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ADAPTIVE VARIANCE FUNCTION ESTIMATION IN
HETEROSCEDASTIC NONPARAMETRIC REGRESSION

BY T. TONY CAI1 AND LIE WANG

University of Pennsylvania and University of Pennsylvania

We consider a wavelet thresholding approach to adaptive variance func-
tion estimation in heteroscedastic nonparametric regression. A data-driven
estimator is constructed by applying wavelet thresholding to the squared first-
order differences of the observations. We show that the variance function es-
timator is nearly optimally adaptive to the smoothness of both the mean and
variance functions. The estimator is shown to achieve the optimal adaptive
rate of convergence under the pointwise squared error simultaneously over a
range of smoothness classes. The estimator is also adaptively within a loga-
rithmic factor of the minimax risk under the global mean integrated squared
error over a collection of spatially inhomogeneous function classes. Numeri-
cal implementation and simulation results are also discussed.

1. Introduction. Variance function estimation in heteroscedastic nonpara-
metric regression is important in many contexts. In addition to being of interest
in its own right, variance function estimates are needed, for example, to construct
confidence intervals/bands for the mean function and to compute weighted least
squares estimates of the mean function. Relative to mean function estimation, the
literature on variance function estimation is sparse. Hall and Carroll (1989) consid-
ered kernel estimators of the variance function based on the squared residuals from
a rate optimal estimator of the mean function. Müller and Stadtmüller (1987, 1993)
considered difference based kernel estimators of the variance function. Ruppert et
al. (1997) and Fan and Yao (1998) estimated the variance function by using lo-
cal polynomial smoothing of the squared residuals from an “optimal” estimator of
the mean function. More recently, Wang, Brown, Cai and Levine (2008) derived
the minimax rate of convergence for variance function estimation and constructed
minimax rate optimal kernel estimators. Brown and Levine (2007) proposed a class
of difference-based kernel estimators and established asymptotic normality.

So far the attention has been mainly focused on nonadaptive estimation of the
variance function, that is, the smoothness of the variance function is assumed to
be known and the estimators depend on the smoothness. In practice, however, the
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smoothness of the underlying functions is nearly always unknown. It is thus im-
portant to construct estimators that automatically adapt to the smoothness of the
mean and variance functions. This is the goal of the present paper. Specifically, we
propose a wavelet thresholding approach to adaptive variance function estimation
in the heteroscedastic nonparametric regression model

yi = f (xi) + V 1/2(xi)zi, i = 1, . . . , n,(1)

where xi = i/n and zi are independent and identically distributed with zero mean
and unit variance. Here n = 2J for some positive integer J . The primary object of
interest is the variance function V (x). The estimation accuracy is measured both
globally by the mean integrated squared error (MISE)

R(V̂ ,V ) = E‖V̂ − V ‖2
2(2)

and locally by the mean squared error (MSE) at a given point x∗ ∈ (0,1)

R(V̂ (x∗),V (x∗)) = E
(
V̂ (x∗) − V (x∗)

)2
.(3)

It is well known that when the mean function is sufficiently smooth, it has no first
order effect on the quality of estimation for the variance function V ; that is, one can
estimate V with the same asymptotic risk as if f were known. See, for example,
Ruppert et al. (1997) and Fan and Yao (1998). On the other hand, when f is not
smooth, the difficulty in estimating V can be completely driven by the degree of
smoothness of the mean f . How the smoothness of the unknown mean function
influences the rate of convergence of the variance estimator can be characterized
explicitly. Wang et al. (2008) showed that the minimax rate of convergence under
both the pointwise MSE and global MISE is

max
{
n−4α, n−2β/(2β+1)}(4)

if f has α derivatives and V has β derivatives.
The goal of the present paper is to estimate the variance function adaptively

without assuming the degree of smoothness for either the mean function f or
variance function V . We introduce a wavelet thresholding procedure which ap-
plies wavelet thresholding to the squared first-order differences of the observations
in (1). The procedure has two main steps. The first step is taking the square of the
first-order differences of the observations yi . This step turns the problem of vari-
ance function estimation under the model (1) into a more conventional regression
problem of estimating the mean function. Another motivation for taking the differ-
ences is to eliminate the effect of the mean function f . The second step is to apply
a wavelet thresholding procedure to the squared differences.

The procedure enjoys a high degree of adaptivity and spatial adaptivity in terms
of the rate of convergence both for global and local estimation. More specifically,
under the global risk measure (2), it adaptively achieves within a logarithmic fac-
tor of the minimax risk over a wide range of function classes which contain spa-
tially inhomogeneous functions that may have, for example, jump discontinuities
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and high frequency oscillations. The estimator also optimally adapts to the local
smoothness of the underlying function. As a special case, it is shown that the vari-
ance function estimator adaptively achieves the rate of convergence

max
{
n−4α,

(
logn

n

)2β/(1+2β)}
(5)

under both the pointwise MSE and global MISE, if f has α derivatives and V

has β derivatives. Furthermore, it is shown that the extra logarithmic factor in the
adaptive rate of convergence in (5) is necessary under the pointwise MSE and the
estimator is thus optimally locally adaptive.

The wavelet estimator of the variance function is data-driven and easily imple-
mentable. We implement the procedure in S-Plus and R and carry out a simulation
study to investigate the numerical performance of the estimator. Simulation results
show that the MISE mostly depends on the structure of the underlying variance
function and the effect of the mean function is not significant. In addition, we also
compare the performance of the wavelet estimator with that of a kernel estimator
whose bandwidth is chosen by cross validation. The numerical results show that
the wavelet estimator uniformly outperforms the kernel estimator.

The paper is organized as follows. After Section 2.1 in which basic notation
and definitions are summarized, the wavelet thresholding procedure is introduced
in Sections 2.2 and 2.3. Sections 3 and 4 investigate the theoretical properties of
the estimator. In particular, Section 4.1 derives a rate-sharp lower bound for the
adaptive rate of convergence under the pointwise squared error loss. The lower
and upper bounds together show that the estimator is optimally adaptive under the
pointwise loss. Section 5 discusses implementation of the procedure and presents
the numerical results. The proofs are given in Section 6.

2. Wavelet procedure for variance function estimation. In this section we
introduce a wavelet thresholding procedure for estimating the variance function V

under the heteroscedastic regression model (1). We begin with notation and defini-
tions of wavelets and a brief introduction to wavelet thresholding for estimating the
mean function in the standard Gaussian regression setting and then give a detailed
description of our wavelet procedure for variance function estimation.

2.1. Wavelet thresholding for Gaussian regression. We work with an ortho-
normal wavelet basis generated by dilation and translation of a compactly sup-
ported mother wavelet ψ and a father wavelet φ with

∫
φ = 1. A wavelet ψ

is called r-regular if ψ has r vanishing moments and r continuous derivatives.
A special family of compactly supported wavelets is the so-called Coiflets, con-
structed by Daubechies (1992), which can have arbitrary number of vanishing mo-
ments for both φ and ψ . Denote by W(D) the collection of Coiflets {φ,ψ} of
order D. So if {φ,ψ} ∈ W(D), then φ and ψ are compactly supported and satisfy∫

xiφ(x) dx = 0 for i = 1, . . . ,D − 1; and
∫

xiψ(x) dx = 0 for i = 0, . . . ,D − 1.
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For simplicity in exposition, in the present paper we use periodized wavelet
bases on [0,1]. Let

φ
p
j,k(x) =

∞∑
l=−∞

φj,k(x − l),

ψ
p
j,k(x) =

∞∑
l=−∞

ψj,k(x − l) for t ∈ [0,1],

where φj,k(x) = 2j/2φ(2j x − k) and ψj,k(x) = 2j/2ψ(2j x − k). The collection
{φ

p
j0,k

, k = 1, . . . ,2j0;ψp
j,k, j ≥ j0 ≥ 0, k = 1, . . . ,2j } is then an orthonormal ba-

sis of L2[0,1], provided the primary resolution level j0 is large enough to en-
sure that the support of the scaling functions and wavelets at level j0 is not the
whole of [0,1]. The superscript “p” will be suppressed from the notation for con-
venience. An orthonormal wavelet basis has an associated orthogonal Discrete
Wavelet Transform (DWT) which transforms sampled data into the wavelet co-
efficients. See Daubechies (1992) and Strang (1992) for further details about the
wavelets and discrete wavelet transform. A square-integrable function g on [0,1]
can be expanded into a wavelet series:

g(x) =
2j0∑
k=1

ξj0,kφj0,k(x) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(x),(6)

where ξj,k = 〈g,φj,k〉, θj,k = 〈g,ψj,k〉 are the wavelet coefficients of g.
Wavelet thresholding methods have been well developed for nonparametric

function estimation, especially for estimating the mean function in the setting of
homoscedastic Gaussian noise where one observes

yi = f

(
i

n

)
+ σzi, zi

i.i.d.∼ N(0,1), i = 1, . . . , n.(7)

One of the best known wavelet thresholding procedures is Donoho–Johnstone’s
VisuShrink [Donoho and Johnstone (1994) and Donoho et al. (1995)]. A typical
wavelet thresholding procedure has three steps:

1. Transform the noisy data via the discrete wavelet transform.
2. Threshold the empirical wavelet coefficients by “killing” coefficients of small

magnitude and keeping the large coefficients.
3. Estimate function f at the sample points by inverse discrete wavelet transform

of the denoised wavelet coefficients.

Many wavelet procedures are adaptive and easy to implement. We shall develop in
Section 2.2 a wavelet procedure for variance function estimation where the noise
is heteroscedastic and non-Gaussian.
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2.2. Adaptive wavelet procedure for estimating the variance function. We now
give a detailed description of our wavelet thresholding procedure for variance func-
tion estimation. The procedure begins with taking squared difference of the obser-
vations and then applies wavelet thresholding to obtain an estimator of the variance
function.

Set Di = 1√
2
(y2i−1 − y2i ) for i = 1,2, . . . , n/2. Then one can write

Di = 1√
2

(
f (x2i−1) − f (x2i ) + V 1/2(x2i−1)z2i−1 − V 1/2(x2i )z2i

)
(8)

= 1√
2
δi + V

1/2
i εi,

where δi = f (x2i−1) − f (x2i ), V
1/2
i =

√
1
2(V (x2i−1) + V (x2i )) and

εi = (
V (x2i−1) + V (x2i )

)−1/2(
V 1/2(x2i−1)z2i−1 − V 1/2(x2i )z2i

)
(9)

has zero mean and unit variance. Then D2
i can be written as

D2
i = Vi + 1

2δ2
i + √

2V
1/2
i δiεi + Vi(ε

2
i − 1).(10)

In the above expression Vi is what we wish to estimate, 1
2δ2

i is a bias term caused

by the mean function f , and
√

2V
1/2
i δiεi + Vi(ε

2
i − 1) is viewed as the noise

term. By taking squared differences, we have turned the problem of estimating the
variance function into the problem of estimating the mean function similar to the
conventional Gaussian regression model (7). The differences are of course that the
noise is non-Gaussian and heteroscedastic and that there are additional unknown
deterministic errors. In principle, virtually any good nonparametric regression pro-
cedure for estimating the mean function can then be applied. In this paper we shall
use a wavelet estimator for its spatial adaptivity, asymptotic optimality, and com-
putational efficiency.

We now construct a wavelet thresholding estimator V̂ based on the squared
differences D2

i . Although the procedure is more complicated, the basic idea is
similar to the one behind the VisuShrink estimator for homoscedastic Gaussian
regression described at the end of Section 2.1. We first apply the discrete wavelet
transform to D̃ = √

2/n(D2
1, . . . ,D2

n/2)
′. Let d = W · D̃ be the empirical wavelet

coefficients, where W is the discrete wavelet transformation matrix. Then d can be
written as

d = (d̃j0,1, . . . , d̃j0,2j0 , dj0,1, . . . , dj0,2j0 , . . . , dJ−2,1, . . . , dJ−2,2J−2)
′,(11)

where d̃j0,k are the gross structure terms at the lowest resolution level, and dj,k

(j = j0, . . . , J − 1, k = 1, . . . ,2j ) are empirical wavelet coefficients at level j

which represent fine structure at scale 2j . For convenience, we use (j, k) to de-
note the number 2j + k. Then the empirical wavelet coefficients can be written
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as

dj,k = τj,k + zj,k

where zj,k denotes the transformed noise part, that is,

zj,k =
√

2

n

∑
i

W(j,k),i

(√
2V

1/2
i δiεi + Vi(ε

2
i − 1)

)
and

τj,k = θj,k + ∑
i

W(j,k),i

√
1

2n
δ2
i + γj,k.

Here θj,k is the true wavelet coefficients of V (x), that is, θj,k = 〈V,ψj,k〉, and γj,k

is the difference between θj,k and the discrete wavelet coefficient of Vi ,

γj,k = ∑
i

W(j,k),iVi − θj,k.

We shall see that the approximation error γj,k is negligible.
For the gross structure terms at the lowest resolution level, similarly, we can

write

d̃j0,k = τ̃j0,k + z̃j0,k,

where

τ̃j0,k = ∑
i

W(j0,k),i

√
1

2n
δ2
i + ξj0,k + γ̃j0,k,(12)

z̃j0,k =
√

2

n

∑
i

W(j0,k),i

(√
2V

1/2
i δiεi + Vi(ε

2
i − 1)

)
,(13)

with ξj0,k = 〈V,φj0,k〉 and γ̃j0,k = ∑
i W(j0,k),iVi − ξj0,k .

Note that the squared differences D2
i are independent and the variance σ 2

j,k of
the empirical wavelet coefficients dj,k can be calculated as follows:

σ 2
j,k ≡ Var(dj,k) = 2

n

n/2∑
i

W 2
(j,k),i Var(D2

i ).(14)

We shall use this formula to construct an estimator of σ 2
j,k and then use it for

choosing the threshold.
For any y and t ≥ 0, define the soft thresholding function ηt (y) = sgn(y)(|y| −

t)+. Let J1 be the largest integer satisfying 2J1 ≤ J−32J . Then the θj,k are esti-
mated by

θ̂j,k =
{

ηλj,k
(dj,k), if j0 ≤ j ≤ J1,

0, otherwise,
(15)
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where

λj,k = σ̂j,k

√
2 log(n/2)(16)

is the threshold level, and σ̂j,k is an estimate of the standard deviation σj,k . We
shall discuss estimation of σj,k in Section 2.3.

In wavelet regression for estimating the mean function, the coefficients of the
father wavelets φj0,k at the lowest resolution level are conventionally estimated by
the corresponding empirical coefficients. Since there are only a small fixed num-
ber of coefficients, they would not affect the rate of convergence and the numerical
results show that the wavelet estimators perform well in general. But in the setting
of the present paper for estimating the variance function it turns out that using the
empirical coefficients directly, although not affecting rate of convergence, often
does not yield good numerical performance. We therefore estimate these coeffi-
cients by a shrinkage estimator given in Berger (1976). The estimator depends on
the covariance matrix of the empirical coefficients d̃j0 = (d̃j0,1, . . . , d̃j0,2j0 )

′ which
is a function of the means and thus unknown. We shall use an estimated covariance
matrix. Specifically, the estimator ξ̂j0 of ξj0 is given by

ξ̂j0 =
(
I − min{d̃ ′

j0
�̂−1d̃j0,2j0 − 2}�̂−1

d̃ ′
j0

�̂−1�̂−1d̃j0

)
d̃j0,(17)

where ξ̂j0 = (ξ̂j0,1, ξ̂j0,2, . . . , ξ̂j0,2j0 )
′ is the estimator and �̂ is the estimated co-

variance matrix of d̃j0 . In our problem, we set

�̂ = 2

n
Wj0V̂DW ′

j0

where Wj0 is the father wavelets part of the discrete wavelet transform matrix W .
That is, Wj0 is a 2j0 × n

2 matrix and in our setting Wj0 consists of the first 2j0 rows
of W . V̂D is a diagonal matrix given by

V̂D = Diag{ ̂Var(D2
1), ̂Var(D2

2), . . . , ̂Var(D2
n/2)}

with ̂Var(D2
i ) given in equation (20) in Section 2.3.

With θ̂j,k given in (15) and ξ̂j0,k in (17), the estimator of the variance function V

is defined by

V̂e(x) =
2j0∑
k=1

ξ̂j0,kφj0,k(x) +
J1∑

j=j0

2j∑
k=1

θ̂j,kψj,k(x).(18)

So far we have only used half of the differences. Similarly we can apply the
same procedure to the other half of differences, D′

i = 1√
2
(y2i − y2i+1), and obtain
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another wavelet estimator V̂o(x). The final estimator of the variance function V is
then given by

V̂ (x) = 1
2

(
V̂e(x) + V̂o(x)

)
.(19)

The variance function at the sample points V = {V (2i
n
) : i = 1, . . . , n/2} can

be estimated by the inverse transform of the denoised wavelet coefficients: V̂ =
W−1 · (n

2 )1/2�̂.

REMARK. In principle other thresholding techniques such as BlockJS [Cai
(1999)], NeighBlock [Cai and Silverman (2001)] and EbayesThresh [Johnstone
and Silverman (2005)] can also be adopted for estimating the wavelet coefficients
here. However in the setting of the present paper the empirical coefficients are
non-Gaussian, heteroscedastic and correlated and this makes the analysis of the
properties of the resulting estimators very challenging.

2.3. Estimate of σ 2
j,k . Our wavelet estimator (19) of the variance function V

requires an estimate of variance σ 2
j,k of the empirical wavelet coefficients. To make

the wavelet estimator V̂ perform well asymptotically, we need a positively biased
estimate of σ 2

j,k . That is, the estimate σ̂ 2
j,k is greater than or equal to σ 2

j,k with large
probability. This can be seen in the proof of our theoretical results. On the other
hand, the estimate σ̂ 2

j,k should be of the same order as σ 2
j,k . Combining the two

requirements together we need an estimate σ̂ 2
j,k such that P(

⋂
j,k σ 2

j,k ≤ σ̂ 2
j,k ≤

Cσ 2
j,k) → 1 for some constant C > 1. We shall construct such an estimate here.

It is clear from equation (14) that an estimate of the variance of D2
i , i =

1,2, . . . , n/2, yields an estimate of σ 2
j,k . It follows from equation (10) that we

need an estimate of E(e2
i ), where ei = √

2V
1/2
i δiεi + Vi(ε

2
i − 1). Note that

D2
i = Vi + 1

2δ2
i + ei where δi is “small” and Vi is “smooth.” We shall estimate

Var(D2
i ) = E(e2

i ) by the average squared differences of D2
i over an subinterval.

Specifically, we define the estimator of Var(D2
i ) as follows.

Let �i = D2
2i−1 − D2

2i for i = 1,2, . . . , n/4. Fix 0 < r < 1 and divide the
indices 1,2, . . . , n/2 into nonoverlapping blocks of length [(n

2 )r ]. We estimate
Var(D2

i ) = E(e2
i ) in each block by the same value. Let K be the total number

of blocks and Bk be the set of indices in the kth block. For 1 ≤ k ≤ K , let

̂Var(D2
i ) ≡ σ̂ 2

k = 2

(n/2)r (2 − 1/ logn)

∑
2t∈Bk

�2
t for all i ∈ Bk.(20)

Lemma 6 in Section 6 shows that this estimate has the desired property for any
0 < r < 1. With this estimator of Var(D2

i ), we estimate σ 2
j,k by

σ̂ 2
j,k = 2

n

n/2∑
i

W 2
(j,k),i

̂Var(D2
i ).(21)
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We shall use σ̂j,k in the threshold λj,k in (16) and construct the wavelet estimator
of V as in (18) and (19).

3. Global adaptivity of the wavelet procedure. We consider in this section
the theoretical properties of the variance function estimator V̂ given in (19) under
the global MISE (2). The local adaptivity of the estimator under pointwise MSE (3)
is treated in Section 4. These results show that the variance function estimator (19)
is nearly optimally adaptive and spatially adaptive over a wide range of function
spaces for both the mean and variance functions.

3.1. Inhomogeneous function class H . To demonstrate the global adaptivity
of the variance function estimator V̂ , we consider a family of large function classes
which contain spatially inhomogeneous functions that may have, for example,
jump discontinuities and high frequency oscillations. These function classes are
different from the more traditional smoothness classes. Functions in these classes
can be viewed as the superposition of smooth functions with irregular perturba-
tions. These and other similar function classes have been used in Hall, Kerky-
acharian and Picard (1998, 1999) and Cai (2002) in the study of wavelet block
thresholding estimators.

DEFINITION 1. Let H = H(α1, α, γ,M1,M2,M3,D, v), where 0 ≤ α1 <

α ≤ D, γ > 0, and M1,M2,M3, v ≥ 0, denote the class of functions f such that
for any j ≥ j0 > 0 there exists a set of integers Aj with card(Aj ) ≤ M32jγ for
which the following are true:

• For each k ∈ Aj , there exist constants a0 = f (2−j k), a1, . . . , aD−1 such that for
all x ∈ [2−j k,2−j (k + v)], |f (x) − ∑D−1

m=0 am(x − 2−j k)m| ≤ M12−jα1 .
• For each k /∈ Aj , there exist constants a0 = f (2−j k), a1, . . . , aD−1 such that for

all x ∈ [2−j k,2−j (k + v)], |f (x) − ∑D−1
m=0 am(x − 2−j k)m| ≤ M22−jα .

A function f ∈ H(α1, α, γ,M1,M2,M3,D, v) can be regarded as the superpo-
sition of a regular function fs and an irregular perturbation τ : f = fs +τ . The per-
turbation τ can be, for example, jump discontinuities or high frequency oscillations
such as chirp and Doppler of the form: τ(x) = ∑K

k=1 ak(x − xk)
βk cos(x − xk)

−γk .
The smooth function fs belongs to the conventional Besov class Bα∞∞(M2).
Roughly speaking, a Besov space Bα

p,q contains functions having α bounded deriv-
atives in Lp space, the parameter q gives a finer gradation of smoothness. See
Triebel (1983) and Meyer (1992) for more details on Besov spaces.

Intuitively, the intervals with indices in Aj are “bad” intervals which contain
less smooth parts of the function. The number of the “bad” intervals is controlled
by M3 and γ so that the irregular parts do not overwhelm the fundamental structure
of the function. It is easy to see that H(α1, α, γ,M1,M2,M3,D, v) contains the
Besov class Bα∞∞(M2) as a subset for any given α1, γ , M1, M3, D and v. See Hall,
Kerkyacharian and Picard (1999) for further discussions on the function classes H .
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3.2. Global adaptivity. The minimax rate of convergence for estimating the
variance function V over the traditional Lipschitz balls was derived in Wang et al.
(2008). Define the Lipschitz ball �α(M) in the usual way as

�α(M) = {
g :

∣∣g(k)(x)
∣∣ ≤ M, and

∣∣g(�α�)(x) − g(�α�)(y)
∣∣ ≤ M|x − y|α′

for all 0 ≤ x, y ≤ 1, k = 0, . . . , �α� − 1
}

where �α� is the largest integer less than α and α′ = α − �α�. Wang et al.
(2008) showed that the minimax risks for estimating V over f ∈ �α(Mf ) and
V ∈ �β(MV ) under both the global MISE and the MSE at a fixed point x∗ ∈ (0,1)

satisfy

inf
V̂

sup
f ∈�α(Mf ),V ∈�β(MV )

E‖V̂ − V ‖2
2

� inf
V̂

sup
f ∈�α(Mf ),V ∈�β(MV )

E
(
V̂ (x∗) − V (x∗)

)2(22)

� max
{
n−4α, n−2β/(β+1)}.

We now consider the function class H(α1, α, γ,M1,M2,M3,D, v) defined in
Section 3.1. Let Hf (α) = H(α1, α, γf ,Mf 1,Mf 2,Mf 3,Df , vf ) and HV (β) =
H(β1, β, γV ,MV 1,MV 2,MV 3,DV , vV ). Since H(α1, α, γ,M1,M2,M3,D, v)

contains the Lipschitz ball �α(M2) as a subset for any given α1, γ , M1, M3, D,
and v, a minimax lower bound for estimating V over f ∈ Hf (α) and V ∈ HV (β)

follows directly from (22):

inf
V̂

sup
f ∈Hf (α),V ∈HV (β)

E‖V̂ − V ‖2
2 ≥ C · max

{
n−4α, n−2β/(1+2β)}.(23)

The following theorem shows that the variance function estimator V̂ is adaptive
over a range of the function classes H . We shall assume that the error zi in the
regression model (1) satisfies the property that the moment generating function of
z2
i , G(x) = E(exz2

i ), exists when |x| < ρ for some constant ρ > 0. This condition
implies that the moment generating function of εi in (9), Gε(x) = E(exεi ), exists
in a neighborhood of 0.

THEOREM 1. Let {y1, . . . , yn} be given as in (1). Suppose the wavelets
{φ,ψ} ∈ W(D) and the moment generating function of z2

i exists in a neighbor-

hood of the origin. Suppose also γf ≤ 1 + 4α1 − 4α, and γV ≤ 1+2β1
1+2β

. Then the

variance function estimator V̂ given in (19) satisfies that for some constant C0 > 0
and all 0 < β ≤ D

sup
f ∈Hf (α),V ∈HV (β)

E‖V̂ − V ‖2
2 ≤ C0 · max

{
n−4α,

(
logn

n

)2β/(1+2β)}
.(24)
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REMARK. The use of Coiflets in Theorem 1 is purely for technical reasons.
If the following mild local Lipschitz condition is imposed on functions in H in
regions where the functions are relatively smooth, then the Coiflets are not needed.
Local adaptivity result given in the next section does not require the use of Coiflets
and our simulation shows no particular advantages of using Coiflets in the finite
sample case.

(i) If α > 1 ≥ α1, then for k /∈ Aj , |f (x) − f (2−j k)| ≤ M42−j , for x ∈
[2−j k,2−j (k + v)].

(ii) If α > α1 > 1, then |f (x) − f (2−j k)| ≤ M42−j , for x ∈ [2−j k,2−j (k +
v)].

Comparing (24) with the minimax lower bound given in (23), the estimator V̂

is adaptively within a logarithmic factor of the minimax risk under global MISE.
Thus, the variance function estimator V̂ , without knowing the a priori degree or
amount of smoothness of the underlying mean and variance functions, achieves
within a logarithmic factor of the true optimal convergence rate that one could
achieve by knowing the regularity.

For adaptive estimation of V over the traditional Lipschitz balls, the following
is a direct consequence of Theorem 1.

COROLLARY 1. Let {y1, . . . , yn} be given as in (1). Suppose the wavelet ψ is
r-regular and the moment generating function of z2

i exists in a neighborhood of
the origin. Then the variance function estimator V̂ given in (19) satisfies that for
some constant C0 > 0 and all 0 < β ≤ r

sup
f ∈�α(Mf ),V ∈�β(MV )

E‖V̂ − V ‖2
2 ≤ C0 · max

{
n−4α,

(
logn

n

)2β/(1+2β)}
.(25)

4. Local adaptivity. For functions of spatial inhomogeneity, the local smooth-
ness of the functions varies significantly from point to point and global risk mea-
sures such as (2) cannot wholly reflect the performance of an estimator locally.
The local risk measure (3) is more appropriate for measuring the spatial adaptiv-
ity, where x∗ ∈ (0,1) is any fixed point of interest.

Define the local Lipschitz class �α(M,x∗, δ) by

�α(M,x∗, δ) = {
g :

∣∣g(�α�)(x) − g(�α�)(x∗)
∣∣ ≤ M|x − x∗|α′

,

x ∈ (x∗ − δ, x∗ + δ)
}

where �α� is the largest integer less than α and α′ = α − �α�.

THEOREM 2. Let {y1, . . . , yn} be given as in (1). Suppose the wavelet ψ is
r-regular and the moment generating function of z2

i exists in a neighborhood of
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the origin. Then the variance function estimator V̂ given in (19) satisfies that for
any fixed x∗ ∈ (0,1) there exists some constant C0 > 0 such that for all α > 0 and
all 0 < β ≤ r

sup
f ∈�α(Mf ,x∗,δf ),V ∈�β(MV ,x∗,δV )

E
(
V̂ (x∗) − V (x∗)

)2

(26)

≤ C0 · max
{
n−4α,

(
logn

n

)2β/(1+2β)}
.

Comparing (26) with the minimax rate of convergence given in (22), the esti-
mator V̂ is simultaneously within a logarithmic factor of the minimax risk under
the pointwise risk. We shall show in Section 4.1 that, under the pointwise risk,
this logarithmic factor is unavoidable for adaptive estimation. It is the minimum
penalty for not knowing the smoothness of the variance function V . Therefore the
estimator V̂ is optimally adaptive under the pointwise loss.

4.1. Lower bound for adaptive pointwise estimation. We now turn to the lower
bound for adaptive estimation of the variance function V under the pointwise MSE.
The sharp lower bound we derive below demonstrates that the cost of adaptation
for variance function estimation behaves in a more complicated way than that for
mean function estimation.

It is well known in estimating the mean function f that it is possible to achieve
complete adaptation for free under the global MISE in terms of the rate of conver-
gence over a collection of function classes. That is, one can do as well when the
degree of smoothness is unknown as one could do if the degree of smoothness is
known. But for estimation at a point, one must pay a price for adaptation. The opti-
mal rate of convergence for estimating the mean function f at point over �α(Mf )

with α completely known is n−2α/(1+2α). In the setting of adaptive estimation of
the mean function, Lepski (1990) and Brown and Low (1996) showed that one has
to pay a price for adaptation of at least a logarithmic factor even when α is known
to be one of two values. It is shown that the best achievable rate is (

logn
n

)2α/(1+2α),
when the smoothness parameter α is unknown.

Here we consider adaptive estimation of the variance function V at a point. The
following lower bound characterizes the cost of adaptation for such a problem.

THEOREM 3. Let α0, α1 > 0, β0 > β1 > 0 and 4α0 >
2β1

1+2β1
. Under the

regression model (1) with zi
i.i.d.∼ N(0,1), for any estimator V̂ and any fixed

x∗ ∈ (0,1), if

lim
n→∞ min

{
n4α0, n2β0/(1+2β0)

}
(27)

× sup
f ∈�α0 (Mf ),V ∈�β0 (MV )

E
(
V̂ (x∗) − V (x∗)

)2
< ∞,
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then

lim
n→∞

min
{
n4α1,

(
n

logn

)2β1/(1+2β1)
}

(28)
× sup

f ∈�α1 (Mf ),V ∈�β1 (MV )

E
(
V̂ (x∗) − V (x∗)

)2
> 0.

The lower bound for adaptive estimation given in Theorem 3 is more compli-
cated than the corresponding lower bound for estimating the mean function given
in Lepski (1990) and Brown and Low (1996). Theorem 3 shows that, if an esti-
mator is rate optimal for f ∈ �α0(Mf ) and V ∈ �β0(MV ), then one must pay a
price of at least a logarithmic factor for f ∈ �α1(Mf ) and V ∈ �β1(MV ) if the
mean function is smooth, that is, 4α1 ≥ 2β1

1+2β1
. On the other hand, if 4α1 <

2β1
1+2β1

,
then it is possible to achieve the exact minimax rate simultaneously both over
f ∈ �α0(Mf ), V ∈ �β0(MV ) and f ∈ �α1(Mf ), V ∈ �β1(MV ). In contrast, for
estimating the mean function at a point one must always pay a price of at least a
logarithmic factor for not knowing the exact smoothness of the function.

Comparing the lower bound (28) with the upper bound (26) given in Theorem 2,
it is clear that our wavelet estimator (19) is optimally adaptive under the pointwise
risk. The lower and upper bounds together show the following. When the mean
function is not smooth, that is, 4α <

2β
1+2β

, the minimax rate of convergence can
be achieved adaptively. On the other hand, when the effect of the mean function is
negligible, that is, 4α ≥ 2β

1+2β
, the minimax rate of convergence cannot be achieved

adaptively and one has to pay a minimum of a logarithmic factor as in the case of
mean function estimation.

The proof of this theorem can be naturally divided into two parts. The first part

lim
n→∞

n4α1 · sup
f ∈�α1 (Mf ),V ∈�β1 (MV )

E
(
V̂ (x∗) − V (x∗)

)2
> 0(29)

follows directly from the minimax lower bound given in Wang et al. (2008). We
shall use a two-point constrained risk inequality to prove the second part,

lim
n→∞

(
n

logn

)2β1/(1+2β1)

· sup
f ∈�α1 (Mf ),V ∈�β1 (MV )

E
(
V̂ (x∗) − V (x∗)

)2
> 0.(30)

A detailed proof is given in Section 6.4.

5. Numerical results. The adaptive procedure for estimating the variance
function introduced in Section 2.2 is easily implementable. We implement the pro-
cedure in S-Plus and R. In this section we will investigate the numerical perfor-
mance of the estimator. The numerical study has three goals. The first is to inves-
tigate the effect of the mean function on the estimation of the variance function.
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Several different combinations of the mean and variance functions are used and
the MSE of each case is given. The second goal is to study the effect of different
choices of r in (20) on the performance of the estimator. The simulation results
indicate that the MISE of the estimator is not sensitive to the choice of r . Finally,
we will make a comparison between the wavelet estimator and a kernel estimator
with the bandwidth chosen by cross validation. For reasons of space, we only re-
port here a summary of the numerical results. See Cai and Wang (2007) for more
detailed and additional simulation results.

Four different variance functions were considered in the simulation study. They
are Bumps and Doppler functions from Donoho and Johnstone (1994) and also the
following two functions:

V1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3 − 30x, for 0 ≤ x ≤ 0.1,
20x − 1, for 0.1 ≤ x ≤ 0.25,
4 + (1 − 4x)18/19, for 0.25 < x ≤ 0.725,
2.2 + 10(x − 0.725), for 0.725 < x ≤ 0.89,
3.85 − 85(x − 0.89)/11, for 0.89 < x ≤ 1,

V2(x) = 1 + 4
(
e−550(x−0.2)2 + e−200(x−0.8)2 + e−950(x−0.8)2)

.

These test functions are rescaled in the simulations to have the same L2 norm.
We begin by considering the effect of the mean function on the estimation

of the variance function. For each variance function V (x), we use five differ-
ent mean functions, the constant function f (x) = 0, the trigonometric function
f = sin(20x), and Bumps, Blocks and Doppler functions from Donoho and John-
stone (1994). Different combinations of wavelets and sample size n yield basically
the same qualitative results. As an illustration, Table 1 reports the average squared
errors over 500 replications with sample size n = 4096 using Daubechies com-
pactly supported wavelet Symmlet 8. In this part, we use r = 0.5 in (21). Figure 1
provides a graphical comparison of the variance function estimators and the true
functions in the case the mean function f ≡ 0.

It can be seen from Table 1 that in all these examples the MISEs mostly depend
on the structure of the variance function. The effect of the mean function f is not
significant. For Bumps and Blocks, the spatial structure of the mean f only affect

TABLE 1
The average squared error over 500 replications with sample size n = 4096

f (x) ≡ 0 f (x) = sin(20x) Bumps Blocks Doppler

V1(x) 0.0817 0.0842 0.0825 0.0860 0.0837
V2(x) 0.0523 0.0553 0.0557 0.0563 0.0567
Bumps 0.1949 0.2062 0.2146 0.2133 0.2060
Doppler 0.4162 0.5037 0.4817 0.4888 0.4902
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FIG. 1. Wavelet estimates (solid) and true variance functions (dotted).

a small number of wavelet coefficients, and the variance function estimator still
performs well. But still, when f is smooth, the estimator of the variance function
V is slightly more accurate. We can also see that the results here are not as good
as the estimation of mean function under the standard homoscedastic Gaussian
regression model. This is primarily due to the difficulty of the variance function
estimation problem itself.

We now turn to the choice of r in (21). Using the same setting as in the previous
example, we apply our procedure for the four test functions with three different
choices of r in (21), r = 0.2,0.5 and 0.8, respectively. The mean function is chosen
to be f ≡ 0. The average squared error over 500 replications are given in Table 2.

TABLE 2
The MISEs for different choices of r

V1(x) V2(x) Bumps Doppler

r = 0.2 0.0838 0.0581 0.1981 0.4852
r = 0.5 0.0817 0.0523 0.1949 0.4162
r = 0.8 0.0859 0.0532 0.2065 0.4335
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TABLE 3
Comparison of the MISEs for the wavelet and kernel estimators

V1(x) V2(x) Bumps Doppler

Wavelet 0.0817 0.0523 0.1949 0.4762
Kernel 0.1208 0.0631 0.2296 0.5463

For each test function the MISEs are nearly identical for different choices of r .
It is thus clear from Table 2 that the performance of the estimator is not sensitive
to the choice of r . We suggest use r = 0.5 in practice.

After taking squared differences, the problem of estimating the variance func-
tion becomes the problem of estimating the mean function and virtually any good
procedure for estimating the mean function can then be applied. We now compare
the performance of our wavelet estimator with a kernel estimator whose band-
width is chosen via cross-validation. Table 3 displays the average squared errors
over 500 replications of the two estimators for the four variance functions with the
mean function f ≡ 0.

The wavelet estimator outperforms the kernel estimator for all the variance func-
tions. The MISEs of the kernel estimator are 14% to 47% higher than the corre-
sponding wavelet estimator. Although the bandwidth of the kernel estimator is
chosen adaptive via cross-validation, the spatial inhomogeneity of the variance
functions limits the performance of any kernel method with a single bandwidth.

In summary, the simulation study shows that the effect of the mean function
on the performance of the wavelet estimator is not significant. In this sense our
wavelet procedure is robust against the mean function interference. The procedure
is also not sensitive to the choice of r . In addition, the wavelet estimator uniformly
outperforms the kernel estimator whose bandwidth is chosen by cross-validation.

6. Proofs. We begin by introducing and proving several technical lemmas in
Section 6.1 that will be used in the proof of the main results. Throughout this
section, we use C (as well as C0, C1, etc.) to denote constants that may vary from
place to place.

6.1. Preparatory results. Oracle inequality for the soft thresholding estimator
was given in Donoho and Johnstone (1994) in the case when the noise is i.i.d. nor-
mal. In the present paper we need the following risk bound for the soft thresholding
estimator without the normality assumption. This risk bound is useful in turning
the analysis of the variance function estimator into the bias-variance trade-off cal-
culation which is often used in more standard Gaussian nonparametric regression.

LEMMA 1. Let y = θ + Z, where θ is an unknown parameter and Z is a
random variable with EZ = 0. Then

E
(
η(y,λ) − θ

)2 ≤ θ2 ∧ (4λ2) + 2E
(
Z2I (|Z| > λ)

)
.
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PROOF. Note that

E
(
η(y,λ) − θ

)2 ≤ 2E
(
η(y,λ) − y

)2 + 2E(y − θ)2 ≤ 2λ2 + 2EZ2

≤ 4λ2 + 2E
(
Z2I (|Z| > λ)

)
.

On the other hand,

E
(
η(y,λ) − θ

)2 = θ2P
(−λ − θ ≤ Z ≤ λ − θ

) + E
(
(Z − λ)2I (Z > λ − θ)

)
+ E

(
(Z + λ)2I (Z < −λ − θ)

)
≤ θ2 + E

(
(Z − λ)2I (Z > λ)

) + E
(
(Z + λ)2I (Z < −λ)

)
≤ θ2 + E

(
Z2I (|Z| > λ)

)
. �

The following lemma bounds the wavelet coefficients of the functions in H .

LEMMA 2. (i) Let g ∈ H(α1, α, γ,M1,M2,M3,D, v). Assume the wavelets
{φ,ϕ} ∈ W(D) with supp(φ) = supp(ψ) ⊂ [0, v]. Let n = 2J , ξJ,k = ∫

gφJ,k and
θj,k = ∫

gψj,k . Then

|ξJ,k − n−1/2g(k/n)| ≤ M1‖φ‖1n
−(1/2+α1) for all k ∈ AJ ;

|ξJ,k − n−1/2g(k/n)| ≤ M2‖φ‖1n
−(1/2+α) for all k /∈ AJ ;

|θj,k| ≤ M1‖ψ‖12−j (1/2+α1) for all k ∈ Aj ;
|θj,k| ≤ M1‖ψ‖12−j (1/2+α) for all k /∈ Aj .

(ii) For all functions g ∈ �α(M), the wavelet coefficients of g satisfy | θj,k |≤
C2−j (1/2+α) where constant C depends only on the wavelets, α and M only.

Lemma 2(ii) is a standard result; see for example, Daubechies (1992). For a
proof of Lemma 2(i), see Hall, Kerkyacharian and Picard (1999) and Cai (2002).
It follows from this lemma that

sup
g∈�β(M)

n∑
k=1

(
ξJ,k − n−1/2g

(
k

n

))2

≤ Cn−(2β∧1).(31)

The next lemma gives a large deviation result, which will be used to control the
tail probability of the empirical wavelet coefficients.

LEMMA 3. Suppose εi , i = 1,2, . . . , are independent random variables with
Eεi = 0, Var(εi) = vi ≤ v0 for all i. Moreover, suppose the moment generating
function Mi(x) � E(exp(xεi)) exists when |x| < ρ for some ρ > 0 and all i. Let

Zm = 1√
v0

m∑
i=1

amiεi
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with
∑m

i=1 a2
mi = 1 and |ami | ≤ c0/

√
m for some constant c0, then for λ =

o(m−1/4) and sufficiently large m

P(|Zm| > σmλ)

2(1 − �(λ))
≤ exp

(
C

λ3

m1/4

)(
1 + O(m−1/4)

)
where σ 2

m = ∑
a2
mivi/v0 and C > 0 is a constant.

PROOF. Let Sm = m1/4Zm and Mm(x) = E(exp(xSm)). Suppose μik denote
the kth moment of εi . Note that |ami | ≤ c0m

−1/2 for any m and 1 ≤ i ≤ m, we
have

log(Mm(x))

m1/2 = 1

m1/2

m∑
i=1

logMi

(
x

amim
1/4

√
v0

)

= 1

m1/2

m∑
i=1

log
(

1 + m1/2a2
mi

2v0
x2 + m3/4a3

mi

6v
3/2
0

μi3x
3 + · · ·

)

= 1

m1/2

m∑
i=1

(
m1/2a2

mi

2v0
x2 + m−3/4x3 · �m(x)

)

= x2

2v0
+ m−1/4x3 · �m(x)

where �m(x) is uniformly bounded for all m when x < ρ. This means that Mm(x)

can be written in the form Mm(x) = em1/2(x2/2v0)(1 + O(m−1/4)) for |x| < ρ. It
then follows from Theorem 1 of Hwang (1996) that for λ = o(m−1/4) and suffi-
ciently large m

P(|Zm| > σmλ)

2(1 − �(λ))
≤ exp

(
C

λ3

m1/4

)(
1 + O(m−1/4)

)
. �

A special case of Lemma 3 is when m ≥ (logn)k for a positive integer n and
some k > 2 and λ = √

2 logn. In this case, we have

P(|Zm| > σm

√
2 logn)

2(1 − �(
√

2 logn))
≤ exp

(
C

(2 logn)3/2

(logn)k/4

)(
1 + O

( √
2 logn

(logn)k/4

))
.

Since k > 2, exp{(logn)3/2−k/4} = o(na) for any a > 0 as n → ∞. Therefore

P
(|Zm| > σm

√
2 logn

) ≤ O

(
1

n1−a

)
(32)

for any a > 0.
The following two lemmas bounds the difference between the mean τj,k of the

empirical wavelet coefficient dj,k and the true wavelet coefficient θj,k , globally
and individually.
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LEMMA 4. Using the notation in Section 2.2, and under the conditions of
Theorem 1, we have

sup
f ∈Hf (α),V ∈HV (β)

{∑
k

(τ̃j0,k − ξj0,k)
2 + ∑

j,k

(τj,k − θj,k)
2

}

= O
(
n−(1∧4α∧2β∧(1+2β1−γV ))).

PROOF. Note that∑
k

(τ̃j0,k − ξj0,k)
2 + ∑

j,k

(τj,k − θj,k)
2 = ∑

j,k

(∑
i

W(j,k),i

√
1

2n
δ2
i + γj,k

)2

≤ 2
∑
j,k

(∑
i

W(j,k),i

√
1

2n
δ2
i

)2

+ 2
∑
j,k

γ 2
j,k.

It follows from the isometry property of the orthogonal wavelet transform that

∑
j,k

(∑
i

W(j,k),i

√
1

2n
δ2
i

)2

= 1

2n

∑
i

δ4
i .

From the definition of the function class H , if 2i − 1 ∈ AJ then δi ≤ Cn−(1∧α1)

for some constant C > 0; if 2i − 1 /∈ AJ , δi ≤ Cn−(1∧α) for some constant C > 0.
This means

1

n

∑
i

δ4
i = 1

n

∑
i∈AJ

δ4
i + 1

n

∑
i /∈AJ

δ4
i

≤ 1

n
Mf 3n

γf Cn−4(1∧α1) + 1

n
(n − Mf 3n

γf )Cn−4(1∧α)

= C1n
−4(1∧α) + C2n

γf −1−4(1∧α1) = O
(
n−(1∧4α)).

On the other hand,

2
∑
j,k

γ 2
j,k = 2

∑
j,k

(∑
i

W(j,k),i

(
Vi − V (2i − 1)

)

+ ∑
i

W(j,k),i

(
V (2i − 1) − θj,k

)2
)

≤ 4
∑
j,k

(∑
i

W(j,k),i

(
Vi − V (2i − 1)

))2

+ 4
∑
j,k

(∑
i

W(j,k),iV (2i − 1) − θj,k

)2
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= 4
∑
i

(
Vi − V (2i − 1)

)2 + 4
∑
j,k

(∑
i

W(j,k),iV (2i − 1) − θj,k

)2

.

Similarly to the previous calculation, we have∑
i

(
Vi − V (2i − 1)

)2 = O
(
nγV −1−2(1∧β1) + n−2(1∧β)).

It follows from Lemma 2 that

∑
j,k

(∑
i

W(j,k),iV (2i − 1) − θj,k

)2

= ∑
k

(
ξJ/2,k − V (2i − 1)

)2

= ∑
k∈AJ/2

(
ξJ/2,k − V (2i − 1)

)2 + ∑
k /∈AJ/2

(
ξJ/2,k − V (2i − 1)

)2

≤ C1n
−2β + C2n

γV −1−2β1 .

The lemma is proved by putting these together. �

LEMMA 5. Using the notation in Section 2.2, for any x∗ ∈ (0,1),

sup
f ∈�α(Mf ,x∗,δ),V ∈�β(MV ,x∗,δ)

(∑
k

(τ̃j0,k − ξj0,k)φj0,k(x∗)

+ ∑
j,k

(τj,k − θj,k)ψj,k(x∗)
)2

= O
(
n−(4α∧2β∧1)).

PROOF. It follows from the property of DWT that,(∑
k

(τ̃j0,k − ξj0,k)φj0,k(x∗) + ∑
j,k

(τj,k − θj,k)ψj,k(x∗)
)2

=
(∑

i

(√
2

n

(
1

2
δ2
i + Vi

)
− ξJ−1,i

)
φJ−1,i (x∗)

)2

.

Note that φ(x) has compact support, say supp(φ) ⊂ [−L,L]. So φJ−1,i(x∗ �= 0)

only if 2i
n

/∈ (x∗ − 2L
n

, x∗ + 2L
n

). This means in the previous summation we
only need to consider those i’s for which 2i

n
∈ (x∗ − 2L

n
, x∗ + 2L

n
). For those

i, supp(φJ−1,i ) ⊂ (x∗ − δ, x∗ + δ) for all sufficiently large n. On the interval
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(x∗ − δ, x∗ + δ), both f (x) and V (x) has Lipschitz property and the lemma now
follows from (31). �

Lemma 6 below shows that the estimator ̂Var(D2
i ) given in (20) has the desired

property of being slightly positively biased.

LEMMA 6. Suppose V (x) is bounded away from zero and zi ’s are i.i.d. ran-
dom variables. Suppose σ̂ 2

k is the estimator mentioned in Section 2.3. Then for any
m > 0 there exist constants Cm > 0 such that

P

(⋂
k

⋂
i∈block k

(
E(e2

i ) < σ̂ 2
k < 4E(e2

i )
))

> 1 − Cmn−m.

PROOF. Let uk denote the kth moment of zi . It is easy to see that

E�i = V ′
2i−1 − V ′

2i ≤ 2MV

(
1

n

)β∧1

+ Mf

(
1

n

)2(α∧1)

,

E�2
i = (V ′

2i−1 − V ′
2i )

2 + E(e2
2i−1) + E(e2

2i ).

Since E(e2
i ) = V 2

i (u4 − 1) + 2δ2
i Vi + 2

√
2V

3/2
i δiu3, we know that

E(e2
i ) − E(e2

j ) ≤ C0

(( |i − j |
n

)β∧1

+
( |i − j |

n

)α∧1)
for some constant C0. Denote by Bk the set of indices in block k. Let ωk =
maxi∈Bk

{E(e2
i )}. Then for any j ∈ Bk

ωk − E(e2
j ) ≤ C0

(
n−(1−r)(β∧1) + n−(1−r)(α∧1)) ≤ C0n

−(1−r)(α∧β∧1)

and hence

E(σ̂ 2
k ) = 2

(2 − 1/ logn)(n/2)r

∑
2i∈Bk

(
(V ′

2i−1 − V ′
2i )

2 + E(e2
2i−1) + E(e2

2i )
)

≥ 2

(2 − 1/ logn)(n/2)r

∑
2i∈Bk

(
E(e2

2i−1) + E(e2
2i )

)
≥ 2

(2 − 1/ logn)(n/2)r

∑
2i∈Bk

(
2ωk − 2C0n

−(1−r)(α∧β∧1))
= ωk + 1/ logn

2 − 1/ logn
ωk − 2

2 − 1/ logn
C0n

−(1−r)(α∧β∧1).

Since V (x) is bounded away from zero, we know that ωk ≥ C for some constant
C > 0. So when n is sufficiently large, there exists some constant C1 > 0 such
that

1/ logn

2 − 1/ logn
ωk − 2

2 − 1/ logn
C0n

−(1−r)(α∧β∧1) > C1/ logn.
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Since all the moments of ei exist, all the moments of �i exist. Then for any fixed
positive integer l,

P(σ̂ 2
k > ωk)

= P
(
σ̂ 2

k − E(σ̂ 2
k ) > ωk − E(σ̂ 2

k )
)

≥ P

(
σ̂ 2

k − E(σ̂ 2
k ) > −

(
1/ logn

2 − 1/ logn
ωk − 2

2 − 1/ logn
C0n

−(1−r)(α∧β∧1)

))
≥ P

(|σ̂ 2
k − E(σ̂ 2

k )| < C1/ logn
)

≥ 1 − E[(σ̂ 2
k − E(σ̂ 2

k ))2l]
(C1/ logn)2l

= 1 − 1

(C1/ logn)2ln2rl(2 − 1/ logn)2l
E

( ∑
2t∈Bk

(�2
t − E�2

t )

)2l

.

Since �t ’s are independent random variables, we know that E(
∑

2t∈Bk
(�2

t −
E�2

t ))
2l is of order (nr)l for sufficiently large n. This means

P(σ̂ 2
k ≥ ωk) = 1 − O

(
(logn)2l

nrl

)
.(33)

So

P

(
n1−r⋂
k=1

(σ̂ 2
k > ωk)

)
≥

(
1 − O

((
log2 n

nr

)l))n1−r

= 1 − O

(
(logn)2l

n(l+1)r−1

)
.

Since l is an arbitrary positive integer, this means for any m > 0 there exists a
constant Cm > 0 such that

P

(⋂
k

⋂
i∈block k

(
σ̂ 2

k > E(e2
i )

))
> 1 − Cmn−m.

Similarly, we know that for any m > 0 there exists a constant C′
m > 0 such

that

P

(⋂
k

⋂
i∈block′k

(
σ̂ 2

k < 4E(e2
i )

))
> 1 − C′

mn−m.
�

A direct consequence of Lemma 6 is that P(
⋂

j,k σ 2
j,k ≤ σ̂ 2

j,k ≤ Cσ 2
j,k) ≥ 1 −

Cmn−m for any m > 0 and some constant Cm.
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6.2. Upper bound: Proof of Theorem 1. It is clear that the estimators V̂e, V̂0,
and thus V̂ have the same rate of convergence. Here we will only prove the con-
vergence rate result for V̂e. We shall write V̂ for V̂e in the proof. Note that

E‖V̂ − V ‖2
L2

= E

2j0∑
i=1

(ξ̂j0,i − ξj0,i)
2

(34)

+ E

J1∑
j=j0

∑
k

(θ̂j,k − θj,k)
2 +

∞∑
j=J1+1

∑
k

θ2
j,k.

There are a fixed number of terms in the first sum on the RHS of (34). Equa-
tion (13) and Lemma 4 show that the empirical coefficients d̃j0,k have variance of
order n−1 and sum of squared biases of order O(n−(1∧4α∧2β∧(1+2β1−γV ))). Note
that γV − 1 − 2β1 <

2β
1+2β

, so

sup
V ∈�β(M)

E

2j0∑
i=1

(ξ̂j0,i − ξj0,i )
2 = O

(
n−(1∧4α∧2β∧(1+2β1−γV ))) + O(n−1)

= max
(
O(n−4α),O

(
n

logn

)−2β/(1+2β))
.

Also, it is easy to see that the third sum on the RHS of (34) is small. Note that for
θj,k = 〈V,ψj,k〉, from Lemma 2,

∞∑
j=J1+1

∑
k

θ2
j,k =

∞∑
j=J1+1

( ∑
k∈Aj

θ2
j,k + ∑

k /∈Aj

θ2
j,k

)

≤
∞∑

j=J1+1

(
C12j (γV −1−2β1) + C22−2jβ)

= O

((
n

logn

)−2β/(1+2β))
.

We now turn to the main term E
∑J1

j=j0

∑
k(θ̂j,k − θj,k)

2. Note that

E

J1∑
j=j0

∑
k

(θ̂j,k − θj,k)
2 ≤ 2E

J1∑
j=j0

∑
k

(θ̂j,k − τj,k)
2 + 2E

J1∑
j=j0

∑
k

(τj,k − θj,k)
2.

The second term is controlled by Lemma 4. We now focus on the first term.
Note that the thresholds λj,k are random. We shall denote by E|λ(·) the conditional
expectation given all the thresholds λj,k . It follows from Lemma 1 that

E(θ̂j,k − τj,k)
2 = E

(
E|λ(θ̂j,k − τj,k)

2)
≤ E(τ 2

j,k ∧ 4λ2
j,k) + E

(
z2
j,kI (|zj,k| > λj,k)

)
.
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Note that

E
(
z2
j,kI (|zj,k| > λj,k)

)
= E

(
z2
j,kI (|zj,k| > λj,k)I (σ̂ 2

j,k ≥ σ 2
j,k)

)
+ E

(
z2
j,kI (|zj,k| > λj,k)I (σ̂ 2

j,k ≤ σ 2
j,k)

)
≤ E

(
z2
j,kI

(|zj,k| ≥ σj,k

√
2 logn

)) + E
(
z2
j,kI (σ̂ 2

j,k ≤ σ 2
j,k)

)
� S1 + S2.

Set ρj,k = σj,k

√
2 logn. Since the moment generating functions of all z2

i exist in a
neighborhood of the origin, there exists a constant a > 0 such that E(eazj,k/σj,k ) <

∞. Let A = C logn for some constant C > max(1/a,1), then

S1 = E
(
z2
j,kI

(
(Aσ 2

j,k ∨ ρ2
j,k) ≥ |zj,k| ≥ ρj,k

))
+ σ 2

j,kE

( z2
j,k

σ 2
j,k

I
(|zj,k| > (Aσ 2

j,k ∨ ρ2
j,k)

))

≤ (A2σ 4
j,k ∨ ρ4

j,k)P
(|zj,k| ≥ σj,k

√
2 logn

)
+ σ 2

j,k

A2 ∨ 4(logn)2

ea(A∨2 logn)
E(eazj,k/σj,k ).

Note that, when 2j < n/(log(n/2))2, each wavelet coefficient at level j is a
linear combination of m ≥ (logn)2 of the yi ’s. It then follows from Lemma 3
and (32) that

P
(|zj,k| > σj,k

√
2 log(n/2)

) ≤ O
(
n−(1−a))

for any a > 0. Also,

A2 ∨ 4(logn)2

ea(A∨ 2 logn)
≤ C2 log2 n

eaC logn
≤ O

(
log2 n

n

)
.

Combining these together, and since σ 2
j,k = O(1/n), we have

S1 ≤ O

(
log2 n

n2

)
.

This means S1 is negligible as compared to the upper bound given in (25).
It is easy to see that S2 ≤ (E(z4

j,k)P (σ̂ 2
j,k ≤ σ 2

j,k))
1/2. Lemma 6 yields P(σ̂ 2

j,k ≤
σ 2

j,k) = O(n−m) for any m > 0. So S2 is also negligible.

We now turn to E(τ 2
j,k ∧ 4λ2

j,k). Note that

E(τ 2
j,k ∧ 4λ2

j,k) ≤ 2(τj,k − θj,k)
2 + 2E(θ2

j,k ∧ 4λ2
j,k).(35)
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The first part is controlled by Lemma 4. For the second part,

E(θ2
j,k ∧ 4λ2

j,k) ≤ E
(
θ2
j,k ∧ (4 × 4ρ2

j,k)
) + E

(
θ2
j,kI (σ̂ 2

j,k > 4σ 2
j,k)

)
≤ 4(θ2

j,k ∧ 4ρ2
j,k) + θ2

j,kP (σ̂ 2
j,k > 4σ 2

j,k).

Note that θ2
j,k is bounded (see Lemma 2). From Lemma 6, P(σ̂ 2

j,k > 4σ 2
j,k) =

O(n−m) for any m > 0. So θ2
j,kP (σ̂ 2

j,k > 4σ 2
j,k) is negligible as compared to the

upper bound in (25).
We now turn to θ2

j,k ∧ 4ρ2
j,k , note that j ≥ J−log2 J

2β+1 implies 2j ≥ ( n
logn

)1/(2β+1),
and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ2
j,k ∧ 4ρ2

j,k ≤ 4ρ2
j,k ≤ C

(
logn

n

)
, if j ≤ J − log2 J

2β + 1
and k /∈ Aj ,

θ2
j,k ∧ 4ρ2

j,k ≤ θ2
j,k ≤ C2−j (1+2β), if j ≥ J − log2 J

2β + 1
and k /∈ Aj ,

θ2
j,k ∧ 4ρ2

j,k ≤ θ2
j,k ≤ C2−j (1+2β1), if k ∈ Aj .

This means∑
j,k

θ2
j,k ∧ 4ρ2

j,k ≤ ∑
j≤(J−log2 J )/(2β+1)

C2j

(
logn

n

)
+ ∑

j>(J−log2 J )/(2β+1)

C2−j2β

+ ∑
j

∑
k∈Aj

C2−j (1+2β1)

≤ C

(
logn

n

)
2(J−log2 J )/(2β+1)

+ C2−2β(J−log2 J )/(2β+1) + C2γV −1−2β1

≤ C

(
logn

n

)2β/(1+2β)

.

Putting the above bounds together, one can easily see that

∑
(j,k)

E
(
(τj,k)

2 ∧ 4λ2
j,k

) ≤ M4
f n−4α + 4M2

V (n−2 ∧ n−2β) + C

(
n

logn

)−2β/(1+2β)

≤ C max
(
n−4α,

(
n

logn

)−2β/(1+2β))
.

This proves the global upper bound (25).

6.3. Upper bound: Proof of Theorem 2. We now consider the bound given
in (26) under pointwise MSE. Without loss of generality, we shall assume that f
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and V are in the Lipschitz classes instead of the local Lipschitz classes, that is, we
assume f ∈ �α(Mf ) and V ∈ �β(MV ). Note that

E
(
V̂ (x∗) − V (x∗)

)2

= E

( 2j0∑
i=1

(ξ̂j0,i − ξj0,i)
2φj0,k(x∗)

+
J1∑

j=j0

∑
k

(θ̂j,k − θj,k)ψj,k(x∗) + ∑
j>J1,k

θj,kψj,k(x∗)
)2

≤ 3

( 2j0∑
i=1

(ξ̂j0,i − ξj0,i)
2φj0,k(x∗)

)2

+ 3

(
J1∑

j=j0

∑
k

(θ̂j,k − θj,k)ψj,k(x∗)
)2

+ 3

( ∑
j>J1

∑
k

θj,kψj,k(x∗)
)2

� I1 + I2 + I3.

I1 is bounded in the same way as in the global case. Since we are using wavelets of
compact support, there are at most L basis functions ψj,k at each resolution level j

that are nonvanishing at x∗ where L is the length of the support of the wavelet ψ .
Denote K(j, x∗) = {k :ψj,k(x∗) �= 0}. Then |K(j, x∗)| ≤ L. Hence

I3 = 3

( ∑
j>J1

∑
k∈K(j,x∗)

θj,kψj,k(x∗)
)2

≤ 3

( ∑
j>J1

CL2−j (β+1/2)2j/2

)2

= O(2−J1β) = o
(
n−2β/(1+2β)).

We now turn to I2. First,

I2 ≤ 3

(∑
j,k

(
E(θ̂j,k − θj,k)

2)1/2|ψj,k(x∗)|
)2

.

Note that

E(θ̂j,k − θj,k)
2 ≤ 2E(θ̂j,k − τj,k)

2 + 2(τj,k − θj,k)
2

≤ 4(τj,k − θj,k)
2 + 2E(θ2

j,k ∧ 4λ2
j,k) + 2E

(
z2
j,kI (|zj,k| > λj,k)

)
≤ 4(τj,k − θj,k)

2 + 8(θ2
j,k ∧ 4ρ2

j,k) + 2θ2
j,kP (σ̂ 2

j,k > 4σ 2
j,k)

+ 2E
(
z2
j,kI (|zj,k| > λj,k)

)
.
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This means

I2 ≤ 96

(∑
j,k

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)

)2

+ 48

(∑
j,k

(τj,k − θj,k)ψj,k(x∗)
)2

+ 24
((

θ2
j,kP (σ̂ 2

j,k > 4σ 2
j,k)

)1/2
ψj,k(x∗)

)2

+ 24
((

E(z2
j,kI (|zj,k| > λj,k)

)
ψj,k(x∗)

)1/2)2
.

The last two terms follow from the proof of the global upper bound and the second
term is controlled by Lemma 5. For the first term, from the discussion in the proof
of global upper bound, we have∑

j,k

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)

= ∑
j0≤j≤(J−log2 J )/(2β+1)

∑
k∈K(j,x∗)

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)

+ ∑
j>(J−log2 J )/(2β+1)

∑
k∈K(j,x∗)

(θ2
j,k ∧ 4ρ2

j,k)
1/2ψj,k(x∗)

≤ ∑
j0≤j≤(J−log2 J )/(2β+1)

CL2j/2
(

logn

n

)1/2

+ ∑
j>(J−log2 J )/(2β+1)

CL2j/22−j (β+1/2)

= O

((
logn

n

)β/(1+2β))
.

Putting these together, one can see that I2 ≤ C max(n−4α, ( n
logn

)2β/(1+2β)). This
proves the local upper bound (26).

6.4. Lower bound: Proof of Theorem 3. We first outline the main ideas. The
constrained risk inequality of Brown and Low (1996) implies that if an estimator
has a small risk ε2 at one parameter value θ0 and (θ1 − θ0)

2 � ερ where ρ is the
chi-square affinity between the distributions of the data under θ0 and θ1, then its
risk at θ1 must be “large.” Now the assumption (27) means that the estimator V̂ (x∗)
has a small risk at θ0 = V0(x∗). If we can construct a sequence of functions Vn

such that Vn is “close” to V0 in the sense that ρ is small and at the same time � =
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|Vn(x∗) − V0(x∗)| is “large,” then it follows from the constrained risk inequality
that V̂ (x∗) must have a “large” risk at θ1 = Vn(x∗). So the first step of the proof is
a construction for such a sequence of functions Vn.

Set V0 ≡ 1 and let g be a compactly supported, infinitely differentiable function
such that g(0) > 0,

∫
g = 0 and

∫
g2 = 1. Set

Vn(x) = V0(x) + τβ
n g

(
τ−1
n (x − x∗)

)
,

where τn = (
c logn

n
)1/(1+2β) and 0 < c ≤ 1 is a constant. It is easy to check that fn

are in �β(M) if the constant c is chosen sufficiently small.
The chi-square affinity can be bounded same as before. Note that the chi-square

affinity between � = N(0,1) and � = N(0,1 + γn) is

ρ(�,�) = (1 − γ 2
n )−1/2.(36)

Let yi = V (xi)zi , i = 1, . . . , n, where zi are i.i.d. N(0,1) variables. Denote by P0

and Pn the joint distributions of y1, . . . , yn under V = V0 and V = Vn, respectively.
Then it follows from (36) that

ρn ≡ ρ(P0,Pn)

=
n∏

i=1

[
1 − τ 2β

n g2(
τ−1
n (xi − x∗)

)]−1/2

= exp

{
−1

2

n∑
i=1

log
(
1 − τ 2β

n g2(
τ−1
n (xi − x∗)

))}

≤ exp

{
τ 2β
n

n∑
i=1

g2(
τ−1
n (xi − x∗)

)}

where the last step follows from the fact −1
2 log(1−z) ≤ z for 0 < z < 1

2 . Note that
(nτn)

−1 ∑n
i=1 g2(τ−1

n (xi −x∗)) → ∫
g2 = 1, so

∑n
i=1 g2(τ−1

n (xi −x∗)) ≤ 2nτn for

sufficiently large n, and hence ρn ≤ exp(2nτ
1+2β
n ) ≤ n2c. Since the zero function

is in �α0(Mf ) and V0 ∈ �β0(MV ), equation (27) implies that for some constant
C > 0,

E
(
V̂ (x∗) − V0(x∗)

)2 ≤ Cn−2β1/(1+2β1)n−r

for r = min{4α0,
2β0

1+2β0
} − 2β1

1+2β1
> 0. Hence, for sufficiently large n, it follows
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from the constrained risk inequality of Brown and Low (1996) that

E
(
V̂ (x∗) − Vn(x∗)

)2 ≥ τ 2β
n g2(0)

(
1 − 2C1/2n−β1/(1+2β1)n−r/2nc

τ
β
n g(0)

)

=
(

c logn

n

)2β/(1+2β)

× g2(0)

(
1 − 2C1/2n−β1/(1+2β1)n−r/2nc

(c logn/n)β1/(1+2β1)g(0)

)

≥ 1

2
c2β1/(1+2β1)g2(0) ·

(
logn

n

)2β1/(1+2β1)

by choosing the constant c ≤ r/2.

Acknowledgments. We wish to thank the Associate Editor and two referees
for their constructive comments which led to an improvement in some of our ear-
lier results and also helped with the presentation of the paper.

REFERENCES

BERGER, J. (1976). Minimax estimation of a multivariate normal mean under arbitrary quadratic
loss. J. Multivariate Anal. 4 642–648. MR0408057

BROWN, L. D. and LEVINE, M. (2007). Variance estimation in nonparametric regression via the
difference sequence method. Ann. Statist. 35 2219–2232. MR2363969

BROWN, L. D. and LOW, M. G. (1996). A constrained risk inequality with applications to nonpara-
metric functional estimations. Ann. Statist. 24 2524–2535. MR1425965

CAI, T. (1999). Adaptive wavelet estimation: A block thresholding and oracle inequality approach.
Ann. Statist. 27 898–924. MR1724035

CAI, T. (2002). On block thresholding in wavelet regression: Adaptivity, block size, and threshold
level. Statist. Sinica 12 1241–1273. MR1947074

CAI, T. and SILVERMAN, B. W. (2001). Incorporating information on neighboring coefficients into
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