
The Annals of Statistics
2021, Vol. 49, No. 1, 100–128
https://doi.org/10.1214/20-AOS1949
© Institute of Mathematical Statistics, 2021

TRANSFER LEARNING FOR NONPARAMETRIC CLASSIFICATION:
MINIMAX RATE AND ADAPTIVE CLASSIFIER

BY T. TONY CAI* AND HONGJI WEI†

Department of Statistics, The Wharton School, University of Pennsylvania, *tcai@wharton.upenn.edu;
†hongjiw@wharton.upenn.edu

Human learners have the natural ability to use knowledge gained in one
setting for learning in a different but related setting. This ability to transfer
knowledge from one task to another is essential for effective learning. In this
paper, we study transfer learning in the context of nonparametric classifica-
tion based on observations from different distributions under the posterior
drift model, which is a general framework and arises in many practical prob-
lems.

We first establish the minimax rate of convergence and construct a rate-
optimal two-sample weighted K-NN classifier. The results characterize pre-
cisely the contribution of the observations from the source distribution to the
classification task under the target distribution. A data-driven adaptive clas-
sifier is then proposed and is shown to simultaneously attain within a loga-
rithmic factor of the optimal rate over a large collection of parameter spaces.
Simulation studies and real data applications are carried out where the numer-
ical results further illustrate the theoretical analysis. Extensions to the case of
multiple source distributions are also considered.

1. Introduction. A key feature of intelligence is the ability to learn from experience.
Human learners appear to have the talent to transfer their knowledge gained from one task
to another similar but different task. However, in statistical learning, most procedures are de-
signed to solve one single task, or to learn one single distribution based on observations from
the same setting. In a wide range of real-world applications, it is important to gain improve-
ment of learning in a new task through the transfer of knowledge from a related task that
has already been learned. Transfer learning aims to tackle such a problem. It has attracted
increasing attention in machine learning and has been used in many applications. Recent ex-
amples include computer vision (Tzeng et al. (2017), Gong et al. (2012)), speech recognition
(Huang et al. (2013)), genre classification (Choi et al. (2017)) and also many newly designed
algorithms such as Lee et al. (2007), Yao and Doretto (2010). More details about transfer
learning can be found in the survey papers (Pan and Yang (2010), Weiss, Khoshgoftaar and
Wang (2016)).

Besides significant successes in applications, much recent focus has also been on the the-
oretical properties of transfer learning. In many practical situations, there are labeled data
available from a distribution P , called the source distribution, while a relatively small quan-
tity of labeled or unlabeled data is drawn from a distribution Q, called the target distribution.
They are different but to some extent related distributions. The goal is to make statistical
inference under Q. A natural questions is: How much information can be transferred from
the source distribution P to the target distribution Q, provided a certain level of similarity
between the two distributions?

This is quite a general and challenging question. The problem is also known as domain
adaptation in the binary classification setting. In domain adaptation, data pairs (X,Y ) are
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drawn from P and Q defined on R
d × {0,1}. Data from the source distribution P can be

informative about the target distribution Q if the two distributions are similar. Several type
of assumptions have been proposed and studied previously in the literature, such as diver-
gence bounds, covariate shift and posterior drift. The first line of work in the literature mea-
sures the similarity by the divergence between P and Q. Generalization bounds are derived
on unlabeled testing data from the target distribution Q after training by the data from the
source distribution P (Ben-David et al. (2007), Blitzer et al. (2008), Mansour, Mohri and
Rostamizadeh (2009)). These bounds are general and can be applied to any two distributions,
but for more structured source and target distributions those bounds are not suitable. Another
line of work imposes some structural assumptions on P and Q such as covariate shift and
posterior drift. Covariate shift assumes that the conditional distributions of Y given X are
the same under P and Q, that is, PY |X = QY |X , but the marginal distributions PX and QX

can be different. Such a setting typically arises when the same study/survey is carried out
in different populations. For example, when constructing a classifier for a certain disease,
source data may be generated from clinical studies, but the goal is to classify people drawn
from the general public. The task becomes challenging due to the difference between the two
populations. Transfer learning under covariate shift has been studied in previous work such
as Kpotufe and Martinet (2018), Shimodaira (2000), Sugiyama et al. (2008).

In the present paper, we study transfer learning under the posterior drift model, where it is
assumed that PX ≈ QX but PY |X and QY |X can highly differ. To be more specific, suppose
there are two data generating distributions P and Q on �×{0,1}, where � ⊂ [0,1]d . We ob-
serve nP independent and identically distributed (i.i.d.) samples (XP

1 , Y P
1 ), . . . , (XP

nP
, YP

nP
)

drawn from a source distribution P , and nQ i.i.d. samples (X
Q
1 , Y

Q
1 ), . . . , (X

Q
nQ,Y

Q
nQ) drawn

from a target distribution Q. The data points from the distributions P and Q are also mu-
tually independent. For each data point (X,Y ), the d-dimensional vector X is regarded as
covariates (features) of a certain object, while Y is a (noisy) binary label indicating to which
of the two classes this object belongs. The goal is to make classification under the target dis-
tribution Q: Given the observed data, construct a classifier f̂ : � → {0,1} which minimizes
the classification risk under the target distribution Q:

R(f̂ ) � P(X,Y )∼Q

(
Y �= f̂ (X)

)
.

Here, P(X,Y )∼Q(·) means the probability under the distribution Q.
In binary classification, the regression functions are defined as

ηP (x) � P(Y = 1|X = x) and ηQ(x) � Q(Y = 1|X = x),

which can be used to represent the conditional distributions PY |X and QY |X . In classification,
Y can be regarded as an unknown parameter predicted by X, so from this perspective we refer
to PX and QX as the class “prior” probabilities and ηP (x) and ηQ(x) as the class “posterior”
probabilities associated with P and Q, respectively (Scott (2019)). We say a “posterior drift”
happens when PX and QX have the same support with bounded densities, but ηP (x) and
ηQ(x) are highly different.

Posterior drift is a general framework and arises in many applications, where one collects
data from different populations. Here are three examples.

• Crowdsourcing. Crowdsourcing is a distributed model for large-scale problem-solving
and experimentation such as image classification, video annotation and translation (Yuen,
King and Leung (2011), Karger, Oh and Shah (2011), Zhang et al. (2014)). The tasks are
broadcasted to multiple independent workers online in order to collect and aggregate their
solutions. In crowdsourcing, many noisy answers/labels are available from a large amount of
public workers, while sometimes, more accurate answers/labels may be collected from expe-
rienced workers or experts. These expert answers/labels are of higher quality but are relatively
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few due to the time or budget constraints. One can view this difference in labeling accuracy
as a posterior drift. It is desirable to construct a statistical procedure that incorporates both
data sets.

• Concept drift. Concept drift is a common phenomenon when the underlying distribu-
tion of the data changes over time in a streaming environment (Tsymbal (2004), Gama et al.
(2014)). One kind of concept drift is called real concept drift where the posterior class proba-
bilities P(Y |X) changes over time. In this situation, posterior drift exists if data are collected
at different time. For example, the incidence rate of a certain disease in certain groups may
change over time due to the development of treatments and preventive measures.

• Data corruption. Data corruption is ubiquitous in applications, where unexpected error
on data occurs during storage, transmission or processing (Menon et al. (2015), van Rooyen
and Williamson (2017)). In many settings, one receives data of variable quality—perhaps
some small amount of clean data, another amount of slightly corrupted data, yet more that is
significantly corrupted, and so on (Crammer, Kearns and Wortman (2006)). Data of variable
qualities can be viewed as posterior drift between those data generating distributions, thus
better strategies are needed to tackle the problem within the posterior drift framework.

Under the posterior drift model, the main difference between P and Q lies in the regression
functions ηP (x) and ηQ(x). So the relationship between ηP (x) and ηQ(x), which can be
captured by the link function φ defined below, is important in characterizing the difficulty
of the transfer learning problem. In this work, we propose a new concept called the relative
signal exponent γ to describe the relationship between ηP (x) and ηQ(x). Our results show
that the relative signal exponent γ plays an important role in the minimax rate of convergence
for the excess risk under the posterior drift model.

For conceptual simplicity, we assume ηP (x) = φ(ηQ(x)) for some strictly increasing link
function φ(·) with φ(1

2) = 1
2 . Note that this is only a simplified version of our formal model

which will be given in Section 2. It is natural to assume φ is strictly increasing in the settings
where those X that are more likely to be labeled Y = 1 under Q are also more likely to be
labeled Y = 1 under P . The assumption φ(1

2) = 1
2 means that those X that are noninformative

under Q are the same under P . Formally, for a given relative signal exponent γ > 0 and
a constant Cγ > 0, we denote by �(γ,Cγ ) the collection of all distribution pairs (P,Q)

satisfying

(1)
(
φ(x) − 1

2

)(
x − 1

2

)
≥ 0 and

∣∣∣∣φ(x) − 1

2

∣∣∣∣ ≥ Cγ

∣∣∣∣x − 1

2

∣∣∣∣γ .

The relative signal exponent is a key parameter in capturing the usefulness of the data
from the source distribution P for the task of classification under the target distribution Q.
The smaller the relative signal exponent, the more information transferable from P to Q.

In this work, we consider transfer learning under the posterior drift model in a nonpara-
metric classification setting. When Q satisfies the margin assumption with the parameter α,
defined in Section 2, and ηQ(x) belongs to the (β,Cβ)-Hölder function class, it is shown
that, under the regularity conditions, the minimax optimal rate of convergence is given by

(2) inf
f̂

max
(P,Q)∈	

EZEQ(f̂ ) 	 (
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d ,

where nP and nQ are number of data drawn from P and Q, respectively, d is the number of
features and 	 is the posterior drift regime where the distribution pair (P,Q) belongs to the
class �(γ,Cγ ) with the relative signal exponent γ and satisfies some additional regularity
conditions. Here, EQ(f̂ ) is the excess risk on Q which is defined based on the misclassifica-
tion error:

(3) EQ(f̂ ) = RQ(f̂ ) − RQ

(
f ∗

Q

)
,
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where

(4) f ∗
Q(x) =

⎧⎨
⎩0 if ηQ(x) ≤ 1

2
,

1 otherwise

is the Bayes classifier under Q. The expectation EZ in (2) is taken over the random realiza-
tions of all the observed data, namely the set Z, defined as

(5) Z �
{(

XP
1 , Y P

1
)
, . . . ,

(
XP

nP
,YP

nP

)
,
(
X

Q
1 , Y

Q
1

)
, . . . ,

(
XQ

nQ
,YQ

nQ

)}
.

Note that if one only had observations from the target distribution Q, the minimax rate

would be n
− β(1+α)

2β+d

Q . Therefore, the additional term n

2β+d
2γβ+d

P in the minimax rate (2) quantifies
an “effective sample size” for transfer learning from the source distribution P relative to Q,
and 2β+d

2γβ+d
can be viewed as the optimal transfer rate. This result answers one of the main

questions in transfer learning: n

2β+d
2γβ+d

P is the total amount of information that can be transferred
from P to Q, and this quantity depends on the relative signal exponent γ which characterizes
the discrepancy between P and Q in posterior drift.

We construct a two-sample weighted K-nearest neighbors (K-NN) classifier and show that
it attains the optimal rate given in (2). However, this classifier depends on the parameters α, β
and γ , which are typically unknown in practice. In this paper, we also propose a data-driven
classifier f̂a that automatically adapts to the unknown model parameters α,β and γ , with an
additional log term on the excess risk bound:

sup
(P,Q)∈	

EZEQ(f̂a)�
((

nP

log(nP + nQ)

) 2β+d
2γβ+d + nQ

log(nP + nQ)

)− β(1+α)
2β+d

.

This adaptive procedure is essentially different from either the nonadaptive procedure given
in this paper, or any nonparametric classification procedures in the literature. The adaptive
classifier is constructed based on the ideas inspired by Lepski’s method for nonparametric re-
gression. The construction begins with a small number of the nearest neighbors, and gradually
increases the number of the neighbors used to make the decision. The algorithm terminates
once an empirical signal-to-noise ratio reaches a delicately designed threshold. It is shown
that the resulting data-driven classifier automatically adapts to a wide collection of parameter
spaces.

In some applications, there are data available from multiple source distributions. Intu-
itively, the samples from all source distributions are helpful to the classification task under
the target distribution. We also consider transfer learning in this setting under the posterior
drift model. Suppose there are multiple source distributions P1, . . . ,Pm and one target distri-
bution Q, each pair of distributions (Pi,Q) has a relative signal exponent γi , i ∈ {1, . . . ,m}.
The minimax optimal rate of convergence is established and the result quantifies precisely the
contributions from the data generated by the individual source distributions. An adaptive pro-
cedure is constructed and shown to simultaneously attain the optimal rate up to a logarithmic
factor over a large class of parameter spaces.

The rest of the paper is organized as follows. In Section 2, after some basic notation and
definitions are introduced, the model for transfer learning under the posterior drift model is
proposed in a nonparametric classification setting. In Section 3, we establish the minimax
optimal rate by constructing a minimax optimal procedure with guaranteed upper bound and
a matching lower bound. In Section 4, a data-driven adaptive classifier is proposed and is
shown to adaptively attain the optimal rate of convergence, up to a logarithmic factor. Sec-
tion 6 investigates the numerical performance of the data driven procedure. In Section 7,
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a real data application is carried out to further illustrate the benefit of our method. Section 5
considers transfer learning with multiple source distributions and a brief discussion is given
in Section 8. For reasons of space, we prove one main result in Section 9 and provide the
proofs of the other results and some technical lemmas in the Supplementary Material (Cai
and Wei (2020)).

2. Problem formulation. We introduce in this section the posterior drift model. We be-
gin with notation and basic definitions.

2.1. Notation and definitions. For a distribution G, denote by G(·) and EG(·), respec-
tively, the probability and expectation under G. Denote by PX and QX the marginal distribu-
tion of X under the joint distributions P and Q for (X,Y ), respectively. Let supp(·) denote
the support of a probability distribution. Throughout the paper, we write ‖ · ‖ to denote the
Euclidean norm. We use I{·} to denote the indicator function taking values in {0,1}. We de-
fine a ∨ b = max(a, b), a ∧ b = min(a, b), and �a� be the maximum integer that is not larger
than a. We denote by B(x, r) a Euclidean ball centered at x with radius r . We write λ(·) to
denote Lebesgue measure of a set in a Euclidean space. We denote by C or c some generic
constants not depending on nP or nQ that may vary from place to place.

2.2. Posterior drift in nonparametric classification. For two distributions P and Q for
a random pair (X,Y ) taking values in [0,1]d × {0,1}, we observe two independent random

samples, (XP
1 , Y P

1 ), . . . , (XP
nP

, YP
nP

)
i.i.d.∼ P and (X

Q
1 , Y

Q
1 ), . . . , (X

Q
nQ,Y

Q
nQ)

i.i.d.∼ Q. We shall
use P -data and Q-data to refer to the data sets drawn from the distributions P and Q, re-
spectively. We consider the transfer learning problem when there is a posterior drift between
P and Q. In the posterior drift model, the covariates/features X are drawn from distributions
having the same support with bounded densities, but the response/label Y has different con-
ditional distributions given X between P and Q. The readers should notice that the model we
introduced in Section 1 is a special case within the model we will introduce in this section.

The regression functions have been defined informally in the Introduction, now we give a
precise definition. Let

ηP (x) =
⎧⎨
⎩

P(Y = 1|X = x) if x ∈ supp(PX),
1

2
otherwise,

ηQ(x) =
⎧⎨
⎩

Q(Y = 1|X = x) if x ∈ supp(QX),
1

2
otherwise

denote the corresponding regression functions of P and Q. Besides the previous definition
(4) of Bayes classifier under the target distribution Q, we can similarly define the Bayes
classifier for the source distribution P as

f ∗
P (x) =

⎧⎨
⎩0 if ηP (x) ≤ 1

2
,

1 otherwise.

Now assume (XP ,YP ) is a data pair drawn from the distribution P . From the definition,
given XP = x, YP is more likely to be equal to 1 if f ∗

P (x) = 1 whereas YP is more likely to
be equal to 0 if f ∗

P (x) = 0. It is similar for the distribution Q. Thus informally one can regard
f ∗

P (x) (f ∗
Q(x)) as the true label at the covariate value x under the distribution P (Q).

In transfer learning, although the observed data are drawn from two or more different dis-
tributions, these distributions are usually related to each other so that all of them are useful for



TRANSFER LEARNING 105

learning the intrinsic true labels. For instance, in a crowdsourcing survey, although accuracy
varies among different workers, their answers should be no worse than random guessing. It is
reasonable to assume that the answer is correct with probability at least 1

2 . This means we may
reasonably assume that, given the same covariate x, the “true labels” under the distributions
P and Q are the same. That is,

f ∗(x) � f ∗
P (x) = f ∗

Q(x) ∀x ∈ supp(PX),

which is equivalent to (
ηP (x) − 1

2

)(
ηQ(x) − 1

2

)
≥ 0.

The definitions and assumptions introduced so far treat the P -data and Q-data symmet-
rically and interchangeably. But in real applications, usually the two data sets are treated
differently. We call P the source distribution and Q the target distribution. The goal is to
transfer the knowledge gained from the P -data together with the information contained in
the Q-data for constructing an optimal classifier under the target distribution Q.

Intuitively, it is clear that the amount of information that can be transferred from the P -
data for the inference under Q depends on the similarity between the distributions P and Q.
In this paper, we quantify the similarity by the relative signal exponent of P with respect
to Q.

DEFINITION 1 (Relative signal exponent). The class �(γ,Cγ ) with relative signal expo-
nent γ ∈ (0,∞) and a constant Cγ ∈ (0,∞) is defined as the set of distribution pairs (P,Q),
both supported on R

d × {0,1}, satisfying ∀x ∈ supp(PX) ∪ supp(QX),(
ηP (x) − 1

2

)(
ηQ(x) − 1

2

)
≥ 0,(6)

∣∣∣∣ηP (x) − 1

2

∣∣∣∣ ≥ Cγ

∣∣∣∣ηQ(x) − 1

2

∣∣∣∣γ .(7)

REMARK 1. The relative signal exponent γ indicates the signal strength of the P -data
relative to the Q-data. Note that |ηQ(x) − 1

2 | is always bounded by 1/2. So generally speak-
ing, the smaller γ is, the larger the difference between ηP (x) and 1

2 , which means the P -data
is more informative about f ∗(x) and consequently more information can be transferred from
the P -data to the Q-data. An illustration of the relative signal exponent is given in Figure 1.

One can see that the above definition of relative signal exponent implies when |ηQ(x)− 1
2 |

is large, then |ηP (x) − 1
2 | should be relatively large. This is intuitively true in a wide range

of real applications. Taking again the crowdsourcing surveys as an example. If one crowd of
workers can answer a question correctly with a larger probability, then for another crowd of
workers the accuracy of their answers is also usually larger because this question is likely to
be easier.

In addition to the relative signal exponent γ , we also need to define a smoothness param-
eter of ηQ and characterize its behavior near 1/2.

DEFINITION 2 (Smoothness). The (β,Cβ)-Hölder class of functions (0 < β ≤ 1), de-
noted by H(β,Cβ), is defined as the set of functions g : Rd → R satisfying, for any
x1, x2 ∈ R

d , ∣∣g(x1) − g(x2)
∣∣ ≤ Cβ‖x1 − x2‖β.
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FIG. 1. Illustration of the relative signal exponent γ . Left panel: feasible region when γ = 0.5 and Cγ = 0.5.
A pair of distributions (P,Q) has relative signal exponent γ = 0.5 with Cγ = 0.5 when (ηP (x), ηQ(x)) falls into
the shaded (blue) region for all x in the support. Right panel: feasible region with different choices of γ . Smaller
γ implies more information contains in PY |X .

DEFINITION 3 (Margin assumption). The margin class M(α,Cα) with α ≥ 0,Cα > 0 is
defined as the set of distributions Q satisfying

QX

(∣∣∣∣ηQ(X) − 1

2

∣∣∣∣ < t

)
≤ Cαtα.

In this paper, we consider the nonparametric classification problem when ηQ(x) belongs
to a (β,Cβ)-Hölder class and Q belongs to a margin class M(α,Cα). When Q ∈ M(α,Cα),
we also say that Q satisfies the margin assumption with the parameter α.

REMARK 2. In the main part of our discussion, we focus on the case with 0 < β ≤ 1, that
is, η belongs to a Hölder function class with smoothness less than or equal to 1. Generally,
it is possible to consider more general classes where the smoothness parameter can be larger
than 1. The discussion on the model and methods associated with the general smoothness
parameter β > 1 will be deferred to the discussion section.

The margin assumption was first introduced in Audibert and Tsybakov (2007), Tsybakov
(2004) to characterize the convergence rate in nonparametric classification. The margin as-
sumption put a constraint on the mass around ηQ(x) ≈ 1

2 so that with large probability ηQ(x)

is either 1
2 or far from 1

2 . Generally, if an underlying distribution satisfies the margin assump-
tion, then a more accurate classification can be guaranteed.

Another definition is about density constraints on the marginal distributions PX and QX .

DEFINITION 4 (Common support and strong density assumption). (PX,QX) is said
to have common support and satisfy strong density assumption with parameter μ =
(μ−,μ+), cμ > 0, rμ > 0 if both PX and QX are absolutely continuous with respect to the
Lebesgue measure on R

d , and

� � supp(PX) = supp(QX),

λ
[
� ∩ B(x, r)

] ≥ cμλ
[
B(x, r)

] ∀0 < r ≤ rμ,∀x ∈ �,

μ− <
dPX

dλ
(x) < μ+ ∀x ∈ �,

μ− <
dQX

dλ
(x) < μ+ ∀x ∈ �.
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Define S(μ, cμ, rμ) to be the set of the marginal densities pairs (PX,QX) that have com-
mon support and satisfy the strong density assumption with parameter μ,cμ, rμ.

REMARK 3. The strong density assumption was first introduced in Audibert and Tsy-
bakov (2007). In this paper, we focus on the scenario that the marginal densities of PX and
QX have regular support and are bounded from below and above on the support.

Moreover, note that when QX satisfies the strong density assumption, in the regime αβ >

d , there is no distribution Q such that the regression function ηQ crosses 1
2 in the interior

of the support QX (Audibert and Tsybakov (2007)). So this regime only contains the trivial
cases for classification. Therefore, we further assume αβ ≤ d in the following discussion.

Given a classifier f̂ : Rd → {0,1}, the excess risk on Q of the classifier f̂ , defined in
equation (3), has a dual representation (Győrfi (1978))

(8) EQ(f̂ ) = 2E(X,Y )∼Q

(∣∣∣∣ηQ(X) − 1

2

∣∣∣∣I{f̂ (X) �=f ∗
Q(X)}

)
.

A major goal in transfer learning is to construct an empirical decision rule f̂ incorporating
both the P -data and Q-data, so that the excess risk on Q is minimized. It is interesting to
understand when the minimax rate in the transfer learning setting is faster than the optimal
rate where only the Q-data is used to construct the decision rule.

Putting the above definitions together, in this paper we consider the posterior drift non-
parametric parameter space:

	(α,Cα,β,Cβ, γ,Cγ ,μ, cμ, rμ) = {
(P,Q) : (P,Q) ∈ �(γ,Cγ ),Q ∈ M(α,Cα),

ηQ ∈ H(β,Cβ), (PX,QX) ∈ S(μ, cμ, rμ)
}
.

In the rest of this paper, we will use the shorthand 	(α,β, γ,μ) or 	 if there is no confu-
sion. The space 	(α,β, γ,μ) is also called the posterior drift regime with (α,β, γ,μ).

3. Minimax rate of convergence. In this section, we establish the minimax rate of con-
vergence for the excess risk on Q for transfer learning under the posterior drift model and
propose an optimal procedure using the two-sample weighted K-NN classifier.

The K-NN method has attracted much attention (Cover and Hart (1967), Győrfi (1978),
Gadat, Klein and Marteau (2016)) due to its massive practical success and appealing theo-
retical properties. In the conventional setting where one only has access to the Q-data and
there is no P -data, with a suitable choice of the neighborhood size k, the K-NN classifier can
achieve the minimax rate of convergence for the excess risk on Q (Gadat, Klein and Marteau
(2016)). The K-NN classifier is generated in two steps:

Step 1: For any given x to be classified, one can estimate ηQ(x) by taking the empirical
mean of the response variables (Y ) according to its k nearest covariates (X). Formally, define
X

Q
(i)(x) be the ith nearest covariates to x among X

Q
1 , . . . ,X

Q
nQ and Y

Q
(i)(x) is its corresponding

response (label). The estimate η̂Q(x) is given by

η̂Q(x) = 1

k

k∑
i=1

Y
Q
(i)(x).

Step 2: The class label for x is estimated by the plug-in rule:

f̂ (x) = I{η̂Q(x)> 1
2 }.
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In transfer learning, one also has access to the P -data in addition to the Q-data, the P -
data can be used to help the classification task under the target distribution Q and should be
taken into consideration. To accommodate the existing K-NN methods, we should take the
empirical mean of not only the k-nearest response variables from the Q-data, but also some
nearest response variables from the P -data. In addition, when taking the average, data from
the different distributions should have different weights because the signal strength varies
between the two distributions. To make the classification at x ∈ [0,1]d , a new strategy called
the two-sample weighted K-NN classifier is summarized as follows:

Step 1: Define XP
(i)(x) to be the ith nearest covariates to x among XP

1 , . . . ,XP
nP

and

YP
(i)(x) is its corresponding response. X

Q
(i)(x) and Y

Q
(i)(x) can be defined likewise. Construct

the two-sample weighted K-NN estimator

η̂NN(x) = wP

∑kP

i=1 YP
(i)(x) + wQ

∑kQ

i=1 Y
Q
(i)(x)

wP kP + wQkQ

,

where the number of neighbors kP and kQ and the weights wP and wQ will be specified later.
Step 2: The class label for x is estimated by the plug-in rule:

f̂NN(x) = I{η̂NN(x)> 1
2 }.

The final decision rule f̂NN(x), which is generated by both the P -data and Q-data, is called
the two-sample weighted K-NN classifier. An illustration of the two-sample weighted K-NN
classifier is given in Figure 2.

The performance of the two-sample weighted K-NN classifier f̂NN(x) clearly depends on
the choice of (kP , kQ,wP ,wQ). The next theorem gives a set of choices of (kP , kQ,wP ,wQ)

and a provable upper bound on the excess risk, which gives a guarantee for the performance
of the two-sample weighted K-NN classifier with these specific choices of (kP , kQ,wP ,wQ).

THEOREM 1 (Upper bound). Let f̂NN be the two-sample weighted K-NN classifier with

wQ = (n

2β+d
2γβ+d

P + nQ)
− β

2β+d , wP = (n

2β+d
2γβ+d

P + nQ)
− γβ

2β+d , kQ = �nQ(n

2β+d
2γβ+d

P + nQ)
− d

2β+d �, and

FIG. 2. An illustration of the two-sample weighted K-NN classifier. (XP ,YP ) are shown by the blue points and
(XQ,YQ) are shown by the red points. For each point in the graph, the coordinates represent its two-dimensional
covariates X while the number marked inside the point represents its label Y . To classify the black point (x)
located in middle of the graph, by calculation we get (say) kP = 2 and kQ = 4. Then we find kP nearest neighbors
from P -data and kQ nearest neighbors from Q-data. Finally, we calculate their weighted mean to make the final
classification.
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kP = �nP (n

2β+d
2γβ+d

P + nQ)
− d

2β+d �. Then

sup
(P,Q)∈	

EZEQ(f̂NN) ≤ C
(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d

for some constant C > 0 not depending on nP or nQ.

The following lower bound result shows that the two-sample weighted K-NN classifier
f̂NN given in Theorem 1 is in fact rate optimal.

THEOREM 2 (Lower bound). There exists a constant c > 0 not depending on nP or nQ

such that

inf
f̂

sup
(P,Q)∈	

EZEQ(f̂ ) ≥ c
(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d .

The proof of Theorem 1 will be given in Section 9, which is based on the general tech-
niques for proving K-NN methods, for instance; see Gadat, Klein and Marteau (2016),
Samworth (2012). In the literature of classical nonparametric classification problem, the fo-
cus was mainly on bias-variance trade-off. Under posterior drift model, we further extend the
general techniques to the two-sample setting, where the weights and the number of neighbors
are carefully selected to make the best combination of information. The proof of Theorem 2
is given in the Supplementary Material (Cai and Wei (2020)), using the same general scheme
as in (Audibert and Tsybakov (2007), Kpotufe and Martinet (2018)). Theorems 1 and 2 to-
gether establish the minimax rate of convergence for transfer learning under the posterior
drift model,

(9) inf
f̂

sup
(P,Q)∈	

EZEQ(f̂ ) 	 (
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d .

We make a few remarks on the minimax rate of convergence.

• Based on the minimax rate given in (9), it is easy to see that, in terms of the classifi-

cation accuracy, the contribution from the P -data is substantial when n

2β+d
2γβ+d

P � nQ, and the
contribution is not significant otherwise.

• Comparing the convergence rates (9) with (10), the minimax rate for transfer learning

under the posterior drift model is the same as if one had a sample of size n

2β+d
2γβ+d

P + nQ from

the distribution Q in the conventional setting. Therefore, one can intuitively view n

2β+d
2γβ+d

P as
the “effective sample size” of the P -data for the classification task under Q. The exponent
2β+d

2γβ+d
here can be regarded as the transfer rate. The smaller the relative signal exponent γ

is, the larger 2β+d
2γβ+d

is, and more information is transferred from the P -data. This transfer
rate provides a quantitative answer to the question posed in the Introduction: How much
information can be transferred from the source distribution P to the target distribution Q?
It is also interesting to note that, when γ < 1, 2β+d

2γβ+d
> 1, which implies that in this case

an observation from P is more valuable than an observation from Q for the classification
problem.

• In the transfer learning literature, much attention has been on an interesting special
case where there is no data from the target distribution Q at all, that is, nQ = 0 (Mansour,
Mohri and Rostamizadeh (2009), Blitzer et al. (2008)). This case arises when a classifier
has been trained based on the data drawn from the source distribution P , and one wishes to
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generalize the classifier to unlabeled testing data drawn from the target distribution Q. Our
results show that generalization is possible in the posterior drift framework and the optimal
rate of convergence is

inf
f̂

sup
(P,Q)∈	

EZEQ(f̂ ) 	 n
− β(1+α)

2γβ+d

P .

• It is worth noting that in the conventional setting with access to the Q-data only, the
minimax rate, which is given in Audibert and Tsybakov (2007), would be

(10) inf
f̂

sup
(P,Q)∈	

EZEQ(f̂ ) 	 n
− β(1+α)

2β+d

Q ,

which is a special case of (9) with nP = 0. This rate can be achieved by the K-NN classifier

given above with the choice of k 	 n
2β

2β+d

Q .

4. Data-driven adaptive classifier. In the previous section, we have established the min-
imax optimal rate over the parameter space 	(α,β, γ,μ) for transfer learning under the pos-
terior drift model. This rate can be achieved by the two-sample weighted K-NN classifier
given in Theorem 1. A major drawback of this classifier is that it requires the prior knowl-
edge of β and γ , which is typically unavailable in practice. An interesting and practically
important question is whether it is possible to construct a data-driven adaptive decision rules
that can achieve the same rate of convergence, while automatically adapt to a wide collection
of the parameter spaces 	(α,β, γ,μ).

In nonparametric regression, Lepski’s method (Lepski (1991, 1992, 1993)) is a well-known
approach for the construction of a data driven estimator that adapts to the unknown smooth-
ness parameter β by screening from a small bandwidth to larger bandwidths with delicately
designed stopping rules. This procedure can be used for nonparametric classification in the
conventional setting where only Q-data is available and only adaptation to one smoothness
parameter β is needed. For the readers’ convenience, we include this construction in Sec-
tion 9. The transfer learning setting is more challenging: we need to adapt to bothparameters
β and γ . In this section, we modify Lepski’s method in our context and introduce a new
stopping rule and show that the resulting classifier adapts to all unknown parameters.

Now we develop a data-driven procedure to make classification at a specific point x ∈
[0,1]d . The construction combines all data points from the P -data and the Q-data together
and finds nearest neighbors among all the data. Denote by X(i)(x) the ith nearest data point to
x in the combined set {XP

1 , . . . ,XP
nP

}∪{XQ
1 , . . . ,X

Q
nQ}. Similar to Lepski’s method, we begin

with a small number of nearest neighbors, and gradually increase the number of neighbors
used to make the decision. One more nearest neighbor is added in each step. At the kth step,
there are k nearest neighbors X(1)(x), . . . ,X(k)(x) among all the points in the combined set

{XP
1 , . . . ,XP

nP
} ∪ {XQ

1 , . . . ,X
Q
nQ}. Suppose among these k nearest neighbors there are k

(k)
P

points from the P -data and k
(k)
Q points from the Q-data. Heuristically, given these k nearest

neighbors, one can obtain a weighted K-NN estimate as

η̂(k)(x,wP ,wQ) = wP

∑k
(k)
P

i=1 YP
(i)(x) + wQ

∑k
(k)
Q

i=1 Y
Q
(i)(x)

wP k
(k)
P + wQk

(k)
Q

.

If β and γ are known, one can calculate the optimal choice of the weights wP and wQ

for a two-sample weighted K-NN classifier. To construct an adaptive procedure, we need to
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find a data driven method for choosing the weights wP and wQ. Define the “variance” of
η̂(k)(x,wP ,wQ) as

v(k)(wP ,wQ) = w2
P k

(k)
P + w2

Qk
(k)
Q

(wP k
(k)
P + wQk

(k)
Q )2

.

For a given k, we call the maximum value of the ratio between (η̂(k)(x,wP ,wQ) − 1
2)2

and the “variance” v(k)(wP ,wQ) as the signal-to-noise ratio index r̂ (k):

r̂ (k) = max
wP ,wQ

(η̂(k)(x,wP ,wQ) − 1
2)2

v(k)(wP ,wQ)
.

The algorithm is terminated when r̂ (k) > (d + 3) log(nP + nQ), and the corresponding

wP and wQ are chosen as the maximizers of
(η̂(k)(x,wP ,wQ)− 1

2 )2

v(k)(wP ,wQ)
. If the algorithm does not

terminate at any step, the optimal k can be alternatively chosen by the maximizer of r̂ (k).
That is, we choose k = k∗ with

(11) k∗ =
⎧⎪⎨
⎪⎩

min
{
k : r̂ (k) > (d + 3) log(nP + nQ)

}
if max

k
r̂(k) > (d + 3) log(nP + nQ),

argmax
k

r̂(k) otherwise

and choose (wP ,wQ) = (w∗
P ,w∗

Q) with

(
w∗

P ,w∗
Q

) = argmax
(wP ,wQ)

(η̂(k∗)(x,wP ,wQ) − 1
2)2

v(k∗)(wP ,wQ)
.

The data driven adaptive classifier is then defined as

f̂a(x) = I{η̂(k∗)(x,w∗
P ,w∗

Q)≥ 1
2 }.

REMARK 4. The choice of (d +3) log(nP +nQ) as the threshold in the stopping rule (11)
is important and requires some explanation. Roughly speaking, this is due to the fact that the

maximum fluctuation of η̂(k)(x,wP ,wQ) is bounded by
√

(d + 3) log(nP + nQ)v(k)(wP ,wQ)

with high probability, which will be shown in Lemma 5 with a suitable change of pa-
rameter (stated in the Supplementary Material (Cai and Wei (2020))). Thus, when r̂ (k) >

(d + 3) log(nP + nQ), η̂(k)(x,wP ,wQ) > 1
2 indicates Eη̂(k)(x,wP ,wQ) > 1

2 , which sug-
gests f ∗(x) = 1, and vice versa.

The procedure is summarized in Algorithm 1 where the above procedure is simplified
by using the actual closed-form expression for r̂ (k) and f̂a(x). An illustration of the above
adaptive procedure is given in Figure 3.

We investigate the theoretical properties of this data-driven classifier f̂a in terms of both
global and local adaptivity. The theoretical analysis shows that the proposed classifier is, both
globally and locally, adaptive to the unknown smoothness and relative signal exponent.

4.1. Global adaptivity. Note that f̂a is a data-driven classifier. The following theorem
gives an upper bound for the excess risk under Q.

THEOREM 3. Let n = nP + nQ. There exists a constant C > 0 not depending on nP or
nQ such that

(12) sup
(P,Q)∈	

EZEQ(f̂a) ≤ C

((
nP

logn

) 2β+d
2γβ+d + nQ

logn

)− β(1+α)
2β+d

.
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Algorithm 1 The data driven procedure
Input: x ∈ supp(QX).
for k = 1, . . . , (nP + nQ − 1), (nP + nQ) do

Find k nearest covariates to x among all covariates in data {XP
1 ,XP

2 , . . . ,XP
nP

} ∪
{XQ

1 ,X
Q
2 , . . . ,X

Q
nQ}. Suppose among those k nearest neighbors X(1)(x),X(2)(x), . . . ,

X(k)(x) there are k
(k)
P covariates from P -data and k

(k)
Q covariates from Q-data.

Compute k
(k)
P nearest neighbor estimate in P -data (if k

(k)
P = 0, set η̂

(k)
P ← 1

2 )

η̂
(k)
P ← 1

k
(k)
P

k
(k)
P∑

i=1

YP
(i)(x)

and k
(k)
Q nearest neighbor estimate in P -data (if k

(k)
Q = 0, set η̂

(k)
Q ← 1

2 )

η̂
(k)
Q ← 1

k
(k)
Q

k
(k)
Q∑

i=1

YP
(i)(x).

Let r̂ (k) be the signal-to-noise ratio index calculated by

r̂ (k) ←

⎧⎪⎪⎨
⎪⎪⎩

k
(k)
P

(
η̂

(k)
P − 1

2

)2
+ k

(k)
Q

(
η̂

(k)
Q − 1

2

)2
if sign

(
η̂

(k)
P − 1

2

)
= sign

(
η̂

(k)
Q − 1

2

)
,

max
(
k
(k)
P

(
η̂

(k)
P − 1

2

)2
, k

(k)
Q

(
η̂

(k)
Q − 1

2

)2)
if sign

(
η̂

(k)
P − 1

2

)
�= sign

(
η̂

(k)
Q − 1

2

)
.

Define the intermediate classifier by

f̂ (k)(x) ← I{
√

k
(k)
P (η

(k)
P − 1

2 )+
√

k
(k)
Q (η

(k)
Q − 1

2 )≥0}.

if r̂ (k)(x) > (d + 3) log(nP + nQ) then
Stop and output f̂a(x) ← f (k)(x).

Output f̂a(x) ← f̂ (km)(x) where km = argmaxk r̂(k).

The proof of Theorem 3 is given in the Supplementary Material (Cai and Wei (2020)).
Comparing the rate of convergence in (12) for the adaptive classifier f̂a with the minimax

rate (9), the data driven classifier f̂a simultaneously achieves within a logarithmic factor of
the minimax optimal rate over a large collection of parameter spaces.

REMARK 5. If only the Q-data is available and Lepski’s method is applied, then the
following upper bound on the excess risk under Q holds:

(13) sup
(P,Q)∈	

EZEQ(f̂L) ≤ C ·
(

nQ

lognQ

)− β(1+α)
2β+d

.

One can verify that by setting nP = 0, our new adaptive procedure is exactly equivalent to
Lepski’s method (Algorithm 3), while the rates of convergence for the two methods also
coincide.

4.2. Local adaptivity. In practice, one might be focused on classifying a given observa-
tion x0, and thus especially interested in the accuracy of a classifier at a specific point x0.
Interestingly, the weights wP and wQ, the number k of neighbors of the proposed classifier
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FIG. 3. An illustration of the adaptive procedure given in Algorithm 1. See Figure 2 for interpretation of the
graph. Here, we shorthand the threshold T = (d + 3) log(nP + nQ). In each step, we evaluate r(k) and compare

it to the threshold R. If r(k) > T , then output f̂ (k) generated in current step; if r(k) ≤ T , go to next step and add
one more nearest neighbor.

f̂a(x) are all locally selected and calculated based on samples in a neighborhood of x. It is of
practical interest to investigate the local adaptivity of the proposed classifier.

In order to study the local behavior of the classifier f̂a at a given point x0, we need to
extent the definitions for the posterior drift model to their local versions. First, we define the
local excess risk on Q at a point x0.

DEFINITION 5. For any x0 ∈ � and a classifier f̂ : � → {0,1}, define the classification
risk at x0 on distribution Q for f̂ as

R(f̂ , x0) = P(X,Y )∼Q

(
Y �= f̂ (x0)|X = x0

)
.

Further, define the local excess risk at x0 on distribution Q for f̂ as

EQ(f̂ , x0) = R(f̂ , x0) − R
(
f ∗

Q,x0
)
.

Next, we give a formal definition for local smoothness β0 = β(x0) and local relative signal
exponent γ0 = γ (x).

DEFINITION 6. A function g : Rd → R has local Hölder smoothness β0 (0 < β0 ≤ 1) at
point x0 ∈ R

d if there exists r > 0 and Cβ > 0 such that for any x′ ∈ B(x0, r),∣∣g(
x′) − g(x0)

∣∣ ≤ Cβ

∥∥x′ − x0
∥∥β

.

DEFINITION 7. A pair of distributions (P,Q), both supported on �×{0,1}, are defined
to have local relative signal exponent γ0 at a point x0 ∈ �, if there exists r > 0 and Cγ > 0
such that for any x ∈ B(x0, r),(

ηP (x) − 1

2

)(
ηQ(x) − 1

2

)
≥ 0,

∣∣∣∣ηP (x) − 1

2

∣∣∣∣ ≥ Cγ

∣∣∣∣ηQ(x) − 1

2

∣∣∣∣γ .

The definitions of local smoothness and local relative signal exponent are similar to their
global versions, except we only consider in a small neighborhood of x0. Based on the above
definitions, the local adaptivity of f̂a at x0 is characterized as follows.
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THEOREM 4. Suppose the distributions (P,Q) are both supported on � × {0,1} and a
point x0 ∈ �. Suppose the following hold:

1. (P,Q) have local relative signal exponent γ0 at x0;
2. ηQ has local Hölder smoothness β0 at x0;
3. (PX,QX) ∈ S(μ, cμ, rμ), that is, PX and QX have common support and satisfy the

strong density assumption.

Let n = nP + nQ. There exists a constant C > 0 such that

(14) EZEQ(f̂a, x0) ≤ C

((
nP

logn

) 2β0+d

2γ0β0+d + nQ

logn

)− β0
2β0+d

.

The proof of Theorem 4 is provided in the Supplementary Material (Cai and Wei (2020)).

REMARK 6. Under the same setting as in Theorem 4, when β0 and γ0 are known, the
local minimax rate of convergence is

inf
f̂

sup
(P,Q)

EZEQ(f̂a, x0) 	 (
n

2β0+d

2γ0β0+d

P + nQ

)− β0
2β0+d ,

where the supremum is taken over all distribution pairs (P,Q) satisfying conditions 1, 2,
3 stated in Theorem 4. This minimax rate can be achieved by the same construction as the
minimax classifier in Section 3 (using local parameters β0, γ0 instead of global parameters
β,γ ). As a result, Theorem 4 shows that f̂a also achieves within a logarithmic factor of the
local minimax optimal rate. In other words, f̂a adapts to local smoothness and local signal
relative exponent.

REMARK 7. For simplicity, the present paper focuses on the posterior drift model, which
is somewhat restrictive since the relation between P and Q is described by a signal param-
eter γ . However, because f̂a is adaptive to the local signal relative exponent, it can make
nearly optimal classification under heterogeneity where γ varies. In other words, f̂a works
optimally even when P is stronger than Q in some places and weaker than Q elsewhere.

REMARK 8. Note that there is also a dual representation of EZEQ(f̂a, x0):

EZEQ(f̂a, x0) = 2
∣∣∣∣ηQ(x0) − 1

2

∣∣∣∣PZ

(
f̂a(x0) �= f ∗

Q(x0)
)
.

Theorem 4 can be interpreted as follows. For any point x0, the classifier f̂a performs well
(i.e., the accuracy of f̂a is bounded away from 1/2) when∣∣∣∣ηQ(x0) − 1

2

∣∣∣∣ ≥ C

((
nP

logn

) 2β0+d

2γ0β0+d + nQ

logn

)− β0
2β0+d

for some constant C > 0. Other than the sample sizes nP and nQ, the rate only depends on
the local smoothness β0 and local relative signal exponent γ0. Also, it is optimal up to a
logarithmic factor. The result thus shows that f̂a is adaptive to the local smoothness and local
relative signal exponent.

5. Multiple source distributions. We have so far focused on transfer learning with one
source distribution P and one target distribution Q. In practice, data may be generated from
more than one source distribution. In this section, we generalize our methods to treat transfer
learning in the setting where multiple source distributions are available.

We consider a model where there are several source distributions with different relative
signal exponents with respect to the target distribution Q. Suppose there are nP1, . . . , nPm ,
and nQ i.i.d. data points generated from the source distributions P1, . . . ,Pm, and the target
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distribution Q, respectively,(
X

P1
1 , Y

P1
1

)
, . . . ,

(
XP1

nP1
, Y P1

nP1

) i.i.d.∼ P1,

...(
X

Pm

1 , Y
Pm

1

)
, . . . ,

(
XPm

nPm
,YPm

nPm

) i.i.d.∼ Pm,

(
X

Q
1 , Y

Q
1

)
, . . . ,

(
XQ

nQ
,YQ

nQ

) i.i.d.∼ Q

and all the samples are independent. The goal is to make classification under the target dis-
tribution Q. Similar as before, it is intuitively clear that how useful the data from the source
distributions Pi , i ∈ [m], to the classification task under Q depends on the relationship be-
tween each Pi and Q. The definition of the relative signal exponent needs to be extended to
accommodate the multiple source distributions. It is natural to consider the situation where
each source distribution Pi and the target distribution Q have a relative signal exponent. This
motivates the following definition of the vectorized relative signal exponent when there are
multiple source distributions.

DEFINITION 8. Suppose the distributions P1, . . . ,Pm, and Q are supported on R
d ×

{0,1}. Define the class �(γ ,Cγ ) with the relative signal exponent γ = (γ1, . . . , γm) ∈ R
m+

and constants Cγ = (C1, . . . ,Cm) ∈ R
m+, is the set of distribution tuples (P1, . . . ,Pm,Q)

that satisfy, for each i ∈ [m], (Pi,Q) belongs to the class �(γi,Ci) with the relative signal
exponent γi .

Similar as in Section 2, adding the regularity conditions on Q including the smoothness,
margin assumption and strong density assumption, we define the parameter space in the mul-
tiple source distributions setting as follows:

	(α,Cα,β,Cβ,γ ,Cγ ,μ, cμ, rμ)

= {
(P1, . . . ,Pm,Q) : (P1, . . . ,Pm,Q) ∈ �(γ ,Cγ ),

Q ∈M(α,Cα), ηQ ∈ H(β,Cβ), (Pi,X,QX) ∈ S(μ, cμ, rμ) for all i ∈ [m]}.
We will simply denote 	(α,Cα,β,Cβ,γ ,Cγ ,μ, cμ, rμ) by 	 or 	(α,β,γ ,μ) if there is

no confusion.
In this section, we establish the minimax optimal rate of convergence and propose an

adaptive classifier which simultaneously achieves the optimal rate of convergence within a
logarithmic factor over a wide collection of the parameter spaces. The proofs are similar to
those for Theorems 1, 2 and 3 in the one source distribution setting. For reasons of space, we
omit the proofs.

5.1. Minimax rate of convergence. We begin with the construction of a minimax rate op-
timal classifier f̂NN in the case of multiple source distributions. The classifier is an extension
of the two-sample weighted K-NN classifier given in Section 3. It incorporates the informa-
tion contained in the data drawn from the source distributions Pi , i ∈ [m], as well as the data
drawn from the target distribution Q. The detailed steps are as follows.

Step 1: Compute the weights wP1, . . . ,wPm , and wQ by

wPi
=

(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− γiβ

2β+d

for all i ∈ [m],

wQ =
(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− β
2β+d

.
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Compute the numbers of neighbors kP1, . . . , kPm, kQ by

kPi
=

⌊
nPi

(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− d
2β+d

⌋
for all i ∈ [m]

kQ =
⌊
nQ

(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− d
2β+d

⌋
.

Step 2: Define X
Pi

(j)(x) to be the j th nearest data point to x among X
Pi

1 , . . . ,X
Pi
nPi

and

Y
Pi

(j)(x) is its corresponding response (label). Likewise, let X
Q
(j)(x) be the j th data point to x

among X
Q
1 , . . . ,X

Q
nQ and Y

Q
(j)(x) is its corresponding response (label). Define the weighted

K-NN estimator

η̂NN(x) = wQ

∑kQ

j=1 Y
Q
(j)(x) + ∑m

i=1(wPi

∑kPi

j=1 Y
Pi

(j)(x))

wQkQ + ∑m
i=1 wPi

kPi

.

This estimator takes weighted average of kPi
nearest neighbors from the data points drawn

from Pi , each with weight wPi
, and kQ nearest neighbors from the data points drawn from

Q, each with weight wQ.
Step 3: The final classifier is then defined as

f̂NN(x) = I{η̂NN(x)> 1
2 }.

We now analyze the theoretical properties of the classifier f̂NN. Theorem 5 gives an upper
bound for the excess risk EQ(f̂NN), while Theorem 6 provides a matching lower bound on
the excess risk. These two theorems together establish the minimax rate of convergence and
show that f̂NN attains the optimal rate. In the following theorems, the expectation E is taken
over random realization of all data drawn from source and target distributions.

THEOREM 5 (Upper bound). There exists a constant C > 0 not depending on nP or nQ,
such that

sup
(P1,...,Pm,Q)∈	(α,β,γ ,μ)

EEQ(f̂NN) ≤ C

(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− β(1+α)
2β+d

.

THEOREM 6 (Lower bound). There exists a constant c > 0 not depending on nP or nQ,
such that

inf
f̂

sup
(P1,...,Pm,Q)∈	(α,β,γ ,μ)

EEQ(f̂ ) ≥ c

(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− β(1+α)
2β+d

.

Theorems 5 and 6 together yield the minimax optimal rate for transfer learning with mul-
tiple source distributions:

(15) inf
f̂

sup
(P1,...,Pm,Q)∈	(α,β,γ ,μ)

EEQ(f̂ ) 	
(
nQ +

m∑
i=1

n

2β+d
2γiβ+d

Pi

)− β(1+α)
2β+d

.

As discussed in Section 3, here n

2β+d
2γiβ+d

Pi
can be viewed as the effective sample size for

data drawn from the source distribution Pi when the information in this sample is transferred
to help the classification task under the target distribution Q. Even when there are multiple
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source distributions, the transfer rate associated with Pi remains to be 2β+d
2γiβ+d

, which is not
affected by the presence of the data drawn from the other source distributions.

5.2. Adaptive classifier. Again, the minimax classifier is not practical as it depends on the
parameters γ and μ which are typically unknown. It is desirable to construct a data driven
classifier that does not rely on the knowledge of the model parameters. A similar adaptive
data-driven classifier can be developed. The detailed steps are summarized in Algorithm 2.

It is clear from the construction that the classifier f̂a is a data-driven decision rule. Theo-
rem 7 below provides a theoretical guarantee for the excess risk of f̂a under the target distri-

Algorithm 2 The data driven classifier
Input: x ∈ supp(QX).
for k = 1, . . . , (nQ + ∑m

i=1 nPi
− 1), (nQ + ∑m

i=1 nPi
) do

Find k nearest neighbors X(1)(x), . . . ,X(k)(x) to x among all the covariates {XQ
j :

j ∈ [nQ]} ∪ ⋃m
i=1{XPi

j : j ∈ [nPi
]}. Suppose k

(k)
Pi

of them are from the distribution Pi ,

i = 1, . . . ,m, and k
(k)
Q of them are from Q. That is, the k nearest neighbors are partitioned

into m + 1 parts according to which distribution they are drawn from.
For each i ∈ [m], Compute the K-NN estimate for ηPi

(if k
(k)
Pi

= 0, set η̂
(k)
Pi

← 1
2 )

η̂
(k)
Pi

(x) ← 1

k
(k)
Pi

k
(k)
Pi∑

j=1

Y
Pi

(j)(x)

and nearest neighbor estimate for ηQ (if k
(k)
Q = 0, set η̂

(k)
Q ← 1

2 )

η̂
(k)
Q ← 1

k
(k)
Q

k
(k)
Q∑

i=1

YP
(i)(x).

Compute the positive signal-to-noise index

r̂
(k)
+ ← I{η(k)

Q ≥ 1
2 }k

(k)
Q

(
η

(k)
Q − 1

2

)2
+

m∑
i=1

I{η(k)
Pi

≥ 1
2 }k

(k)
Pi

(
η

(k)
Pi

− 1

2

)2

and negative signal-to-noise index

r̂
(k)
− ← I{η(k)

Q < 1
2 }k

(k)
Q

(
η

(k)
Q − 1

2

)2
+

m∑
i=1

I{η(k)
Pi

< 1
2 }k

(k)
Pi

(
η

(k)
Pi

− 1

2

)2
.

Let r̂ (k) be the signal-to-noise ratio index calculated by

r̂ (k) ← max
{
r̂
(k)
+ , r̂

(k)
−

}
.

Define the classifier

f̂ (k)(x) ← I{r̂ (k)
+ ≥r̂

(k)
− }.

if r̂ (k) > (d + 3) log(nQ + ∑m
i=1 nPi

) then
Stop and output f̂a(x) ← f (k)(x).

Output f̂a(x) ← f̂ (km)(x) where km = argmaxk r̂(k).
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bution Q. In view of the optimal rate given in (15), Theorem 7 shows that f̂a is adaptively
nearly optimal over a wide range of parameter spaces.

THEOREM 7. Let n = nQ + ∑m
i=1 nPi

. There exists a constant C > 0 such that for 	 =
	(α,β,γ ,μ),

sup
(P1,...,Pm,Q)∈	

EEQ(f̂a) ≤ C ·
(

nQ

logn
+

m∑
i=1

(
nPi

logn

) 2β+d
2γiβ+d

)− β(1+α)
2β+d

.

6. Numerical studies. In this section, we carry out simulation studies to further illustrate
the performance of the adaptive transfer learning procedure. Numerical comparisons with
the existing methods are given. The simulation results are consistent with the theoretical
predictions.

For all simulation experiments in this section, the data is generated under the posterior drift
model with d = 2. The distributions (P,Q) used to generate data is specified as following:

1. Marginal distributions: PX = QX are both uniform distribution on the square � =
[−1,1]2.

2. Regression functions: ηQ and ηP are defined as

ηQ(x) = 0.5 + p sign(x1)
(|x1|max

{
0,1 − |x2|})β

and

ηP (x) = 0.5 + p sign(x1)
(|x1|max

{
0,1 − |x2|})γβ

,

where x = (x1, x2) ∈ [−1,1]2, p,β and γ are parameters that may vary in different simula-
tion studies.

According to the above construction, both ηP and ηQ take the maximum values at (1,0)

and the minimum values at (−1,0), and equal to 0.5 when x1 = 0. it can be easily verified
that ηQ ∈ H(β,Cβ) with some Cβ > 0, (P,Q) ∈ �(γ,1), Q satisfies the margin assumption
with α = 0.99/β , and PX and QX have the common support and bounded densities.

In the following experiments, we focus on evaluating the average excess risk at a random
test sample x drawn uniformly from the square � = [−1,1]2, given nP data generated from
P and nQ data generated from Q.

6.1. Minimax nonadaptive classifier. For this particular distribution pair (P,Q), theoret-
ically, the minimax rate of convergence for the excess risk can be achieved via the two-sample
weighted K-NN classifier when we are able to make use of model parameters β,γ . In the
following simulation, we fix p = 0.03, nQ = 1000 and β = 1. By comparing the proposed
nonadaptive classifier with a naive K-NN classifier on just the Q-data, we evaluate the im-
provement on the excess risk under different values of γ and nP .

During the experiment, we generated datasets with choices of the relative signal exponent
γ ∈ {0.7,0.5,0.35} and number of P -data nP varying from 50 to 3200. The excess risk
of the two-sample weighted K-NN classifier and the naive K-NN method are illustrated in
Figure 4(a). Meanwhile, a planer plot is given in Figure 4(b) to illustrate the expected ratio
of the excess risk between the two methods based on our developed theory (Theorem 1). One
can clearly see how the transfer rates play a role in the experiments with different relative
signal exponent γ . The empirical performance and our theoretical prediction are matched to
some extent.
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FIG. 4. Left: Experiments on nonadaptive methods. We operate the naive K-NN method on only Q-data (dashed
line) and our two-sample weighted K-NN classifier on different datasets. The datasets are generated with relative
signal exponent γ = 0.7,0.5,0.35, respectively. Right: based on our theory (Theorem 1), the expected ratio of
excess risk between the two methods we operate in the experiment.

6.2. Adaptive classifier. We also compare the proposed adaptive classifier with the ex-
isting methods to see whether its numerical performance matches its theoretical guarantees.
Lepski’s method is a good competitor as it is also adaptive to the smoothness parameter β .
Following a similar routine as in the previous experiments, we compare the excess risk be-
tween our proposed classifier and Lepski’s method applying only the Q-data to evaluate the
improvement we may gain empirically.

Fix p = 0.03 and β = 1; we generated nQ = 1000 data from the target distribution Q, and
nP ∈ {50,100,200,400,800,1600,3200} data from the source distribution P with different
choices of relative signal exponent γ ∈ {0.7,0.5,0.35}. Results of the numerical experiments
are shown in Figure 5(a). A figure of the expected improvement on excess risk, calculated
according to Theorem 3, is also available in Figure 5(b). In both figures, the curve looks like a
reversed “S” shape when γ is large, whereas a curve of exponential decrease appears when γ

is small. Therefore, it is justified that the simulation results are consistent with the theoretical
predictions.

FIG. 5. Left: Experiments on adaptive methods. We operate the naive Lepski method on only Q-data (dashed
line) and our adaptive classifier on different datasets. The datasets are generated with relative signal exponent
γ = 0.7,0.5,0.35, respectively. Right: based on our theory (Theorem 3), the expected ratio of excess risk between
the two methods used in the experiment.
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FIG. 6. Left: Experiments on transfer learning from multiple source distributions. We apply the naive Lepski
method on only Q-data (dashed line) and our adaptive classifier for multiple source distributions. Right: based
on our theory (Theorem 5), the expected ratio of excess risk between the two methods we operate in the experiment.

6.3. Multiple source distributions. Other than involving only a single source distribution
during the previous numerical studies, it is also worthwhile to see whether we can gain desired
improvement as our theory predicts when there are multiple source distributions. We only
illustrate in this subsection the performance of our adaptive classifier applying to multiple
source distributions (Algorithm 2).

Different from the previous simulation studies, in this subsection we generate data from
three different source distributions P1,P2,P3 and one target distribution Q. In a similar vein,
the distributions (P1,P2,P3,Q) are specified as following:

1. Marginal distributions: we set P1,X = P2,X = P3,X = QX to be all uniformly dis-
tributed on the square area � = [−1,1]2.

2. Regression functions: we set ηQ and ηP1, ηP2, ηP3 as

ηQ(x) = 0.5 + p sign(x1)
(|x1|max

{
0,1 − |x2|})β

and

ηPi
(x) = 0.5 + p sign(x1)

(|x1|max
{
0,1 − |x2|})γiβ i = 1,2,3,

where x = (x1, x2) ∈ [−1,1]2, p,β and γ1, γ2, γ3 are parameters that will be specified later.

In the simulation, we fix p = 0.03, β = 1 and γ1 = 0.35, γ2 = 0.5, γ3 = 0.7, and we always
set nP1 = nP2 = nP3 . We compare the average excess risk of the two classifiers: our proposed
adaptive classifier and the Lepski’s procedure with only Q-data involved. By varying number
of data drawing from source distributions, we can clearly see an improvement when applying
transfer learning methods.

The excess risk of the two methods during the experiments are illustrated in Figure 6(a).
Also, we calculate the expected ratio between the two methods according to the theory we
developed in Theorem 5. Again, the empirical performance and our theoretical prediction are
similar to some extent.

For reasons of space, additional simulation results on different choices of β are given in
the Supplementary Material (Cai and Wei (2020)).

7. Application to crowdsourced mapping data. To illustrate the proposed adaptive
classifier, we consider in this section an application based on the crowdsourced mapping
data (Johnson and Iizuka (2016)). Land use/land cover maps derived from remotely-sensed
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FIG. 7. (a) Illustration of the dataset. Each row represents one of a land cover class (farm or forest) and corre-
sponding NDVI values of a pixel from remotely-sensed imagery in 2014–2015. (b) Accuracy of the three methods
on the crowdsourced mapping data with different numbers of crowdsourced data involved. Blue: The proposed
adaptive classifier. Red: Lepski’s method using combined data. Brown: Lepski’s method using only crowdsourced
data.

imagery are important for geographic studies. This dataset contains Landsat time-series satel-
lite imagery information on given pixels and their corresponding land cover class labels
(farm, forest, water, etc.) obtained from multiple sources. The goal is to make classification
of land cover classes based on NDVI (normalized difference vegetation index) values of those
remotely-sensed imagery from the years 2014–2015. In this paper, we focus on classification
of two specific classes: farm and forest.

Within this dataset, there are two kinds of label sources, given the NVDI values of the im-
ages: (1) crowdsourced georeferenced polygons with land cover labels obtained from Open-
StreetMap; (2) accurately labeled data by experts. Although crowdsourced data are massive,
free and public, the labels contain various types of errors due to user mislabels or outdated
images. Whereas the expert labels are almost accurate, but they are usually too expensive to
obtain a large volume. The challenge is to accurately combine the information contained in
the two datasets to minimize the classification error.

As in Section 6.2, we apply three methods to make the classification: (1) our proposed
adaptive procedure; (2) Lepski’s method with all data involved where we do not distinguish
data from different sources; (3) Lepski’s method with only the crowdsourced data. We use
nP = 50 accurately labeled data, and change the number of involved crowdsourced data from
nQ = 25 to nQ = 800. We use other 166 accurately labeled data to evaluate the classification
accuracy of the three methods mentioned above.

Figure 7(b) shows the accuracy of the three methods with different numbers of crowd-
sourced data involved. As more and more crowdsourced data are used, the amount of in-
formation contained in the crowdsourced data gradually increases, and the relative contri-
bution from the accurately labeled data gradually decreases. The proposed adaptive classi-
fier consistently outperforms the naive Lepski’s method, especially when the number of the
crowdsourced data is between 100 and 400, because in these cases the adaptive classifier
can significantly increase the accuracy by better leveraging the information gained from both
distributions.

8. Discussion. We studied in this paper transfer learning under the posterior drift model
and established the minimax rate of convergence. The optimal rate quantifies precisely the
amount of information in the P -data that can be transferred to help classification under the tar-
get distribution Q. A delicately designed data-driven adaptive classifier was also constructed
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and shown to be, both globally and locally, adaptive to the unknown smoothness and rela-
tive signal exponent. It is simultaneously within a log factor of the optimal rate over a large
collection of parameter spaces.

The results and techniques developed in this paper serve as a starting point for the theoret-
ical analysis of other transfer learning problems. For example, in addition to classification, it
is also of significant interest to characterize the relationship between the source distribution
and the target distribution, so that the data from the source distribution P can help in other
statistical problems under the target distribution Q. Examples include regression, hypoth-
esis testing and construction of confidence sets. We will investigate these transfer learning
problems in the future.

Within the posterior drift framework of this paper, some of the technical assumptions can
be relaxed to a certain extent. For the smoothness parameter β , we focused on the case 0 <

β ≤ 1. It is possible to consider more general classes where β can be larger than 1, with
strengthened relative signal exponent assumptions on the higher order derivatives of ηP (x)

and ηQ(x). When β > 2, the problem might be solved with a carefully designed weighted
K-NN classifier, as was introduced in Samworth (2012). Construction of such a weighted
K-NN method is involved and we leave it as future work. For the marginal distributions PX

and QX , other than the strong density assumption, there are also weaker regularity conditions
introduced in the literature; see, for example, Gadat, Klein and Marteau (2016), Kpotufe and
Martinet (2018). Similar results on the minimax rate of convergence can be established under
these different regularity conditions. The minimax and adaptive procedures should also be
suitably modified.

Also, in complementary work, Kpotufe and Martinet (2018) studied K-NN classifiers for
transfer learning in the covariate shift framework where the marginal distributions PX and
QX are allowed to differ significantly. It is interesting to consider nonparametric classification
under both covariate shift and posterior drift. In such a setting, besides the relative signal
exponent γ , one also assumes (P,Q) have transfer-exponent τ ≥ 0 such that

∀x, r ∈ (0,�X ], PX

(
B(x, r)

) ≥ QX

(
B(x, r)

) · Cτ

(
r

�X

)τ

,

and QX is (Cd, d)-doubling, as is defined in Definitions 3 and 6 in Kpotufe and Martinet
(2018). The detailed analysis appears to be quite involved, we only make some conjectures
here based on our preliminary calculations and leave the rigorous proofs and further investi-
gations for future work. Our calculations indicate that the optimal rate of convergence for the
excess risk on Q under both covariate shift (transfer-exponent τ ) and posterior drift (relative
signal exponent γ ) should be

inf
f̂

sup
(P,Q)

EZEQ(f̂ ) 	 (
nP

2β+d
2γβ+τ+d + nQ

)− β(1+α)
2β+d .

An additional transfer-exponent τ appears in the denominator of the transfer rate 2β+d
2γβ+τ+d

.
The above optimal rate can be achieved by two-sample weighted K-NN classifier (proposed
in our work) with proper choices of wP ,wQ,kP and kQ. In addition, our proposed classifier
f̂a should be nearly optimal adaptive classifier (up to a logrithmic term) in a sense that

sup
(P,Q)

EZEQ(f̂ ) �
((

nP

logn

) 2β+d
2γβ+τ+d + nQ

logn

)− β(1+α)
2β+d

,

where n = nP + nQ.
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Algorithm 3 Lepski’s method (Lepski and Spokoiny (1997))

Input: n labeled samples (Xi, Yi) ∈R
d ×{0,1}, i ∈ [n], and a point x ∈ R

d to be classified.
Set η−

0 ← −∞ and η+
0 ← +∞.

for k = 1, . . . , (nP + nQ − 1), (nP + nQ) do
Find k nearest neighbor estimates η̂k(x) = 1

k

∑k
i=1 Y(i), where Y(i) denote the label to

ith nearest covariates to x.
Set η−

k ← η−
k−1 ∨ (η̂k(x) −

√
d+3

k
logn).

Set η+
k ← η+

k−1 ∧ (η̂k(x) +
√

d+3
k

logn).

if η−
k > 1

2 or η+
k < 1

2 then
Stop and output f̂L(x) ← I{η̂k(x)≥ 1

2 }.

Output f̂L(x) ← I{η̂n(x)≥ 1
2 }.

9. Proofs. We prove Theorem 1 in this section and leave the proofs of other theorems
and additional technical lemmas in the Supplementary Material (Cai and Wei (2020)). For
readers’ convenience, we begin by stating Lepski’s method for nonparametric classification
in the conventional setting where there are only the Q-data.

9.1. Lepski’s method. Algorithm 3 is a version of Lepski’s method in nonparametric
classification. We state the algorithm here for reference.

9.2. Proof of Theorem 1. First, we define some new notation for convenience. In the
proof, we use ζQ(x) = |ηQ(x) − 1

2 | and ζP (x) = |ηP (x) − 1
2 | to denote the signal strength.

Let Ȳ
Q
(1:kQ)(x) := 1

kQ

∑kQ

i=1 Y
Q
(i)(x) and Ȳ P

(1:kP )(x) := 1
kP

∑kP

i=1 YP
(i)(x) denote the average of kQ

nearest neighbors in Q-data and kP nearest neighbors in P -data, respectively. We will some-
time omit x in the notation such as X

Q
(i)(x),XP

(i)(x) if there is no confusion in the context. We

also use the shorthand X
Q
1:nQ

to denote the whole set of the Q-data covariates {XQ
1 , . . . ,X

Q
nQ},

and similarly, XP
1:nP

denotes {XP
1 , . . . ,XP

nP
}. We define EY |X(·) = E(·|XQ

1:nQ
,XP

1:nP
) to de-

note the expectation conditional on the covariates of all data, and E is the expectation taken
over random realization of all data (the same as EZ we defined before). Also, in the following
proofs we always assume (P,Q) ∈ 	(α,β, γ,μ) so we will not state this assumption again
in the lemmas.

Before proving the theorem, we first state three useful lemmas. The first Lemma 1 pro-
vides a high probability uniform bound on the distance between any point and its kth nearest
neighbor.

LEMMA 1 (K-NN distance bound). There exists a constant CD > 0 such that, with prob-
ability at least 1 − CD

nQ

kQ
exp(− kQ

6 ), for all x ∈ �,

(16)
∥∥XQ

(kQ)(x) − x
∥∥ ≤ CD

(
kQ

nQ

) 1
d

.

And with probability at least 1 − CD
nP
kP

exp(− kP
6 ), for all x ∈ �,

(17)
∥∥XP

(kP )(x) − x
∥∥ ≤ CD

(
kP

nP

) 1
d

.



124 T. T. CAI AND H. WEI

Let EQ denote the event that inequality (16) holds for all x ∈ � and let EP denote (17)
holds for all x ∈ �. It follows from Lemma 1 that

P(EQ) ≥ 1 − CD

nQ

kQ

exp
(
−kQ

6

)
and P(EP ) ≥ 1 − CD

nP

kP

exp
(
−kP

6

)
.

Lemma 2 points out that when the signal is sufficiently strong, bias of Ȳ Q(x) and Ȳ P (x)

will not be too large to overwhelm the signal.

LEMMA 2 (Bias bound). There exist constants cb,Cb > 0 such that:
If a point x ∈ � satisfies ζQ(x) ≥ 2Cβ‖XQ

(kQ)(x) − x‖β , then we have

EY |X
(
Ȳ

Q
(1:kQ)(x)

) − 1

2
≥ cbζQ(x) if f ∗(x) = 1,(18)

EY |X
(
Ȳ

Q
(1:kQ)(x)

) − 1

2
≤ −cbζQ(x) if f ∗(x) = 0.(19)

If a point x ∈ � satisfies ζQ(x) ≥ 2Cβ‖XP
(kP )(x) − x‖β , then we have

EY |X
(
Ȳ P

(1:kP )(x)
) − 1

2
≥ cbζQ(x)γ if f ∗(x) = 1,(20)

EY |X
(
Ȳ P

(1:kP )(x)
) − 1

2
≤ −cbζQ(x)γ if f ∗(x) = 0.(21)

Hence, if a point x ∈ � satisfies ζQ(x) ≥ Cb(max{ kQ

nQ
, kP

nP
}) β

d , then:

• Under the event EQ, we have

EY |X
(
Ȳ

Q
(1:kQ)(x)

) − 1

2
≥ cbζQ(x) if f ∗(x) = 1,(22)

EY |X
(
Ȳ

Q
(1:kQ)(x)

) − 1

2
≤ −cbζQ(x) if f ∗(x) = 0.(23)

• Under the event EP , we have

EY |X
(
Ȳ P

(1:kP )(x)
) − 1

2
≥ cbζQ(x)γ if f ∗(x) = 1,(24)

EY |X
(
Ȳ P

(1:kP )(x)
) − 1

2
≤ −cbζQ(x)γ if f ∗(x) = 0.(25)

Lemma 3 gives a bound on the probability of misclassification at certain covariates x.

LEMMA 3 (Misclassification bound). Let Cb and cb be the constants defined in Lemma 2.

If ζQ(x) ≥ Cb(max{ kQ

nQ
, kP

nP
}) β

d , then:

• Under the event EQ, we have

PY |X
(
f̂NN(x) �= f ∗

Q(x)
) ≤ exp

(
−2

[(cbwQkQζQ(x) − wP kP ) ∨ 0]2

kP w2
P + kQw2

Q

)
.

• Under the event EP , we have

PY |X
(
f̂NN(x) �= f ∗

Q(x)
) ≤ exp

(
−2

[(cbwP kP ζQ(x)γ − wQkQ) ∨ 0]2

kP w2
P + kQw2

Q

)
.
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• Under the event EP ∩EQ, we have

PY |X
(
f̂NN(x) �= f ∗

Q(x)
) ≤ exp

(
−2c2

b

(wP kP ζQ(x)γ + wQkQζQ(x))2

kP w2
P + kQw2

Q

)
.

Given the three lemmas above, the remain proof generally follows that of Lemma 3.1

in Audibert and Tsybakov (2007). Let δ = (n
2β+d

2γβ+d

P + nQ)
− β

2β+d . When wP ,wQ,kP , kQ are
given as in Theorem 1, we have

(26) wQ = δ, wP = δγ , kQ = ⌊
nQδ

d
β
⌋
, kP = ⌊

nP δ
d
β
⌋
.

We will approximate kQ = nQδ
d
β and kP = nP δ

d
β in the following proof because one can

easily show such an approximation only results in changing the constant factor in the upper
bound.

The following lemma gives a bound for the local misclassification risk when the parame-
ters in the weighted K-NN estimator are properly chosen.

LEMMA 4. Using wP ,wQ,kP , kQ defined in Theorem 1 to construct a weighted K-NN
estimator f̂NN. Then there exist constants c1,C1 > 0 such that, with probability at least 1 −
2(n

2β+d
2γβ+d

P + nQ)
− β(1+α)

2β+d , for all x we have

(27) PY |X
(
f̂NN(x) �= f ∗

Q(x)
) ≤ C1 exp

(
−c1

(
ζQ(x)

δ

)1∧γ )
.

Let E0 be the event that inequality (27) holds for all x. Lemma 4 implies

P(E0) ≥ 1 − 2
(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d .

Consider the disjoint sets Aj ⊂ �,j = 0,1,2, . . . defined as

A0 := {
x ∈ � : 0 < ζQ(x) ≤ δ

}
,

Aj := {
x ∈ � : 2j−1δ < ζQ(x) ≤ 2j δ

}
for j ≥ 1.

Note that by the margin assumption, for all j ,

QX(Aj ) ≤ QX

(∣∣∣∣ηQ − 1

2

∣∣∣∣ ≤ 2j δ

)
≤ Cα2αj δα.

Based on the partition A0,A1, . . . and the dual representation of EQ(f̂ ) shown in (8), we
have a decomposition of EQ(f̂NN):

EQ(f̂NN) = 2EX∼QX

(∣∣∣∣ηQ(X) − 1

2

∣∣∣∣I{f̂NN(X) �=f ∗
Q(X)}

)

= 2
∞∑

j=0

EX∼QX

(
ζQ(X)I{f̂NN(X) �=f ∗

Q(X)}I{X∈Aj }
)
.

For j = 0, EX∼QX
(ζQ(X)I{f̂NN(X) �=f ∗

Q(X)}I{X∈A0}) ≤ δ · QX(A0) ≤ Cαδα+1.
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Under the event E0, 2j−1δ < ζ(x) ≤ 2j δ for x ∈ Aj and j > 1. Inequality (27) now yields

EY |XEX∼QX

(
ζQ(X)I{f̂NN(X) �=f ∗

Q(X)}I{X∈Aj }
)

= EX∼QX

(
ζQ(X)PY |X

(
f̂NN(X) �= f ∗

Q(X)
)
I{X∈Aj }

)
≤ 2j δ · C1 exp

(−c1 · 2(j−1)·(1∧γ )) · QX(Aj )

≤ CαC1
[
2(1+α)j exp

(−c1 · 2(j−1)·(1∧γ ))]δα+1.

Combining these summands together yields

EY |XEQ(f̂NN) = 2
∞∑

j=0

EY |XEX∼QX

(
ζQ(X)I{f̂NN(X) �=f ∗

Q(X)}I{X∈Aj }
)

≤ 2Cα

(
1 + C1

∞∑
j=0

[
2(1+α)j exp

(−c1 · 2(k−1)·(1∧γ ))])δ1+α

≤ Cδ1+α,

where the last step follows from the fact that
∑∞

j=0[2(1+α)j exp(−c1 ·2(k−1)·(1∧γ ))] converges
when γ > 0. Finally, it follows from Lemma 4 that

P
(
Ec

0
) ≤ 2

(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d .

Applying the trivial bound EQ(f̂NN) ≤ 1 when Ec
0 occurs, we have

EEQ(f̂NN) = E
(
EY |XEQ(f̂NN)

)
≤ E

(
EY |XEQ(f̂NN)|E0

)
P(E0) +E

(
EY |XEQ(f̂NN)|Ec

0
)
P

(
Ec

0
)

≤ C
(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d · 1 + 1 · 2

(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d

= (C + 2)
(
n

2β+d
2γβ+d

P + nQ

)− β(1+α)
2β+d . �

Acknowledgments. The research was supported in part by NSF Grant DMS-1712735
and NIH Grants R01-GM129781 and R01-GM123056.

SUPPLEMENTARY MATERIAL

Supplement to “Transfer learning for nonparametric classification: Minimax rate
and adaptive classifier” (DOI: 10.1214/20-AOS1949SUPP; .pdf). In this supplementary ma-
terial, we provide additional simulation results, proofs for Theorems 2, 3 and 4, and proofs
for technical Lemmas 1, 2, 3 and 4. The proofs of Theorems 5, 6 and 7 are similar, and thus
omitted.
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