and n0 . nA. We take λw and λδ as in Theorem

1. If s log p/nA + CΣh(log p/n0)1/2 = o(1), then

inf
B∈Θ1(s,h)

P
(

1

n0
‖X(0)(β̂ − β)‖22 ∨ ‖β̂ − β‖22 .

s log p

nA + n0
+
s log p

n0
∧ ηh,Σ

)
≥ 1− exp(−c1 log p). (23)

The right-hand side of (9) is sharper than s log p/n0 if nA � n0 and

CΣh
√

log p/n0 � s. We see that small CΣ is favorable. This implies
that the Oracle Trans-Lasso is guaranteed to perform well with sparse
contrasts and similar covariance matrices to the primary one.

We now provide theoretical guarantees for the Trans-Lasso with het-
erogeneous designs when A is unknown. In this case, the sparsity index
R(k) takes the format ‖Σ(k)w(k) − Σ(0)β‖22. It measures the sparsity of

δ(k) but also the covariance heterogeneity. We consider Ão, a subset of
A such that

Ão =

k ∈ A : ‖Σ(k)w(k) − Σ(0)β‖22 < c1 min
k∈Ac

∑
j∈Hk

|Σ(k)
j,. w

(k) − Σ
(0)
j,. β|

2


for some c1 < 1 and Hk defined in (19). This is a generalization of Ao to
the case of heterogeneous designs.
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Corollary 1 (Trans-Lasso with heterogeneous designs). Assume

Conditions 2, 3, and 4. Let β̂θ̂ be computed via the Trans-Lasso algorithm
with λθ ≥ 4σ2

0. If s log p/(nÃo +n0)+{CΣh(log p/n0)1/2}∧(s log p/n0) =
o(1) and K ≤ cn0 for a small enough constant c, then

inf
B∈Θ1(s,h)

P
(

1

|Ic|

∥∥∥X(0)
Ic,.(β̂

θ̂ − β)
∥∥∥2

2
∨ ‖β̂θ̂ − β‖22 .

s log p

nÃo + n0

+
s log p

n0
∧ ηh,Σ +

logK

n0

)
→ 1

as (n0, nÃo , p)→∞.

Corollary 1 provides an upper bound for the Trans-Lasso with heteroge-
neous designs. The numerical experiments for this setting are studied in
Section 5.

5. Simulation Studies

In this section, we evaluate the empirical performance of the proposed
methods and some other comparable methods in various numerical ex-
periments. Specifically, we evaluate the performance of five methods, in-
cluding Lasso, Oracle Trans-Lasso proposed in Section 2.1, Trans-Lasso
proposed in Section 3.1, and two other ad hoc transfer learning meth-
ods related to ours. The first one implements Trans-Lasso except that
the bias-correction step (Step 2) of the Oracle Trans-Lasso is omitted.
We call this method the “aggregated Lasso” (Agg-Lasso), as it imple-
ments our proposed adaptive aggregation step and applies Lasso to each
candidate set. The purpose is to understand the necessity of the bias-
correction step in Oracle Trans-Lasso. The second one follows the steps
of Trans-Lasso but uses a different aggregation step. Specifically, we
consider R̂(k) = ‖β̂L − ŵ(k)‖1, k = 1, . . . ,K, where β̂L and ŵ(k) are the
Lasso estimators based on each of the corresponding studies. Moreover,
the Q-aggregation step is replaced with the cross-validation, where we
select the set Ĝl that minimizes the out-of-sample prediction errors. We
call this algorithm “Ad hoc `1-transfer”. The purpose of including this
method is to understand the performance of our proposed R̂(k) based on
SURE screening and Q-aggregation. In the Supplementary Materials,
we report the performance of the estimated sparse indices R̂(k) based on
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Trans-Lasso and Ad hoc `1-transfer. The R code for all the methods are
available at https://github.com/saili0103/TransLasso.

5.1. Identity Covariance Matrix for the Designs
We consider p = 500, n0 = 150, and n1, . . . , nK = 100 for K = 20. The

covariates x
(k)
i are i.i.d. Gaussian with mean zero and identity covariance

matrix for all 0 ≤ k ≤ K and ε
(k)
i are i.i.d. Gaussian with mean zero and

variance one for all 0 ≤ k ≤ K. For the target parameter β, we set s = 16,
βj = 0.3 for j ∈ {1, . . . , s}, and βj = 0 otherwise. For the regression
coefficients in auxiliary samples, we consider two configurations.

(i)For a given A, if k ∈ A, let

w
(k)
j = βj − 0.31(j ∈ Hk),

where Hk is a random subset of [p] with |Hk| = h ∈ {2, 6, 12}. If k /∈ A,

we set Hk to be a random subset of [p] with |Hk| = 2s and w
(k)
j =

βj − 0.51(j ∈ Hk). We set w
(k)
1 = −0.3 for k = 1, . . . ,K.

(ii) For a given A, if k ∈ A, let Hk = {1, . . . , 100} and

w
(k)
j = βj + ξj1(k ∈ Hk), where ξj ∼i.i.d. N(0, h/100),

where h ∈ {2, 6, 12} and N(a, b) is the normal with mean a and standard
deviation b. If k /∈ A, we set Hk = {1, . . . , 100} and

w
(k)
j = βj + ξj1(j ∈ Hk), where ξj ∼i.i.d. N(0, 2s/100).

We set w
(k)
1 = −0.3 for k = 1, . . . ,K. The setting (i) can be treated

as either `0- or `1-sparse contrasts. In practice, the true parameters are
unknown and we use A to denote the set of auxiliary samples without
distinguishing `0- or `1-sparsity. We consider |A| ∈ {0, 4, 8, . . . , 20}.

In Figure 1, we report sum of squared estimation errors (SSE) for each
estimator b, ‖b − β‖22. Each point is summarized from 200 independent
simulations. As expected, the performance of the Lasso does not change
as |A| increases. On the other hand, all four other transfer learning-
based algorithms have estimation errors decreasing as |A| increases. As
h increases, the problem gets harder and the estimation errors of all four
methods increase. In settings (i) and (ii), the Oracle Trans-Lasso has the

https://github.com/saili0103/TransLasso
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smallest estimation errors in most settings. The proposed Trans-Lasso,
which is agnostic to A, is always the second-best. The gap between
the Oracle Trans-Lasso and Trans-Lasso is a result of the uncertainty of
aggregation and sample splitting for constructing the initial estimators.
We also observe that when A = ∅, the Trans-Lasso can have smaller
errors than the oracle Trans-Lasso where the latter one does not use
auxiliary information. This implies that some auxiliary information can
still be borrowed. Due to the randomness of the parameter generation,
our definition of Amay not always be the best subset of auxiliary samples
that give the smallest estimation errors.

Among the two variants, Ad hoc `1-transfer is also adaptive but has
slightly larger estimation errors than Trans-Lasso when h is large. This
demonstrates the advantage of Q-aggregation with our proposed spar-
sity index over the cross-validation type of aggregation with `1-distance
based sparsity index. The Agg-Lasso method has larger estimation er-
rors than Trans-Lasso and Ad hoc `1-transfer, even when h is small.
This demonstrates the necessity of the bias-correction step in the Oracle
Trans-Lasso.

5.2. Homogeneous Designs among A ∪ {0}
We now consider x

(k)
i as i.i.d. Gaussian with mean zero and a equi-

correlated covariance matrix, where Σj,j = 1 and Σj,k = 0.8 if j 6= k for

k ∈ A ∪ {0}. For k /∈ A ∪ {0}, x(k)
i are i.i.d. Gaussian with mean zero

and a Toeplitz covariance matrix whose first row is

Σ
(k)
1,. = (1, 1/(k + 1), . . . , 1/(k + 1)︸ ︷︷ ︸

2k−1

, 0p−2k). (24)

Other true parameters and the dimensions of the samples are set to be
the same as in Section 5.1. From the results presented in Figure 2, we see
that the Trans-Lasso and Oracle Trans-Lasso have reliable performance
in the current setting. The average estimation errors are larger in Figure
2 than those in Section 5.1 as the covariates are highly correlated in the
current setting. When h is relatively large, we see that Agg-Lasso and
Ad hoc `1-transfer have significantly larger estimation errors than Trans-
Lasso. This again demonstrates the advantage of Trans-Lasso over some
ad hoc methods.
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Figure 1. Estimation errors of the Ad hoc `1-transfer, Agg-Lasso, Lasso, Oracle
Trans-Lasso, and Trans-Lasso with identity covariance matrices of the predic-
tors. The two rows correspond to configurations (i) and (ii), respectively. The
y-axis corresponds to ‖b− β‖22 for some estimator b.
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Figure 2. Estimation errors of the Ad hoc `1-transfer, Agg-Lasso, Lasso, Or-
acle Trans-Lasso, and Trans-Lasso with homogeneous covariance matrices.
The two rows correspond to configurations (i) and (ii), respectively. The y-axis
corresponds to ‖b− β‖22 for some estimator b.
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Figure 3. Estimation errors of the Ad hoc `1-transfer, Agg-Lasso, Lasso, Or-
acle Trans-Lasso, and Trans-Lasso with heterogeneous covariance matrices.
The two rows correspond to configurations (i) and (ii), respectively. The y-axis
corresponds to ‖b− β‖22 for some estimator b.

5.3. Heterogeneous Designs

We next consider a setting where Σ(k) are distinct for k = 0, . . . ,K.

Specifically, for k = 1, . . . ,K, let x
(k)
i as i.i.d. Gaussian with mean

zero and a Toeplitz covariance matrix whose first row is (24). Moreover,
Σ(0) = Ip. Other parameters and the dimensions of the samples are
set to be the same as in Section 5.1. Figure 3 shows that the general
patterns observed under homogeneous designs still hold. Trans-Lasso still
gives the best estimation performance under the heterogeneous designs
as compared with alternative methods.
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6. Application to Genotype-Tissue Expression Data

In this section, we demonstrate the performance of our proposed transfer
learning algorithm in analyzing the Genotype-Tissue Expression (GTEx)
data (https://gtexportal.org/). Overall, the data sets measure gene
expression levels from 49 tissues of 838 human donors, in total com-
prising 1,207,976 observations of 38,187 genes. In our analysis, we fo-
cus on genes that are related to the central nervous system (CNS),
which were assembled as MODULE 137 ( https://www.gsea-msigdb.

org/gsea/msigdb/cards/MODULE_137.html). This module includes a
total of 545 genes and additional 1,632 genes that are significantly en-
riched in the same experiments as the genes of the module. A complete
list of genes can be found at http://robotics.stanford.edu/~erans/
cancer/modules/module_137.

6.1. Data Analysis Method
It is of biological interest to understand the CNS gene regulations in
different tissues/cell types. Statistically, we consider predicting the ex-
pression levels of a target gene using other CNS genes in multiple tissues.
Such an analysis provides insights on how other genes regulate the expres-
sion of a target gene. To demonstrate the replicability of our proposal, we
consider multiple target genes and multiple target tissues and estimate
their corresponding models one by one.

For an illustration of the computation process, we consider gene JAM2

(Junctional adhesion molecule B), as the response variable. JAM2 is a
protein coding gene on chromosome 21 interacting with a variety of im-
mune cell types and may play a role in lymphocyte homing to secondary
lymphoid organs (Johnson-Léger et al., 2002). Mutations in JAM2 has
been found to cause primary familial brain calcification (Cen et al., 2020;
Schottlaender et al., 2020). We consider the association between JAM2

and other CNS genes in a brain tissue as the target models and the associ-
ation between JAM2 and other CNS genes in other tissues as the auxiliary
models. As there are multiple brain tissues in the dataset, we treat each
of them as the target at each time. The list of target tissues can be
found in Figure 4. The min, average, and max of primary sample sizes in
these target tissues are 126, 177, and 237, respectively. More information
on the target tissues is given in the Supplementary Materials. JAM2 ex-

https://gtexportal.org/
https://www.gsea-msigdb.org/gsea/msigdb/cards/MODULE_137.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/MODULE_137.html
http://robotics.stanford.edu/~erans/cancer/modules/module_137
http://robotics.stanford.edu/~erans/cancer/modules/module_137
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presses in 49 tissues in our dataset and we use 47 tissues with more than
120 measurements on JAM2. The average number of auxiliary samples
for each target model is 14,837 over all the non-target tissues. The co-
variates in use are the genes that are in the enriched MODULE 137 and
do not have missing values in all of the 47 tissues. The final covariates
include a total of 1,079 genes. The data is standardized before analysis.

We compare the prediction performance of Trans-Lasso with Lasso,
Agg-Lasso, Ad hoc `1-transfer, and Naive Trans-Lasso. Implementation
of the first four methods is the same as in Section 5. The Naive Trans-
Lasso implements the Oracle Trans-Lasso algorithm assuming all the
auxiliary studies are informative. Evaluating this method can help us un-
derstand the overall informative level of the auxiliary samples. We split
the target sample into five folds and use four folds to train the algorithms
and use the remaining fold to test their prediction performance. We re-
peat this process five times each with a different fold of test samples.
We mention that one individual can provide expression measurements
on multiple tissues and these measurements are hard to be independent.
While the dependence of the samples can reduce the efficiency of the
estimation algorithms, using auxiliary samples may still be beneficial.
However, one need to choose proper tuning parameters. The tuning
parameter for the Lasso and λw are chosen by 8-fold cross-validation.
The tuning parameter λδ is set to be λw

√∑
k∈A nk/n0. Other tuning

parameters and configurations are the same as for the simulations.

6.2. Prediction Performance of the Trans-Lasso for JAM2 Expression
Figure 4 demonstrates the prediction errors of different methods for pre-
dicting gene expression JAM2 using other genes. We see that all the
transfer learning methods in consideration make improvements over the
Lasso in most experiments. The performance of Naive Trans-Lasso im-
plies that there is heterogeneity among tissues and some auxiliary studies
can be non-informative. Hence, adaptation to unknown A is important.
Among the adaptive transfer learning methods, Trans-Lasso achieves the
smallest prediction errors in almost all the experiments. Its average gain
is 22% comparing to the Lasso. This shows that our characterization
of the similarity between a target model and a given auxiliary model
is suitable for the current problem. Agg-Lasso gives similar prediction
errors as Trans-Lasso in most of the tissues but has significantly worse
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performance for Cortex, Hippocampus, and Pituitary tissues. The aver-
age proportion of explained variance given by the Lasso and that given
by the Trans-Lasso are 0.75 and 0.80, respectively, indicating improved
fit from transfer learning.
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Figure 4. Prediction errors of Agg-Lasso, Naive Trans-Lasso,Trans-Lasso,
and Ad hoc `1-transfer relative to the Lasso evaluated via 5-fold cross validation
for gene JAM2 in multiple tissues.

6.3. Prediction Performance of Other 25 Genes on Chromosome 21

To demonstrate the replicability of our proposal, we also consider other
genes on chromosome 21 which are in Module 137 as our target genes.
We report the overall prediction performance of these 25 genes in Figure
5. A complete list of these genes and some summary information can be
found in the Supplementary Materials. Generally speaking, we see that
the Trans-Lasso has the best overall performance among all the target
tissues when compared to the other two related methods, Agg-Lasso and
Ad hoc `1-transfer. The deteriorating performance of the naive Trans-
Lasso implies that adaptation to the unknown informative set is crucial
for successful knowledge transfer.
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Figure 5. Prediction errors of Ad hoc `1-transfer, Agg-Lasso, Naive Trans-
Lasso*, and Trans-Lasso relative to the Lasso for the 25 genes on chromosome
21 and in Module 137, in multiple target tissues. The Naive Trans-Lasso has
two outliers for the tissue Cerebellum not showing in the figure with values 1.61
and 1.95.

7. Discussion

This paper studies high-dimensional linear regression in the presence of
auxiliary samples. The similarity of the target model and a given aux-
iliary model is characterized by the sparsity of their contrast vectors.
Transfer learning algorithms for estimation and prediction are developed
that are adaptive to the unknown informative set. Numerical exper-
iments and GTEx data analysis support the theoretical findings and
demonstrate its effectiveness in applications.

In the machine learning literature, transfer learning methods have
been proposed for different purposes, but few have statistical guaran-
tees. There are several interesting problems related to the present paper
for further research. First, transfer learning in nonlinear models can be
studied. Using our similarity characterization of the auxiliary studies,
transfer learning in high-dimensional generalized linear models (GLMs)
can be formulated. GLMs include logistic and Poisson models that are
widely used for classification. The main challenge is that the moment
equation above (7) is nonlinear and the resulting δA is not necessarily
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sparse. Hence, transfer learning beyond linear models remain open prob-
lems and can be studied under different characterizations for the similar-
ity structure. Second, it is interesting to study statistical inference, such
as constructing confidence intervals and hypothesis testing with auxiliary
samples. Given the results derived in this paper, one may expect weaker
sample size conditions in the transfer learning setting than those in the
single-task setting. It is interesting to provide a precise characterization
and to develop a minimax optimal confidence interval in the transfer
learning setting.
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