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Wavelet estimation for samples with random uniform design
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Abstract

We show that for nonparametric regression if the samples have random uniform design, the wavelet method with
universal thresholding can be applied directly to the samples as if they were equispaced. The resulting estimator achieves
within a logarithmic factor from the minimax rate of convergence over a family of H�older classes. Simulation result is
also discussed. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

Wavelet shrinkage methods have been very successful in nonparametric regression. But so far most of
the wavelet regression methods have been focused on equispaced samples. There, data are transformed into
empirical wavelet coe�cients and threshold rules are applied to the coe�cients. The estimators are obtained via
the inverse transform of the denoised wavelet coe�cients. The most widely used wavelet shrinkage method for
equispaced samples is the Donoho–Johnstone’s VisuShrink procedure (Donoho and Johnstone, 1992; Donoho
et al., 1995). It has three steps:

1. transform the noisy data via the discrete wavelet transform;
2. denoise the empirical wavelet coe�cients by “hard” or “soft” thresholding rules with threshold �=�

√
2 log n;

3. estimate function f at the sample points by inverse discrete wavelet transform of the denoised wavelet
coe�cients.
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This procedure is adaptive and easy to implement. The computational cost is of O(n). And with high prob-
ability, VisuShrink estimator is at least as smooth as the target function. The estimator produced by the
procedure achieves minimax convergence rates up to a logarithmic penalty over a wide range of function
classes.
In many statistical applications, however, the samples are nonequispaced. It is shown that the procedure

might produce suboptimal estimator if it is applied directly to nonequispaced samples (Cai, 1996). Wavelet
methods for samples with nonequispaced designs have been studied by Cai and Brown (1998) and Hall
and Turlach (1997). Cai and Brown (1998) introduced a wavelet shrinkage method for samples with �xed
nonequispaced designs based on approximation approach. It is shown that the estimator attains near-minimaxity
across a range of piecewise H�older classes. Hall and Turlach (1997) proposed interpolation methods for
samples with random designs. They used samples with random uniform design as examples for their methods.
Despite the asymptotic near-optimality for these nonequispaced methods, the estimators are computationally
much harder to implement than VisuShrink for equispaced samples.
In the present paper, we consider the special case of samples with random uniform design. We show that in

this special case the samples can in fact be treated as if they were equispaced. That is, the VisuShrink procedure
of Donoho and Johnstone can be applied directly to the data and the resulting estimator adaptively achieves
within a logarithmic factor of the optimal convergence rate across a range of H�older classes. Therefore, we
have a fast estimation procedure for samples with random uniform design. Simulation is conducted to evaluate
the numerical performance of the method. It is shown that the mean-squared error is comparable to that of
the samples with truly equispaced designs.
In Section 2 we describe the method and state the asymptotic optimality property of the estimator. Section 3

summarizes the simulation results. Some relevant results on wavelet approximation is presented in Section 4.
Section 5 contains a concise proof of the main results.

2. Methodology

2.1. Wavelets

Let � and  denote the orthogonal father and mother wavelet functions. The functions � and  are assumed
to be compactly supported with associated discrete wavelet transform W . Assume  has r vanishing moments
and � satis�es

∫
�= 1. Let

�j k(x) = 2j=2�(2jx − k);  j k(x) = 2j=2 (2jx − k):

And denote the periodized wavelets

�pj k(x) =
∑
l∈Z

�j k(x − l);  pj k(x) =
∑
l∈Z

�j k(x − l) for x ∈ [0; 1]:

For the purposes of this paper, we use the periodized wavelet bases on [0; 1]. The collection {�pj0k ; k=1; : : : ; 2j0 ;
 pj k ; j¿j0; k = 1; : : : ; 2j} constitutes such an orthonormal basis of L2[0; 1]. Note that the basis functions are
periodized at the boundary. The superscript “p” will be suppressed from the notations for convenience. This
basis has an associated exact orthogonal discrete wavelet transform (DWT) that transforms data into wavelet
coe�cient domains.
For a given square-integrable function f on [0; 1], denote

� j k = 〈f;�j k〉; �j k = 〈f;  j k〉:
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So the function f can be expanded into a wavelet series

f(x) =
2j0∑
k=1

� j0k�j0k(x) +
∞∑
j=j0

2j∑
k=1

�j k j k(x): (1)

Wavelet transform decomposes a function into di�erent resolution components. In (1), � j0k are the coef-
�cients at the coarsest level. They represent the gross structure of the function f. And �j k are the wavelet
coe�cients. They represent �ner and �ner structures of the function f as the resolution level j increases.
We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussian noise to i.i.d. Gaussian

noise and it is norm-preserving. This important property of DWT allows us to transform the problem in the
function domain into a problem in the sequence domain of the wavelet coe�cients with isometry of risks.

2.2. The estimator

Consider the nonparametric regression model

yi = f(xi) + �zi; (2)

i= 1; 2; : : : ; n (=2J ); xi’s are independently uniformly distributed on [0, 1], zi’s are independent N(0; 1) vari-
ables and independent of xi’s, and the noise level � is �xed and known.
The function f is an unknown function of interest. We wish to estimate f globally with small integrated

mean-squared error

R(f̂; f) = E
∫ 1

0
(f̂(x)− f(x))2 dx:

Let 06x(1)¡x(2)¡ · · ·¡x(n)61 be the order statistics of the xi’s. Now relabel yi’s and zi’s according
the order of the xi’s. For convenience, we use the same label. So

yi = f(x(i)) + �zi: (3)

Now we observed (x(1); y1); (x(2); y2); : : : ; (x(n); yn) with xi independently uniformly distributed on [0, 1]. So
x′(i)s are not equispaced in general. But we pretend that x(i) is Ex(i) = i=(n+ 1). That is, we pretend to have
an equispaced sample(

1
n+ 1

; y1

)
;
(

2
n+ 1

; y2

)
; : : : ;

(
n

n+ 1
; yn

)
:

We apply Donoho and Johnstone’s VisuShrink procedure directly to y = {y1; y2; : : : ; yn}.
Let �̃=Wn−1=2y be the discrete wavelet transform of n−1=2y. Write

�̃= (�̃ j01; : : : ; �̃ j02j0 ; �̃j01; : : : ; �̃j02j0 ; : : : ; �̃J−1;1; : : : ; �̃J−1; 2J−1 )T:

Here �̃ j0k are the empirical coe�cients of the father wavelets at the lowest resolution level. They represent
the gross structure of the function and are usually not thresholded. The coe�cients �̃j k (j= j0; : : : ; J − 1; k =
1; : : : ; 2j) are �ne structure wavelet terms.
The empirical wavelet coe�cients is denoised via soft thresholding:

�̂j k = �s�(�̃j k) = sgn(�̃j k)(|�̃j k | − �)+ where �= �
√
2n−1 log n:

The whole function f is estimated by

f̂∗(x) =
2j0∑
k=1

�̃ j0k�j0k(x) +
J−1∑
j=j0

2j∑
k=1

�̂j k j k(x):
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If one is interested in estimating the function at the sample points, apply the inverse discrete wavelet
transform to the denoised wavelet coe�cients:

( [f∗(x(k)))nk=1 =W−1n1=2�̂:

The estimator is adaptive and easy to implement.

Theorem 1. Suppose that the sample (x1; y1); (x2; y2); : : : ; (xn; yn) is observed as in (2) and the mother
wavelet  has r vanishing moments. Then the estimator constructed above achieves within a logarithmic
factor of the optimal convergence rate over the range of H�older classes ��(M) (de�ned in Section 4) with
1
26�6r. That is,

sup
f∈��(M)

E ‖ f̂∗ − f ‖22 6C
(
log n
n

)2�=(1+2�)
; (4)

sup
f∈��(M)

1
n

∑
E ‖ [f∗(xi)− f(xi) ‖22 6C

(
log n
n

)2�=(1+2�)
(5)

for all M ∈ (0;∞) and � ∈ [ 12 ; r].

Remark. The same result holds for hard threshold estimator. The result shows that in the case of random
design with uniformly distributed xi’s, we can treat it as if they are �xed equispaced design. The constraint
�¿ 1

2 is due to the approximation of f(x(i)) by f(i=(n+ 1)).

3. Simulations

A simulation study is conducted to compare the estimator based on random-x samples with the estimator
based on truly equispaced samples. The results show that the quality of the estimator based on random-x
samples is comparable to the estimator based on equispaced samples.
We consider four test functions of Donoho and Johnstone (1994) representing di�erent level of spatial

variability. The test functions are plotted in Fig. 1. For each of the four objects under study, we compare
the estimators at two noise levels, one with signal-to-noise ratio SNR =5 and another with SNR =7. Sample
sizes from n= 512 to 8192 are considered.
Table 1 reports the mean-squared errors over 200 replications of the four test functions: Doppler, Heavi-

Sine, Bumps and Blocks. The wavelet used is the Symmlet “s8”. The conventional t-test is used to test the
signi�cance of the di�erences between the MSEs of random design and the equispaced design. Table 1 shows
that the MSEs of random-x are worse than those of equispaced-x in 29 out of 40 cases, and are signi�cantly
worse in the case of Doppler function. Random design is better in six cases, and the di�erences in MSE
between the two designs are insigni�cant in �ve cases at 95% level according to the t-test.
The following plots compare the visual quality of the reconstructions (see Fig. 2). The solid line is the

estimator and the dotted line is the true function. The sample size is 1024 and SNR = 7. For each function,
one is based on a sample with random-x and another is based on a sample with equispaced-x. One can see
from the plots, the visual quality of the estimators are comparable, with the random-x reconstruction a little
wobblier due to the stochastic nature of the design. For more simulation results, the readers are referred to
Cai and Brown (1997).
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Fig. 1. Test functions.

Table 1
Mean-squared errors from 200 replications. The “% di�.” columns are the percentage di�erences between
the MSEs of random-x and of equispaced-x. The percentage di�erences are set to 0 when the di�erences are
insigni�cant at 95% level according to the conventional t-test

SNR = 5 SNR = 7

n Uniform-x Equispaced-x % di�. Uniform-x Equispaced-x % di�.

Doppler
512 3.94 2.88 37 2.85 1.80 58
1024 2.54 1.88 35 1.79 1.19 50
2048 1.61 1.21 33 1.10 0.76 44
4096 0.86 0.69 24 0.57 0.43 34
8192 0.53 0.44 18 0.34 0.26 29
HeaviSine
512 0.62 0.55 13 0.45 0.40 14
1024 0.42 0.40 4 0.30 0.29 4
2048 0.28 0.30 −4 0.20 0.20 0∗
4096 0.17 0.20 −11 0.11 0.12 −6
8192 0.11 0.12 −7 0.08 0.08 0∗
Bumps
512 8.27 9.31 −11 5.26 5.79 −9
1024 6.07 5.97 0∗ 3.80 3.61 5
2048 4.02 3.82 5 2.51 2.26 11
4096 2.22 1.98 12 1.39 1.16 20
8192 1.34 1.21 11 0.83 0.71 18
Blocks
512 5.39 5.34 0∗ 3.39 3.42 0∗
1024 3.83 3.69 4 2.37 2.28 4
2048 2.66 2.55 4 1.63 1.58 3
4096 1.54 1.43 8 0.95 0.89 7
8192 1.04 0.99 4 0.64 0.62 3
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Fig. 2. Comparisons of the reconstructions.

4. Wavelet approximation

Wavelets provide smoothness characterization of function spaces. Many traditional smoothness spaces, for
example H�older spaces, Sobolev spaces and Besov spaces, can be completely characterized by wavelet co-
e�cients. See Meyer (1990). In the present paper, we consider the estimation problem over a range of H�older
classes.

De�nition 1. We de�ne the following H�older classes ��(M):
(i) if �61, ��(M) = {f : |f(x)− f(y)|6M |x − y|�};
(ii) if �¿ 1, ��(M)={f : |f(b�c)(x)−f(b�c)(y)|6M |x−y|�′ and |f′(x)|6M} where b�c is the largest

integer less than � and �′ = �− b�c.

The wavelet coe�cients of functions in a H�older class ��(M) decay exponentially as the resolution level
j increases (see Daubechies, 1992).

Lemma 1. Let f∈��(M) and let the wavelet function  has r vanishing moments with r¿�. Let �j k =
〈f;  j k〉 be wavelet coe�cients of f. Then

|�j k |6C2−j(1=2+�); (6)

where C is a constant depending on M and the wavelet basis only.

If one has a sampled function {f(k=(n+1))}nk=1 with n=2J , one can utilize a wavelet basis to get a good
approximation of the entire function f. Denote s(�)=min(�; 1). We have the following (also see Daubechies,
1992).
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Proposition 1. Suppose that f∈��(M); and let � J k = 〈f;�J k〉, then∣∣∣∣n−1=2 f
(

k
n+ 1

)
− � J k

∣∣∣∣6Cn−(1=2+s(�)): (7)

According to this result, we may use n−1=2 f(k=(n + 1)) as an approximation of � Jk . This means that if
an equispaced sampled function is given, we can use a wavelet basis to get an approximation of the entire
function f. To be more speci�c, we can use fn(x)=

∑n
k=1 n

−1=2 f(k=(n+1))�J k(x) as an approximation of f.
Furthermore, the approximation error can be bounded based on the sample size and the smoothness of the
function. We quote the following result from Cai (1996).

Proposition 2. Suppose that f ∈ ��(M). Let fn(x)=
∑n

k=1 n
−1=2 f(k=(n+1))�J k(x) Then the approximation

error satis�es

‖ fn − f ‖22 6Cn−2s(�): (8)

5. Proof

We need some preparations before we prove the theorem. First some well-known results on the order
statistics of uniform variables.

Lemma 2. Let xi be i.i.d. uniform random variables on [0; 1]. And let 06x(1)¡x(2)¡ · · ·¡x(n)61 be the
order statistics. Then x(k) is distributed as Beta(k; n− k + 1): In particular,

Ex(k) =
k

n+ 1
; Ex2(k) =

k + k2

(n+ 1)(n+ 2)
; Var{x(k)}= (n+ 1)k − k2

(n+ 1)2(n+ 2)
:

Now let us consider the noiseless case. We want to simply use f(x(i)) as an approximation of f(i=(n+1))
and wish to know the approximation error. Denote E1 the conditional expectation given x1; x2; : : : ; xn and
denote Ex the expectation with respect to x1; x2; : : : ; xn.

Lemma 3. The upper bound of the approximation error is

sup
f∈��(M)

1
n

∑
Ex

(
f(x(k))− f

(
k

n+ 1

))2
6Cn−s(�): (9)

Proof. For a �xed f ∈ ��(M), we have |f(x)− f(y)|6C |x − y|s(�). Some algebra shows that
1
n

∑
k

Ex

(
f(x(k))− f

(
k

n+ 1

))2
6

C
n

∑
k

[
Ex

(
x(k) − k

n+ 1

)2]s(�)

6
C(n+ 1)1+s(�)

n(n+ 1)s(�)(n+ 2)s(�)
6Cn−s(�):

To prove the main result, we also need the following upper bound of the risk of threshold estimator of a
univariate normal mean. Similar bound holds for hard threshold. The proof can be found in Cai (1996).

Lemma 4. Suppose that y ∼ N(�; n−1�2). Then �̂= �s�(y) with �= �
√
2n−1 log n satis�es

E(�̂− �)26(2� 2 + n−2�2) ∧ (2 log n+ 1)n−1�2: (10)
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Proof of Theorem 1. We give the proof of (4) only. The proof of (5) is similar. First, some notations. We use
� j k as coe�cients of �j k (the “father wavelets”), and use �j k as coe�cients of  j k (the “mother wavelets”).
The �̃ j0k are the empirical coe�cients at the coarsest level. They represent the gross structure of the function
and they are usually not thresholded. The discrete wavelet transform W is an orthogonal transform, so it is
norm-preserving.
Let f̃(x) =

∑
i n

−1=2yi�J k(x). Then f̃(x) can be written as

f̃(x) =
∑

i


� Ji +

A︷ ︸︸ ︷(
n−1=2f

(
i

n+ 1

)
− � Ji

)
+

B︷ ︸︸ ︷(
n−1=2f(x(i))− n−1=2f

(
i

n+ 1

))
+

R︷ ︸︸ ︷
n−1=2�zi


�Ji(x)

=
∑
k

[� j0k + ãj0k + b̃j0k + r̃j0k ]�j0k(x) +
∑
j

∑
k

[�j k + aj k + bj k + rj k ] j k(x):

Here the � j0k and �j k are the discrete wavelet transform of � Ji , and likewise ãj0k and aj k the transform of
the term A, b̃j0k and bj k the transform of B and r̃j0k and rj k the transform of R.
Let �̃ j0k = � j0k + ãj0k + b̃j0k + r̃j0k be the coe�cients of gross structure terms and set �̂ j0k = �̃ j0k . Let

�′j k=�j k+aj k+bj k and let �̃j k=�′j k+rj k be the noisy empirical wavelet coe�cients. Then �̃j k ∼ N(�′j k ; n−1�2).
Now denote �=�

√
2n−1 log n and let �̂j k=sgn(�̃j k)(|�̃j k |−�)+. Now the estimator of the regression function

f is given by

f̂∗(x) =
∑
k

�̂ j0k�j0k(x) +
J−1∑
j=j0

∑
k

�̂j k j k(x)

and the risk function can be written as

E ‖ f̂∗ − f ‖22 =
∑
k

Ex(E1(�̂ j0k − � j0k)
2) +

J−1∑
j=j0

∑
k

Ex(E1(�̂j k − �j k)2) +
∞∑
j=J

∑
k

�2j k :

Lemma 1 yields that

∞∑
j=J

∑
k

�2j k =O(n
−2�): (11)

Also, we have∑
k

E1 (�̂ j0k − � j0k)
2 = 2j0n−1�2 +

∑
k

(ãj0k + b̃j0k)
262j0n−1�2 + 2

∑
k

ã2j0k + 2
∑
k

b̃
2
j0k : (12)

Applying Lemma 4 to the term E1(�̂j k − �j k)2, we have

E1(�̂j k − �j k)26 2E1(�̂j k − �′j k)
2 + 2a2j k + 2b

2
j k

6 8�2j k ∧ 3n−1�2 log n+ 10a2j k + 10b2j k + n−2�2:
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Let J1 be an integer satisfying 2J1 � (n=log n)1=(1+2�). Then,∑
j;k

E1(�̂j k − �jk)26
J1−1∑
j=j0

∑
k

3n−1�2 log n+
J−1∑
j=J1

∑
k

8�2j k + 10
J−1∑
j=j0

∑
k

(a2j k + b2j k) + n−1�2

6C(n−1log n)2�=(1+2�) + 10
J−1∑
j=j0

∑
k

a2j k + 10
J−1∑
j=j0

∑
k

b2j k : (13)

It follows from Proposition 1 and Lemma 3 that

∑
k

ã2j0k +
J−1∑
j=j0

∑
k

a2j k =
∑

i

(
n−1=2 f

(
i

n+ 1

)
− � Ji

)2
6Cn−2s(�); (14)

Ex

(∑
k

b̃
2
j0k +

J−1∑
j=j0

∑
k

b2j k

)
=
1
n

n∑
i=1

Ex

(
f(x(i))− f

(
i

n+ 1

))2
6Cn−s(�): (15)

For �¿1=2, s(�)¿2�=(1 + 2�). Now it follows from (11)–(15) that

E ‖ f̂ ∗ − f ‖22 6C
(
log n
n

)2�=(1+2�)
:
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Appendix A.

The four test functions (Fig. 1) represent di�erent degrees of spatial variability. The functions are normalized
so that every function has standard deviation 10. Formulae of the test functions can be found in Donoho and
Johnstone (1994).
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