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TRANSFER LEARNING FOR NONPARAMETRIC
REGRESSION: NON-ASYMPTOTIC MINIMAX ANALYSIS

AND ADAPTIVE PROCEDURE∗

By T. Tony Cai and Hongming Pu

University of Pennsylvania

Transfer learning for nonparametric regression is considered. We
first study the non-asymptotic minimax risk for this problem and de-
velop a novel estimator called the confidence thresholding estimator,
which is shown to achieve the minimax optimal risk up to a loga-
rithmic factor. Our results demonstrate two unique phenomena in
transfer learning: auto-smoothing and super-acceleration, which dif-
ferentiate it from nonparametric regression in a traditional setting.
We then propose a data-driven algorithm that adaptively achieves
the minimax risk up to a logarithmic factor across a wide range of
parameter spaces. Simulation studies are conducted to evaluate the
numerical performance of the adaptive transfer learning algorithm,
and a real-world example is provided to demonstrate the benefits of
the proposed method.

1. Introduction. Transfer learning, a technique that utilizes knowl-
edge gained from related source domains to improve performance in a target
domain, has gained widespread popularity in machine learning due to its suc-
cesses across a range of applications, including natural language processing
(Daumé III, 2009), computer vision (Tzeng et al., 2017), and epidemiol-
ogy (Apostolopoulos and Mpesiana, 2020). See the recent survey papers on
transfer learning (Weiss et al., 2016; Zhuang et al., 2020) for more examples
and in-depth discussions.

Transfer learning has received significant recent attention in statistics,
due to its empirical successes. It has been studied in a decision-theoretical
framework for a variety of supervised learning problems, such as classifica-
tion (Cai and Wei, 2021; Reeve et al., 2021), high-dimensional linear regres-
sion (Li et al., 2022a), and generalized linear models (Li et al., 2021), as well
as unsupervised learning problems, such as Gaussian graphical models (Li
et al., 2022b). Minimax optimal rates of convergence have been established

∗The research was supported in part by NSF Grant DMS-2015259 and NIH grant
R01-GM129781.

MSC 2010 subject classifications: Primary 62G08; secondary 62L12
Keywords and phrases: Adaptivity, nonparametric regression, optimal rate of conver-

gence, transfer learning

1

http://www.imstat.org/aos/
http://arxiv.org/abs/0000.0000


2 T. T. CAI AND H. PU

and data-driven adaptive algorithms have been developed.
In this paper we consider transfer learning for nonparametric regression.

Formally, in the target domain one observes independent and identically

distributed (i.i.d.) samples (Xi, Yi)
iid∼ Q, i = 1, . . . , nQ, with

Yi = f(Xi) + zi,

where f(·) is an unknown function of interest and {z1, . . . , znQ} are random
noises satisfying E(zi|Xi) = 0. Different from the conventional setting, in
transfer learning one also has auxiliary data from the source domains. For
ease of presentation, we first focus on the case of a single source domain
and discuss the case of multiple source domains later. In the single source
domain setting, in addition to the samples from the target domain, one

observes i.i.d. samples (X ′i, Y
′
i )

iid∼ P , i = 1, . . . , nP , from the source domain
with

Y ′i = g(X ′i) + z′i,

where {z′i} are i.i.d. random noise satisfying E(z′i|X ′i) = 0 and g is an un-
known function.

In the context of transfer learning for nonparametric regression, the joint
distribution P of (X ′i, Y

′
i ) from the source domain and the joint distribution

Q of (Xi, Yi) from the target domain are different but related. Two popular
settings that have been considered in the literature are covariate shift and
posterior drift. In the case of covariate shift, the conditional mean functions
from the target and source domains, f and g, are the same, but the marginal
distributions of the covariates, Xi and X ′i, are different (Shimodaira, 2000;
Huang et al., 2006; Wen et al., 2014). On the other hand, the posterior
drift model assumes that the mean functions, f and g, may be different, but
the marginal distributions of the covariates, Xi and X ′i, are the same. The
posterior drift model is a general framework that can be applied to many
practical problems, including robotics control (Vijayakumar et al., 2002;
Nguyen-Tuong et al., 2008a,b; Yeung and Zhang, 2009; Cao et al., 2010)
and air quality prediction (Mei et al., 2014; Wang et al., 2016).

In this paper, we focus on the posterior drift model, where we assume
that the difference between the mean functions, f and g, can be well ap-
proximated by a polynomial function of a given order in L1 distance. This
distance is referred to as the bias strength, denoted by ε. It controls the sim-
ilarity between f and g up to a polynomial of a given order. The smaller the
bias strength, the more similar f and g are, and vice versa. When the bias
strength is zero, f and g differ by a polynomial. In this special case, transfer
learning can be highly beneficial. We refer to g as a “perfect reference” of f
when the bias strength is zero, and an “imperfect reference” otherwise.
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There are two natural and important goals for transfer learning: to accu-
rately quantify the contribution of observations from the source domain to
the regression task in the target domain, and to develop an optimal transfer
learning algorithm. The answer to the first objective depends on various fac-
tors, including sample sizes nP and nQ, the smoothness of f and g, and the
bias strength ε. In this paper, we investigate the non-asymptotic minimax
risk of this problem and propose a data-driven, adaptive transfer learning
algorithm to achieve optimal results.

1.1. Main Results and Our Contribution. We first establish the mini-
max optimal rate of convergence for transfer learning for nonparametric
regression in the posterior drift setting. Suppose f is βQ-smooth and g is
βP -smooth (which will be defined precisely later). Let F denote the set of
distribution pairs (Q,P ) defined in (1) in Section 2. It is shown that the
minimax risk of transfer learning satisfies

CL ·
(
n
− 2βmax

2βmax+d
max + (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
1

nQ

)
≤ inf

f̂
sup

(Q,P )∈F
E||f̂ − f ||22

≤ CU ·
(
n
− 2βmax

2βmax+d
max ln4(nmax) + ln8(nQ) · (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
ln4(nQ)

nQ

)
,

for some positive constants CL and CU not depending on ε, nP or nQ,
where nmax = max(nP , nQ) and βmax = max(βQ, βP ). In the special case
of observing the data from the target domain only, i.e., nP = 0, then the

minimax risk for estimating f is of order n
−

2βQ
2βQ+d

Q . Comparing it with the
transfer learning risk, we can conclude when and how much transfer learning
is helpful for the target task. The necessary and sufficient condition for
transfer learning to improve the estimation performance is that the bias

strength is smaller than n
−

βQ
2βQ+d

Q and either the mean function from the
source domain is smoother or the sample size of the source domain is larger.
If we fix f and g and thus the bias strength ε and let nQ go to infinity
then this condition fails when nQ is sufficiently large unless ε = 0. This
means in order to make transfer learning work asymptotically, g has to be a
perfect reference. However, with any fixed and finite sample size, the non-
asymptotic analysis above shows that transfer learning can help with an
imperfect reference function g as long as the bias strength ε is smaller than

the phase transition threshold n
−

βQ
2βQ+d

Q .
There are some interesting phenomena from the minimax analysis in the

case where bias strength ε is sufficiently small.
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1. If the function g is rougher than f , i.e., βP < βQ, then the minimax
risk does not depend on βP and is the same as the minimax risk when
βP = βQ. This means that transfer learning can be effective even if g
is less smooth than f .

2. If estimation of f and g is considered separately using the data from the
target domain and from the source domain alone, the usual minimax

risks for estimating f and g are proportional to n
−

2βQ
2βQ+d

Q and n
− 2βP

2βP+d

P

respectively. Then if βP < βQ and nP � nQ or βP > βQ and nP �
nQ, the minimax risk for the transfer learning can be much smaller
than either of these two minimax risks, provided ε is sufficiently small.
This phenomenon sheds new light on the understanding of transfer
learning in that even the task from the source domain is harder, i.e.,

n
−

2βQ
2βQ+d

Q � n
− 2βP

2βP+d

P , it may still help the task in the target domain.

A novel transfer learning algorithm is developed and shown to attain the
minimax optimal risk, possibly up to a logarithmic factor. However, the al-
gorithm relies on knowledge of the smoothness parameters βQ and βP . To
address this, we propose a data-driven algorithm that adaptively achieves
the minimax risk, up to a logarithmic factor, over a wide range of param-
eter spaces. Simulation studies are conducted to further demonstrate the
performance of the adaptive transfer learning algorithm and validate the
phenomena discussed.

Simulation studies are conducted to evaluate the performance of the adap-
tive transfer learning algorithm. The numerical results further support our
theoretical analysis. The proposed method is then applied to a wine quality
dataset (Cortez et al., 2009) to compare the performance of direct local poly-
nomial regression on red wine data to using the transfer learning algorithm
on both red and white wine data with varying numbers of observations. The
results show that the transfer learning method improves performance.

The results and algorithms can also be extended to the setting of multiple
source distributions. Suppose there are K source distributions (P1, . . . , PK)
and one target distribution Q. Each source distribution Pj corresponds to
a mean function gj and the difference between f and each gj can be well
approximated by a polynomial function of a given order. We establish the
non-asymptotic minimax risk and construct an adaptive procedure that si-
multaneously attains the optimal risk, up to a logarithmic factor, over a
large collection of parameter spaces.

1.2. Related Literature. The problem of transfer learning for nonpara-
metric regression in the posterior drift setting has been studied in Wang
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et al. (2016), under the assumption that the mean functions from both
domains have the same Sobolev smoothness and the difference belongs to
a smoother Sobolev class. An upper bound for the performance of transfer
learning was obtained, however, no lower bound was provided, leaving it un-
clear if the upper bound is sharp. Additionally, their upper bound can only
be achieved when the smoothness is known, which is not typically the case
in practice and no adaptation to smoothness was considered. In contrast,
in the present paper, we allow the mean functions to have different Hölder
smoothness and assume that the difference function can be approximated in
L1 distance by a polynomial function. We prove matching upper and lower
bounds, up to a logarithmic factor, to quantify what transfer learning can
achieve. In the covariate shift setting, transfer learning for nonparametric
regression has also been considered in Huang et al. (2006); Wen et al. (2014).

For nonparametric transfer learning, much attention has been given to
classification, with the general problem being studied in Ben-David et al.
(2007), Blitzer et al. (2008), Mansour et al. (2009). Theoretical results and
adaptive procedures have been developed in both the posterior drift set-
ting (Cai and Wei, 2021; Reeve et al., 2021) and the covariate shift setting
(Shimodaira, 2000; Sugiyama et al., 2007).

The transfer learning problem we consider here is related to the classical
nonparametric regression literature, where only observations from the target
domain are available. In particular, our algorithm uses local polynomial
regression as a basic tool, which has been well-studied in the conventional
setting (see, for example, Stone (1977), Cleveland (1979), Tsybakov (1986),
Fan and Gijbels (1992), Fan (1993), and Xiao et al. (2003)).

1.3. Organization and Notation. The rest of the paper is organized as
follows. We finish this section with the notation. Section 2 presents the pre-
cise formulation of the transfer learning problem studied in the paper. We
then construct a novel algorithm in Section 3 and derive an upper bound for
its risk. A matching lower bound is then established. The problem of adap-
tation to smoothness is considered in Section 4. A data-driven procedure
is proposed and shown to be adaptively rate-optimal. Simulation studies
and a real application are carried out in Section 5 and 6 to investigate the
numerical performance of the adaptive algorithm. Section 7 generalizes the
methods and theoretical analysis to the multiple source distributions setting
and Section 8 discusses possible future directions. For reasons of space, the
proofs are given in the Supplementary Material (Cai and Pu, 2022).

The following notation will be used in the paper. For any function h :

[0, 1]d → R, let ||h||1 =
∫

[0,1]d |h(x)|dx, ||h|| = ||h||2 =
√∫

[0,1]d h
2(x)dx and
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||h||∞ = supx∈[0,1]d |h(x)|. For any a, b ∈ R, we define a ∨ b = max(a, b)
and a ∧ b = min(a, b). For any β > 0, let w(β) denote the largest inte-
ger that is strictly smaller than β. Let Poly(M,T ) denote the polynomial
functions whose degree is smaller than or equal to T and coefficients have
absolute values upper bounded by M . For any multi-index t = (t1, . . . , td)
and vector x = (x1, . . . , xd), let xt =

∏d
i=1 x

ti
i . For any multi-index t =

(t1, . . . , td), define |t| =
∑d

j=1 tj . Define the multi-index class Λ(k) = {t :

|t| ≤ k}. For two functions h1(n), h2(n) > 0, we write h1(n) = O
(
h2(n)

)
if

lim supn→∞
h1(n)
h2(n) < ∞; h1(n) = Õ

(
h2(n)

)
if there exists a constant C > 0

such that h1(n) = O
(
h2(n)·lnC(n)

)
; h1(n) = Ω

(
h2(n)

)
if lim infn→∞

h1(n)
h2(n) >

0; h1(n) = Θ
(
h2(n)

)
if h1(n) = O

(
h2(n)

)
and h2(n) = O

(
h1(n)

)
; and

h1(n) = Θ̃
(
h2(n)

)
if h1(n) = Õ

(
h2(n)

)
and h2(n) = Õ

(
h1(n)

)
.

2. Problem Formulation. We begin by formally defining the Hölder
smoothness as follows.

Definition 1. (Hölder class) For any positive numbers β, L, the Hölder
function class H(β, L) is defined to be the set of all functions h with contin-
uous partial derivatives of order w(β) that satisfy

max
|t|≤w(β)

sup
x∈[0,1]d

|Dth(x)|+ max
|t|=w(β)

sup
x 6=y∈[0,1]d

|Dth(x)−Dth(y)|
||x− y||β−|t|

≤ L.

We model the target mean function f and the source mean function g as
Hölder smooth functions and assume for some constants βQ, βP , LQ, LP > 0,

f ∈ H(βQ, LQ) and g ∈ H(βP , LP ).

In this case, we call f βQ-smooth and g βP -smooth.

Definition 2. For any ε > 0,M > 0, positive integer T , the class of
functions Ψ(ε,M, T ) is defined as all the functions h such that there exists
a polynomial function ψ(x) ∈ Poly(M,T ) such that

||ψ − h||1 =

∫
[0,1]d

|ψ(x)− h(x)|dx ≤ ε.

We assume f−g ∈ Ψ(ε,M, T ). This assumption requires that g is close in
L1 distance to f plus a polynomial of order T . In this paper we only consider
polynomials with coefficients bounded in absolute value by a constant M .
It is possible to generalize ψ to be an arbitrary polynomial function. The
discussion on this generalization is deferred to Section 8.
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Definition 3. For any u1, u2 > 0, the class of sub-Gaussian random
variables G(u1, u2) with constants u1, u2 > 0 are defined as all random vari-
ables Z such that for any t > 0,

P
(
|Z| ≥ t

)
≤ u1 · e−u2t

2
.

For any x ∈ [0, 1]d we assume the random noises z1|X1 = x and z′1|X ′1 = x
to be sub-Gaussian with some constants u1, u2. This assumption ensures the
outcome to be not heavy-tailed. We assume the marginal distributions of X1

and X ′1 have density functions fQden and fPden respectively and they are lower
and upper bounded by constants CL, CU .

Given these definitions, the parameter space is defined by

F (βQ, βP , ε, u1, u2,M, T, LP , LQ, C
L, CU ) =

{
(Q,P ) : f ∈ H(βQ, LQ),

g ∈ H(βP , LP ), f − g ∈ Ψ(ε,M, T ), z1|X1, z
′
1|X ′1 ∈ G(u1, u2), CL ≤ fQden, f

P
den ≤ CU

}
.

(1)

This space will be denoted by F (βQ, βP , ε) when there is no confusion. The
minimax estimation risk over this parameter space is then defined as

RβQ,βP ,ε,u1,u2,M,T,LP ,LQ,CL,CU (nQ, nP ) = inf
f̂

sup
(Q,P )∈F (βQ,βP ,ε)

E (f̂(X)−f(X))2.

For simplicity we may writeRβQ,βP ,ε,u1,u2,M,T,LP ,LQ,CL,CU (nQ, nP ) asRβQ,βP ,ε
or R(nQ, nP ) if there is no confusion. It is interesting to understand when
and how much transfer learning can improve the estimation accuracy in the
target domain. This question can be answered by comparing the transfer
learning minimax risk RβQ,βP ,ε with the minimax risk using only data from

the target domain, which is well known to be of order n
−

2βQ
2βQ+d

Q .

3. Minimax Risk. We consider in this section the minimax risk for
the transfer learning problem. We begin with a brief review of local polyno-
mial regression in Section 3.1 that serves as a basic tool for nonparametric
regression in our algorithm. We then formally present in Section 3.2 the al-
gorithm. The minimax risk is established in Section 3.3 and a discussion on
interesting phenomena is given in Section 3.4.

3.1. Local Polynomial Regression. Local polynomial regression has been
widely recognized for its empirical success and desirable theoretical prop-
erties (Cleveland and Devlin, 1988; Fan and Gijbels, 1992; Fan, 1993). In
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particular, local polynomial regression achieves the minimax optimal rate
over a Hölder ball with properly tuned parameters (Györfi et al., 2002).

For observations D = {(X(i), Y (i)), i = 1, . . . , n}, degree l and bandwidth
b (we assume 1/b is an integer) the local polynomial regression estimate is
defined as follows. Divide [0, 1)d into 1

bd
hypercubes {

∏d
i=1[b · ai, b · ai + b) :

ai = 0, . . . , 1/b − 1}. For each hypercube B(a1, . . . , ad) =
∏d
i=1[b · ai, b ·

ai + b), let all the observations whose covariates falling into this hypercube
be {(Xi1 , Yi1), . . . , (Xir , Yir)}. Let amid = (a1 + b/2, . . . , ad + b/2) be the
center of this hypercube. The local polynomial regression estimate f̂lpr on
B(a1, . . . , ad) is given by

f̂lpr(x;D, l, b) =
∑

t∈Λ(l)

clpr
t (

x− amid

b/2
)t, ∀x ∈ B(a1, . . . , ad),

where {clpr
t : t ∈ Λ(l)} are given by

{clpr
t : t ∈ Λ(l)} = arg min

{ct:t∈Λ(l)}

r∑
m=1

(Yim −
∑

t∈Λ(l)

ct(
Xim − amid

b/2
)t)2.

The confidence upper and lower limits are constructed as follows:

f̂ublpr(x;D, l, b, β) = f̂lpr(x : D, l, b) +
√

ln(|D|) · (b−β +
ln2(|D|)√
|D| · bd

),

f̂ lblpr(x;D, l, b, β) = f̂lpr(x : D, l, b)−
√

ln(|D|) · (b−β +
ln2(|D|)√
|D| · bd

).

The length of confidence interval is then

LCI,lpr(D, l, b, β) = 2 ·
√

ln(|D|) · (b−β +
ln2(|D|)√
|D| · bd

).

3.2. The Confidence Thresholding(CT) Algorithm. We now present our
main transfer learning algorithm. Since we have data from both the source
and target domains, the most important and challenging step of this algo-
rithm is integrating the information from both domains. This step in our
algorithm is called confidence thresholding. We shall first present this con-
fidence thresholding procedure and then show the details of our algorithm.
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3.2.1. The Confidence Thresholding Estimator. We first introduce the
confidence thresholding estimator that is designed to estimate a function
when one has access to two different estimates. Suppose we have two different
estimators ĥ1 and ĥ2 for some unknown function h. ĥ1 converges slower and
ĥ2 converges faster but is slightly biased, which means ĥ2 converges to a
function that is different from but close to h in L1 distance. The confidence
thresholding estimator is constructed based on ĥ1 and ĥ2 as follows. Let e1

be an upper bound of the L∞ norm of ĥ1 − h. Then a “confidence interval”
for h(x) is [ĥ1(x)−e1, ĥ1(x)+e1] for all x ∈ [0, 1)d. There are three different
possible cases of the relationship between this confidence interval and ĥ2(x).
If ĥ2(x) is greater than the upper bound of the confidence interval, then
this confidence interval upper bound is better than ĥ2(x) in estimating h(x)
and in this case the confidence interval upper bound is used as the estimate.
If ĥ2(x) is in the confidence interval, then ĥ2(x) is acceptable and we use
ĥ2(x). If ĥ2(x) is smaller than the lower bound of the confidence interval,
then the confidence interval lower bound is better than ĥ2(x) in estimating
h(x) and the confidence interval lower bound is used as the estimate. We
call this estimator the confidence thresholding estimator :

µ̂ct(ĥ1(x), ĥ2(x), e1) = ĥ1(x) + sgn(ĥ2(x)− ĥ1(x)) · (|ĥ2(x)− ĥ1(x)| ∧ e1).

(2)

See Figure 1 for an illustration of the confidence thresholding estimator.

Fig 1: An illustration of the confidence thresholding estimator. On the left
panel, the blue dashed line is ĥ1, the green line is ĥ2 and two red lines are the
confidence upper bound ĥ1 +e1 and lower bound ĥ1−e1. On the right panel,
the black line is the confidence thresholding estimator µ̂ct(ĥ1(x), ĥ2(x), e1).

The following lemma justifies the convergence of µ̂ct.
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Lemma 1. Suppose for a function h : [0, 1]d → R, we have two estimates
ĥ1 and ĥ2. Suppose for some e1, e2, e

′
2 > 0, ||h − ĥ1||∞ ≤ e1 and ||h + h̃ −

ĥ2||∞ ≤ e2 ≤ e1 where function h̃ : [0, 1]d → R satisfies ||h̃||1 ≤ e′2. Let
ĥ(x) = µ̂ct(ĥ1(x), ĥ2(x), e1) for all x ∈ [0, 1]d. Then

||ĥ− h||2 ≤ (e2 +
√

4e1 · e′2) ∧ 2e1.

With this lemma we can compare the confidence thresholding estimator
with the two original estimators. In the setting of this lemma, the L2 error of
ĥ1 is upper bounded by e1 and the L2 error of ĥ2 can be arbitrarily large since
||h̃2||2 can be arbitrarily large. The L2 error of the confidence thresholding
estimator is upper bounded by 2e1, so it is at least as good as the ĥ1 up to
a constant. Besides, in the case where e′2 � e1 and e2 � e1, the confidence
thresholding estimator outperforms both of two original estimators.

3.2.2. The Confidence Thresholding(CT) Algorithm. We now present in
detail the CT algorithm, which utilizes the confidence thresholding estima-
tor and involves fitting local polynomial regression twice to produce two
preliminary estimators. These estimators are used to mimic ĥ1 and ĥ2 in
the confidence thresholding estimator.

We begin with sample splitting by randomly dividing DQ into two equal-
sized subsets DQ,1 and DQ,2. We first fit local polynomial regression on DQ,1
with some bandwidth β̃Q and obtain an estimate f̂ref . We also construct
a confidence interval and compute its length, which is denoted by LCI . In
the confidence thresholding estimator, f̂ref will serve as ĥ1 and LCI/2 will
serve as e1. We then fit another local polynomial regression to mimic ĥ2. We
can fit it either on DQ,1 or DP because ĥ2 is allowed to be biased. To get
a faster convergence, we fit this local polynomial regression on the dataset
with some larger bandwidth b̃. Let this estimate be f̂raw.

Note f − g is close to a polynomial function in L1 distance. Then f̂raw

plus some polynomial function ψ should be close to f . If ψ were known,
the confidence thresholding estimator f̂ct(·;ψ) = µ̂ct(f̂ref , f̂raw + ψ,LCI/2)
could be used to estimate f(x). However, since ψ is unknown, we shall
first estimate it and then plug the estimate into the confidence thresholding
estimator. The estimator ψ̂ is obtained by minimizing the empirical mean
squared error on the validation set DQ,2. Formally,

ψ̂ = arg min
ψ∈Poly(

√
ln(nQ),l)

nQ∑
i=b

nQ
2
c+1

[Yi − f̂ct(Xi;ψ)]2.
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Finally, we truncate the estimate µ̂ct(f̂ref(x), f̂raw + ψ̂, LCI/2) since f is
bounded. The CT algorithmx is summarized in Algorithm 1.

Algorithm 1: A1(β̃Q, β̃P , l)

Input: Hölder smoothness β̃Q, β̃P and polynomial degree l.

Split DQ into DQ,1 = {(X1, Y1), . . . , (Xb
nQ
2
c, Yb

nQ
2
c)} and

DQ,2 = {(XbnQ
2
c+1

, Yb
nQ
2
c+1

), . . . , (XnQ , YnQ)}.

Calculate β̃max = max(β̃Q, β̃P ), nQ,1 = |DQ,1|, nP = |DP |, ñmax = max(nQ,1, nP ),
b̃ = 1

bñ
1

2β̃max+d
max c

, b̃Q = 1

bn

1
2β̃Q+d

Q,1
c

.

Fit local polynomial regression on DQ,1 with bandwidth b̃Q, and calculate
estimates and confidence interval length.

f̂ref(·) = f̂lpr(·;DQ,1, l, b̃Q),

LCI = LCI,lpr(DQ,1, l, b̃Q, β̃Q).

if nQ,1 > nP then

fit local polynomial regression on DQ,1 with bandwidth b̃,
f̂raw(·) = f̂lpr(·;DQ,1, l, b̃),

else

fit local polynomial regression on DP with bandwidth b̃,
f̂raw(·) = f̂lpr(·;DP , l, b̃).

Estimate ψ̂ by

ψ̂ = arg min
ψ∈Poly(

√
ln(nQ),l)

nQ∑
i=nQ,1+1

[Yi − f̂ct(Xi;ψ)]2,

where f̂ct(x;ψ) = µ̃ct(f̂ref(x), f̂raw(x) + ψ(x), LCI/2).

Truncate the estimate at nQ,

f̂(x) = sgn(f̂ct(x; ψ̂)) · (|f̂ct(x; ψ̂)| ∧ nQ)

Remark 1. The bandwidths b̃Q and b̃ are chosen such that b̃Q ∝ n
− 1

2β̃Q+d

Q

and b̃ ∝ (nQ∨nP )
− 1

2β̃max+d , due to the fact that n
− 1

2β+d is the optimal band-
width for estimating a β-smooth function based on n observations (Györfi
et al., 2002).

3.3. Minimax Risk. The following theorem gives an upper bound for the
risk of the CT algorithm. Recall βmax = βQ ∨ βP and nmax = nP ∨ nQ.
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Theorem 1 (Minimax upper bound). Suppose in Algorithm 1, β̃Q =
βQ, β̃P = βP , l ≥ w(βmax) ∨ T , then the risk of this algorithm satisfies

R(f̂) = sup
(Q,P )∈F (βQ,βP ,ε)

E(f̂(X)− f(X))2 ≤

CU ·
(
n
− 2βmax

2βmax+d
max ln4(nmax) + ln8(nQ) · (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
ln4(nQ)

nQ

)
,

for some constant CU > 0 that only depends on βQ, βP , u1, u2,M, T, d, l, LP , LQ, C
L, CU

and not on nQ, nP , ε.

The next theorem provides a lower bound for the minimax risk and shows
that CT algorithm is minimax optimal up to a logarithmic factor.

Theorem 2 (Minimax lower bound). There exists a constant CL >
0 that only depends on βQ, βP , u1, u2,M, T, d, LP , LQ and not on nQ, nP , ε
such that

RβQ,βP ,ε ≥ CL ·
(
n
− 2βmax

2βmax+d
max + (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
1

nQ

)
.

Theorems 1 and 2 together show that the non-asymptotic minimax risk
of transfer learning for nonparametric regression RβQ,βP ,ε is proportional to

n
− 2βmax

2βmax+d
max + (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
1

nQ
.(3)

Comparing this risk with the minimax risk of nonparametric regression
with the observations from the target domain only, which is proportional

to n
−

2βQ
2βQ+d

Q , we can see when and how transfer learning improve the estima-
tion accuracy for f . The sufficient and necessary condition is that the bias

strength ε � n
−

βQ
2βQ+d

Q and either the source domain has a smoother mean
function βP > βQ or much more observations nP � nQ.

The second term (ε∧n
−

βQ
2βQ+d

Q ) ·n
−

βQ
2βQ+d

Q in (3) represents the influence of
the bias strength to the difficulty of the current problem. It has two phase

transition points. The first is n
−

βQ
2βQ+d

Q . If the bias strength is larger than
it then the minimax risk (3) is as large as the minimax risk of regression

with the target domain data only, which is proportional to n
−

βQ
2βQ+d

Q . If the
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bias strength is smaller than it then whether the minimax risk (3) is smaller

than n
−

βQ
2βQ+d

Q does not depend on the bias strength. In other words, n
−

βQ
2βQ+d

Q

is the maximum tolerable bias strength for transfer learning to help and
quantifies the robustness of this model. The second phase transition point

is n
−
βQ+d

2βQ+d

Q ∨ n
βQ

2βQ+d

Q · n
− 2βmax

2βmax+d
max . Whether the bias strength is larger than

it determines whether the influence of the bias strength is the dominating
term. In other words, if the bias strength is smaller than it then transfer
learning can work as if there is no bias.

The first term in equation (3) is equivalent to the minimax rate for non-
parametric regression over a βmax-smooth Hölder class with nmax observa-
tions. This suggests that transfer learning can benefit from larger sample
sizes and improved smoothness, regardless of whether these advantages are
present in different domains. Essentially, transfer learning allows for the
transfer of sample size and smoothness to a common domain.

3.4. Discussion. We now take a closer look at the minimax risk in cases
where the bias strength is strong enough to not be the dominant term in the
minimax risk.We explore two unique phenomena displayed by the minimax
risk: auto-smoothing and super-acceleration.

• Auto-smoothing: When βP < βQ, the minimax rate is

n
−

2βQ
2βQ+d

max + (ε ∧ n
−

βQ
2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
1

nQ
,

which does not depend on βP . This implies that even if g is highly
irregular (βP ≈ 0), it is still possible to estimate f as if g is a βQ-
smooth function. The CT algorithm only relies on β̃Q and β̃max, thus
it is not affected by β̃P if β̃P ≤ β̃Q. This aligns with the auto-smoothing
phenomenon observed in minimax theory.
• Super-acceleration: In transfer learning, a common question of in-

terest is whether and to what extent observations from the source
domain can significantly improve estimation accuracy in the target
domain. In this scenario, if the source domain has a smoother mean
function but a smaller sample size, i.e. βP > βQ and nP < nQ, and the
bias strength ε is sufficient, then the minimax risk for transfer learning

is RβQ,βP ,ε = n
− 2βP

2βP+d

Q , which is smaller than both the minimax risk
for estimating f using data from the target domain alone and the min-
imax risk for estimating g using data from the source domain alone.
This phenomenon is referred to as super-acceleration. This provides
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new insights into transfer learning by demonstrating that it can sig-
nificantly enhance performance on the target domain even if the task
in the source domain is more difficult (based on data from the source
domain alone). Similarly, super-acceleration also occurs if the source
domain has a rougher mean function and more observations.
On the other hand, if the source domain has a smoother mean function
and a larger sample size, it is not surprising that transfer learning can
improve the convergence rate. In this case, f can be estimated as
accurately as g, as the minimax risk for transfer learning is of order

n
− 2βP

2βP+d

P when ε is sufficiently small. There have been other results
in transfer learning for different tasks where the best one can do on
the target domain is as good as the performance of the corresponding
task on the source domain. This kind of acceleration is referred to as
normal acceleration. The following table summarizes different cases.

βQ > βP βQ = βP βQ < βP
nQ � nP no acceleration no acceleration super-acceleration

nQ ∝ nP no acceleration no acceleration normal acceleration

nQ � nP super-acceleration normal acceleration normal acceleration

4. Adaptive Confidence Thresholding Algorithm. Section 3 es-
tablishes the non-asymptotic minimax risk for estimation over the parameter
space F (βQ, βP , ε) and the optimality of the CT algorithm. However, the CT
algorithm requires the knowledge of the smoothness parameters βQ and βP ,
which are typically unknown. A natural and important question is whether
it is possible to construct a data-driven algorithm that adaptively achieves
the optimal risk simultaneously over a wide rage of parameter spaces.

In this section we develop an adaptive algorithm, called adaptive confi-
dence thresholding (ACT) algorithm, that is based on the CT algorithm and
consists of three main steps:

• Step 1: Constructing a set of smoothness parameter pairs.
Since the CT algorithm only depends on β̃Q and β̃max, we construct
a finite set SQ ⊂ R for β̃Q’s and a finite set Smax for β̃max’s. β̃Q and
β̃max are to be chosen from SQ and Smax respectively. SQ and Smax

are both arithmetic sequences. The common differences of these two
sequences are roughly proportion to 1

ln(nQ) and 1
ln(nmax) respectively.

• Step 2: Selecting the best pair of smoothness parameters. For
each pair of β̃Q and β̃max we can construct an estimator f̂ct as in the
CT algorithm. We select the best smoothness parameters β∗Q and β∗max

by minimizing the empirical MSE on the validation data DQ,2.
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• Step 3: Plugging the selected smoothness parameters into
the CT algorithm. Run the CT algorithm with (β∗Q, β

∗
max) as the

smoothness parameters.

The ACT algorithm is summarized in Algorithm 2.

Algorithm 2: A2(l)

Input: polynomial degree l.

Split DQ into DQ,1 = {(X1, Y1), . . . , (Xb
nQ
2
c, Yb

nQ
2
c)} and

DQ,2 = {(XbnQ
2
c+1

, Yb
nQ
2
c+1

), . . . , (XnQ , YnQ)}.

Let nQ,1 = |DQ,1|, ñmax = max(nQ,1, nP ). Let ñ = min(ln(ñmax), nQ,1)

Let Smax = { 1
ñ
, 2
ñ
, . . . , b(l+1)·ñc

ñ
}. Let SQ = { 1

ln(nQ,1)
, 2
ln(nQ,1)

, . . . ,
b(l+1)·ln(nQ,1)c

ln(nQ,1)
}

for β̃Q ∈ SQ, β̃max ∈ Smax do

Calculate b̃ = 1

bñ
1

2β̃max+d
max c

, b̃Q = 1

bn

1
2β̃Q+d

Q,1
c

.

if nQ,1 > nP then

fit local polynomial regression on DQ,1 with bandwidth b̃,
f̂raw(·; β̃max) = f̂lpr(·;DQ,1, l, b̃),

else

fit local polynomial regression on DP with bandwidth b̃,
f̂raw(·; β̃max) = f̂lpr(·;DP , l, b̃).

Fit local polynomial regression on DQ,1 with bandwidth b̃Q, and calculate
estimates and confidence interval length.

f̂ref(·; β̃Q) = f̂lpr(·;DQ,1, l, b̃Q),

LCI(β̃Q) = LCI,lpr(DQ,1, l, b̃Q, β̃Q).

Estimate ψ̂, β∗Q, β
∗
max by

ψ̂, β∗Q, β
∗
max = arg min

ψ∈Poly(
√

ln(nQ),l),β̃Q∈SQ,β̃max∈Smax

nQ∑
i=nQ,1+1

[Yi−f̂ct(Xi;ψ, β̃Q, β̃max)]2,

where f̂ct(x;ψ, β̃Q, β̃max) = µ̃ct(f̂ref(x; β̃Q), f̂raw(x; β̃max) + ψ(x), LCI(β̃Q)/2).

Truncate the estimate at nQ,

f̂ada(x) = sgn(f̂ct(x; ψ̂, β∗Q, β
∗
max)) · (|f̂ct(x; ψ̂, β∗Q, β

∗
max)| ∧ ñQ)

Note that in Step 2 we minimize the empirical mean squared error on
validation data DQ,2 to select the best polynomial function ψ for each pair
of β̃Q and β̃max and in Step 3 we minimize the same empirical mean squared
error on the same validation data to select the best pair of β̃Q and β̃max.
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Therefore we can combine these two steps in the algorithm table into one
step, where we minimize empirical mean squared error on validation data
among all choices of (β̃Q, β̃max) and polynomial function ψ.

Theorem 3 (Adaptive upper bound). Suppose in Algorithm 2, l ≥
w(βmax) ∨ T , then the risk of this algorithm satisfies

R(f̂ada) = sup
(Q,P )∈F (βQ,βP ,ε)

E(f̂ada(X)− f(X))2

≤ Cada
U ·

(
n
− 2βmax

2βmax+d
max · ln4(nmax) + ln8(nQ) · (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
ln4(nQ)

nQ

)
,

for some constant Cada
U > 0 not depending on nQ, nP , ε.

Therefore the data-driven estimator simultaneously achieves the minimax
risk, up to a logarithmic factor, for a large collection of parameter spaces.

Remark 2. Theorem 3 holds when the intermediate term LCI,lpr(DQ,1, l, b̃Q, β̃Q)

is equal to C ·
√

ln(|DQ,1|) · (b̃
−β̃Q
Q +

ln2(|DQ,1|)√
|DQ,1|·b̃dQ

) for any constant C > 0. In

Algorithm 2, C is taken to be 2. In practice, it may be beneficial to tune this
constant C while using the algorithm. This process can be easily integrated
into the algorithm, by tuning C along with the parameters β̃Q and β̃max on
the second half of the dataset.

5. Simulation. In this section, we evaluate the performance of the ACT
algorithm through simulations and compare it to existing methods. The
numerical results further support our theoretical analysis.

Recall that the minimax risk (3) is affected by both the sample size and
the bias strength. To demonstrate their impact on the empirical perfor-
mance, we conduct two series of experiments. In the first series, we fix all
other parameters and vary the sample size. In the second series, we fix all
other parameters and vary the bias strength. In all experiments, we set the
dimension to 1, the covariate distributions on both the source and target
domains to uniform distribution on [0, 1], and the random noise on both do-
mains to normal random variables with zero mean and standard deviation
1/3. We evaluate the performance of all algorithms using the mean squared
error (MSE), which is the expected squared L2 distance between the estima-
tor and the true mean function. The MSE is calculated by averaging 2000
random repeated experiments.
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In the first series of experiments, we investigate the influence of sample
size by fixing the bias strength and varying the sample size. Specifically we
let the mean functions be

f(x) = sin(10πx) + x3/2 − 0.1x+ (0.1− |x− 0.5|)+,

g(x) = sin(10πx) + x3/2.

Therefore g differ from f by a linear function and a small spike with width
0.2 and height 0.1. In this case f ∈ H(1, 40) and g ∈ H(3/2, 40). The
sample size of the target domain is fixed at 200. The sample sizes of the
source domain are taken to be (300, 600, 1200, 2400, 4800). In this series of
experiments, g is smoother than f and nP is greater than nQ, so g is easier
to estimate. We compare the performance of the ACT algorithm to that of
local polynomial regression using only data from the target domain. The
bandwidth for local polynomial regression is determined through a five-fold
cross-validation method. By comparing the performance of ACT to local
polynomial regression, we are able to gauge the improvement gained through
transfer learning with various sample sizes from the target domain.

In the second series of experiments, we investigate the impact of bias
strength by fixing the sample size and varying the bias strength. Specifically
we let the mean functions be

f(x) = sin(10πx) + x3/2,

g(x) = sin(10πx) + x3/2 − 0.1x+ (3− 6

lwid
|x− 0.5|)+,

where lwid is taken to be 0, 0.005, 0.01, 0.015, 0.02 respectively in each of the
five experiments. In this case g is equal to f plus a linear function plus a spike
with width lwid and height 3. Note ε = lwid ∗ 3/2 in this case. Therefore the
bias strengths are (0, 0.00375, 0.0075, 0.01125, 0.015). For each of the latter
four cases lwid ∈ (0.005, 0.01, 0.015, 0.02), g ∈ H(1, 6

lwid
+ 40) and in the

first case where lwid = 0, g ∈ H(3/2, 40). The sample sizes of the source
and target domains are fixed at 200 and 600, respectively. We compare
the performance of ACT with local polynomial regression using only the
observations from the target domain to study the effects of transfer learning
with varying bias strengths. Additionally, comparisons are made with the
performance of local polynomial regression using only the observations from
the source domain to estimate g. These comparisons help illustrate the super-
acceleration phenomenon. Both local polynomial regressions are fitted using
bandwidths selected through five-fold cross-validation.

Figure 2a presents the results of the first series of experiments, specifi-
cally the MSEs of local polynomial regression with cross validation and the



18 T. T. CAI AND H. PU

ACT algorithm for various sample sizes. As noted, in the first series of ex-
periments, g is smoother and has more corresponding observations, making
it easier to estimate. The plot clearly demonstrates the gap in performance
between the ACT algorithm and local polynomial regression as predicted
by theory. Additionally, the plot indicates that the ACT algorithm’s per-
formance improves as the sample size from the source domain increases,
however, this improvement seems to level off when nP is large (nP > 2400).
This is also consistent with the minimax theory. The minimax risk (3) in
this case is proportional to

n
− 3

4
P + (ε ∧ n−

1
3

Q ) · n−
1
3

Q + n−1
Q ,

which decreases as nP grows when nP is not large and keeps fixed when nP

is large enough such that n
− 3

4
P is dominated by the following two terms.

Figure 2b illustrates the simulation results of the second series of exper-
iments. Specifically, it shows the MSEs of local polynomial regression with
cross validation for both f and g and ACT algorithm with different bias
strength. We first compared the ACT algorithm and local polynomial re-
gression for estimating f using observations from the target domain only.
The results showed a clear gap in the MSE between the two methods when
the bias strength was small enough (ε < 0.01125). As the bias strength
increased, the MSE of ACT grew and eventually became as large as the
MSE of local polynomial regression when the bias strength was large enough
(ε > 0.015). These findings are consistent with the theory of minimax risk,
which predicts that transfer learning can improve performance when bias
strength is small and worsen as it increases. To further illustrate different
types of acceleration, we also compared the performance of local polyno-
mial regression for estimating g. In the special case of ε = 0, where g is as
smooth as f , normal acceleration was observed, as discussed in Section 3.
The results showed that ACT performed worse than estimating g with local
polynomial regression but better than estimating f with local polynomial
regression. In the general case where ε > 0, g is rougher than f but has
more observations. The theory predicts a super-acceleration phenomenon if
the bias strength is small enough. The results showed that when the bias
strength was small but nonzero (0.00375 < ε < 0.01125), the ACT algorithm
outperformed local polynomial regression for both estimating f and g. This
validates the theoretical predictions.

6. Application. In this section, an application of the adaptive estima-
tor is demonstrated using the wine quality data from Cortez et al. (2009).
The dataset comprises both red and white wine quality, which share the
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(a) Experiments on different nP (b) Experiments on different ε

Fig 2: MSEs of different regression methods. Blue: MSE of local polynomial
regression on the target domain. Red: MSE of ACT on the target domain.
Green: MSE of local polynomial regression on the source domain.

same features and outcome (wine quality). The aim is to build a regres-
sion model that predicts wine quality based on all features. The white wine
dataset serves as the source domain and the red wine dataset as the target
domain. The objective is to investigate if using the white wine dataset can
enhance the prediction of red wine quality.

Fig 3: MSEs of different regression methods. Red: MSE of local polynomial
regression on the target domain. Green: MSE of ACT.

As in Section 5, we compare the performance of local polynomial regres-
sion applied directly to the red wine dataset with that of our transfer learning
algorithm. Both algorithms are based on local polynomial regression, which
is suitable for low-dimensional problems. However, the original dataset has



20 T. T. CAI AND H. PU

13 features, which are too many for local polynomial regression with the
given sample size. To address this, we select the most influential feature,
“alcohol,” using feature importance ranking with random forest (Breiman,
2001) and only use this feature. Both local polynomial regression and the
transfer learning algorithm have tuning parameters, so to compare them
fairly, we use half of the training samples as the validation dataset to tune
the parameters for both algorithms. The degrees of all local polynomials
used in both algorithms are set to be 1. The degree of the polynomial that
is used to approximate f − g in ACT algorithm is also set to be 1. We let
nP = 4898 and nQ = (100, 200, 300, 400). The remaining observations in the
target domain serve as the test data to evaluate the performance of both
algorithms, which is characterized by the MSE.

Figure 3 shows the MSEs of the two algorithms with different numbers
of target sample size. As more observations in the target domain are used,
the relative contribution from the source dataset decreases. However, the
proposed adaptive estimator consistently outperforms the naive local poly-
nomial regression. This shows that in this application, the performance of
the target task can be significantly improved by transfer learning when the
source domain has many more observations.

7. Multiple Source Domains. We have so far focused on the single
source domain setting. In practical applications, it is common to have data
from multiple source domains. In this section, we will expand our analysis to
encompass the scenario of utilizing data from multiple source domains, and
generalize the procedures and results from the single source domain case to
this setting.

We consider the following model where observations from multiple source
distributions P1, . . . , PK and one target distributionQ are available. Suppose
there are nPj observations {(X ′1,j , Y ′1,j), . . . , (X ′nPj ,j , Y

′
nPj ,j

)} from Pj for each

j = 1, . . . ,K and nQ observations {(X1, Y1), . . . , (XnQ , YnQ)} from Q. All the
observations are independent. Similar to the single-source model, let

Yi = f(Xi) + zi, i = 1, . . . , nQ

Y ′i,j = gj(X
′
i,j) + z′i,j , i = 1, . . . , nPj , j = 1, . . . ,K.

where {zi} and {z′i,j} are i.i.d. zero mean random noises. The parameter
space is defined as follows:

F (βQ, βP , ε, u1, u2,M, T,
−→
LP , LQ) =

{
(Q,P1, . . . , PK) : f ∈ H(βQ, LQ),

gj ∈ H(βP , LPj ), f − gj ∈ Ψ(ε,M, T ), z1|X1, z
′
1,j |X ′1,j ∈ G(u1, u2), j = 1, . . . ,K

}
,
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where
−→
LP = (LP1 , . . . , LPK ). This space will be denoted by F for simplicity

when there is no confusion.
We establish the minimax risk in this section, We also construct a data-

driven algorithm, which is an extension of Algorithm 2, that adaptively
achieves the minimax risk up to a logarithmic factor. For reasons of space,
the algorithm is given in the Supplementary Material (Cai and Pu, 2022).

Theorem 4 (lower bound). Let βmax = max(βQ, βP ) and nP =
∑K

j=1 nP,j.
Let all assumptions be satisfied, there exists some constant C > 0 that only
depends on βQ, βP , u1, u2,M,K, d, LP , LQ and not on nQ, nP,1, . . . , nP,K , ε
such that

RβQ,βP ,ε ≥ C ·
(
n
− 2βmax

2βmax+d
max + (ε ∧ n

−
βQ

2βQ+d

Q ) · n
−

βQ
2βQ+d

Q +
1

nQ

)
.

Theorem 5 (adaptive upper bound). Suppose in Algorithm 2, l ≥
w(βmax) ∨ T , then the risk of this algorithm satisfies

R(nQ;nP ) ≤ C·
(
n
− 2βmax

2βmax+d
max ln4(nmax)+ln8(nQ)·(ε∧n

−
βQ

2βQ+d

Q )·n
−

βQ
2βQ+d

Q +
ln4(nQ)

nQ

)
,

for some constant C > 0 that only depends on βQ, βP , u1, u2,M,K, d and
not on nQ, nP,1, . . . , nP,K , ε.

8. Discussion. We studied in the present paper transfer learning for
nonparametric regression under the posterior drift model and established the
minimax risk, which quantifies when and how much data from the source
domains can improve the performance of nonparametric regression in the
target domain. A novel, data-driven algorithm is developed and shown to
be adaptively minimax optimal, up to a logarithmic factor, over a wide range
of parameter spaces.

The minimax risk of this problem exhibits interesting and novel phenom-
ena. The “auto-smoothing” phenomenon demonstrates that transfer learning
can smooth the mean function of the source domain when it is rougher than
that of the target domain. The “super-acceleration” phenomenon shows that
even if the task of the source domain is more difficult, it may still be bene-
ficial for the regression task in the target domain in certain cases. Further
research in other transfer learning problems could yield similar phenomena.

We use the L1 norm to measure bias strength in this paper, but it is easy
to generalize to all Lp norms. This is because L1 norm is smaller than or
equal to all Lp norms for p ≥ 1. Additionally, polynomial functions are used
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to approximate the difference between the mean functions of the source and
target domains, but it could be interesting to consider other collections of
functions in the future. These functions should be easier to estimate than
the source and target mean functions, and examples could include infinitely
differentiable functions or general Hölder functions with smoothness larger
than βmax.

In this paper, we consider the common support Ξ of the covariates of the
source and target domains to be a hypercube of dimension d with edges
of length 1, and develop methods and theory for this case. These results
can also be generalized to other types of supports. Specifically, by using
linear transformations, our results can be extended to all hypercube-shaped
supports. Additionally, we can further generalize our results to more gen-
eral types of supports by making an assumption on the measure of points
not contained in a grid of hypercubes with edge length δ. If this measure
is bounded by O(δζ) for some ζ > 0, our methods and theory can be ap-
plied to that support. Examples of supports that satisfy this assumption
include all bounded convex sets with ζ = 1. Our methods and upper bounds
can be adapted to these other supports by considering only the hypercubes
contained within them and ignoring the remaining points. The risk of the
generalized algorithm is then upper bounded by a constant times the cor-
responding upper bound for the hypercube support plus O(δζ). When ζ is
large enough in relation to the smoothness parameters of the problem, this
upper bound matches the lower bound.

References.

Apostolopoulos, I. D. and Mpesiana, T. A. (2020). Covid-19: automatic detection from
x-ray images utilizing transfer learning with convolutional neural networks. Physical
and Engineering Sciences in Medicine, 43(2):635–640.

Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al. (2007). Analysis of represen-
tations for domain adaptation. Advances in Neural Information Processing Systems,
19:137.

Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Wortman, J. (2008). Learning
bounds for domain adaptation. In Proc. Conf. Empirical Methods in Natural Language,
pages 120–128.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
Cai, T. T. and Pu, H. (2022). Supplement to “Transfer learning for nonparametric regres-

sion: Non-asymptotic minimax rate and adaptive procedure”.
Cai, T. T. and Wei, H. (2021). Transfer learning for nonparametric classification: Minimax

rate and adaptive classifier. The Annals of Statistics, 49(1):100–128.
Cao, B., Pan, S. J., Zhang, Y., Yeung, D.-Y., and Yang, Q. (2010). Adaptive transfer

learning. In proceedings of the AAAI Conference on Artificial Intelligence, volume 24,
pages 407–412.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association, 74(368):829–836.



23

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to
regression analysis by local fitting. Journal of the American Statistical Association,
83(403):596–610.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine
preferences by data mining from physicochemical properties. Decision support systems,
47(4):547–553.

Daumé III, H. (2009). Frustratingly easy domain adaptation. arXiv preprint
arXiv:0907.1815.

Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. The
Annals of Statistics, pages 196–216.

Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers.
The Annals of Statistics, 20:2008–2036.
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