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1. Introduction
We consider the multivariate nonparametric regression problem

Vi =g(x) + VI %)z (1)

where y; € R, x; € S = [0, 1]¢ ¢ R? while z are iid random variables with zero mean and unit variance and have bounded
absolute fourth moments: E|z;| < u4 < oo. We use the bold font to denote any d-dimensional vectors with d > 1 (except
d-dimensional indices) and regular font for scalars. The design is assumed to be a fixed equispaced d-dimensional grid; in

other words, we consider 8 = {x;,, ..., x;,} € R® wherei, =0, 1,...,mfork =1, ..., d. Each coordinate is defined as
3
Xik = _ (2)
m
fork =1,..., d. The overall sample size is n = m“. The index i used in the model (1) is a d-dimensional index i = (i, .. ., ig).

Both g(x) and V(x) are unknown functions supported on S = [0, 1]%; we also assume that V(x) > 0. The minimax rate of
convergence for the estimator V under different smoothness assumptions on g is the main subject of interest. The estimation
accuracy for V is measured both globally by the mean integrated squared error (MISE)

ROV.V) = E /R (V@) —v()dx 3)
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and locally by the mean squared error at a point (pointwise risk)
R(\A/(X*), V(X*)) = E(‘A/(x*) - V(x*))z- (4)

We are particularly interested in finding how the difficulty of estimating V depends on the smoothness of the mean function
g as well as the smoothness of the variance function V itself.

Variance function estimation in heteroskedastic nonparametric regression is important in many contexts. Previous work
has mainly focused on the univariate regression model. See, for example, [12,13,6,17,4]. More recent work includes [1,21].
In the multidimensional setup of (1), the problem has been considered in [18,15] in the special case of a constant variance
function V(x) = o2. Spokoiny [18] investigated the effect of the dimensionality d on the estimation accuracy of o2 while
assuming that the regression function g is twice continuously differentiable. A rate optimal procedure is constructed using
residuals of a local linear fit. Munk et al. [ 15] used a difference based approach to variance estimation and studied the effects
of both the smoothness of g and dimensionality d on the optimal rate of convergence for estimating o?.

Munk et al. [15] noted that “. .. Difference estimators are only applicable when homogeneous noise is present, i.e. the
error variance does not depend on the regressor” ([15], p. 20). In the present paper we extend the difference based approach
of Munk et al. [15] to the case of the non-homogeneous (heteroskedastic) situation where the variance V is a function of
the regressor X. This paper is also closely connected to Wang et al. [21] where a first order difference based procedure
for variance function estimation was studied in the one-dimensional case. The present paper considers variance function
estimation in the multidimensional case which has some different characteristics from those in the one-dimensional case.
In particular, first order differences are inadequate in the high dimensional case. In fact, as in the constant variance case, it
is no longer possible to use any fixed order differences and achieve asymptotically a minimax rate of convergence for an
arbitrary number of dimensions d > 1. The order of differences needs to grow with the number of dimensions d.

We show that the minimax rate of convergence for estimating the variance function V under both the pointwise squared
error and global integrated mean squared error is

max{n‘%,n_ﬂ%} (5)

if g has « derivatives, V has g derivatives and d is the number of dimensions; these results are obtained in the iid Gaussian
case. So the minimax rate depends on the smoothness of both V and g. The minimax upper bound is obtained by using kernel
smoothing of the squared differences of observations. The order of the difference scheme used depends on the number of
dimensions d. The minimum order needs to be y = [d/4], the smallest integer larger than or equal to d/4. With such a
choice of the difference sequence our estimator is adaptive with respect to the smoothness of the mean function g. The
derivation of the minimax lower bound is based on a moment matching technique and a two-point testing argument. A key
step is studying a hypothesis testing problem where the alternative hypothesis is a Gaussian location mixture with a special
moment matching property.

It is also interesting to note that, if V is known to belong to a regular parametric model, such as the set of positive
polynomials of a given order, the cutoff for the smoothness of g on the estimation of V is d/4. That is, if g has at least d/4
derivatives then the minimax rate of convergence for estimating V is solely determined by the smoothness of V as if g were
known. On the other hand, if g has less than d/4 derivatives then the minimax rate depends on the relative smoothness
of both g and Vv and, for sufficiently small «, will be completely determined by it. The larger d is, the smoother the mean
function g has to be in order not to influence the minimax rate of convergence for estimating the variance function V.

The paper is organized as follows. Section 2 presents an upper bound for the minimax risk while Section 3 derives a rate-
sharp lower bound for the minimax risk under both global and local losses. The lower and upper bounds together yield the
minimax rate of convergence. Section 4 contains a detailed discussion of results obtained and their implications for practical
variance estimation in the nonparametric regression. The proofs are given in Section 5.

2. Upper bound

In this section we shall construct a kernel variance estimator based on squared differences of observations given in (1).

Note that it is possible to consider a more general design where notallm, = m,k =1, ..., dand x;_is defined as a solution of
the equation ,’n—kk =, f’l‘,c fi(s)ds for a set of strictly positive densities f.(s). We will adhere to a simpler design (2) throughout
this paper.

Difference based estimators have a long history for estimating a constant variance in univariate nonparametric
regression. See, for example, [19,20,16,7,9,2]. The multidimensional case was first considered when the dimensionality d = 2
in [8]. The general case of estimating a constant variance in arbitrary dimension has only recently been investigated in [15].
The estimation of the variance function V(x) that depends on the covariate is a more recent topic. For the one-dimensional
case, we can mention [12,13,1]. The multidimensional case, to the best of our knowledge, has not been considered before.

The following notation will be used throughout the paper. Define a multi-index J = {ji,...,js} as a sequence of
nonnegative integers ji, ..., jg. For a fixed positive integer [, let J() = {J = (1,42, +--5Ja : Ul = Jj1 +j2 + -+ +js = D}

Note that |J| stands for the sum of all elements of vector J. For an arbitrary function f, we define D?f = ﬁ for all J such
0 1 .0 d
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that |J| = I For an arbitrary ¥ € R? we define ¥ = ¥/ .. x’; Also, for any vector u and real number v, the set B = u + vA is
the set of all vectors {y € R? : y = u + va for some a € A C R%}. For any positive integer «, let |«] denote the largest integer
that is strictly less than ¢, [«] the smallest integer that is greater than «, and o' = o — |«]. Now we can state the functional
class definition that we need.

Definition 1. For any « > 0 and M > 0, we define the Lipschitz class A%(M) as the set of all functions f(x) : [0, 1] — R
such that |IDOf(x)| <Mfori=0,1,..., |«], and

ID“Df(x) — DDf(y) <M || x—y ||

We assume that g € 4%(M,) and V € A#(My). We will say for the sake of simplicity that “g has o continuous derivatives”
while “V has 8 continuous derivatives”. In this definition, | - | stands for the absolute value and || - || is the usual £, norm.

In this section we construct a kernel estimator based on differences of raw observations and derive the rate of
convergence for the estimator. Special care must be taken to define differences in the multivariate case. When d = 1
and there is a set of difference coefficients d;, j = 0, ..., r, such that Zf:o d =0, Z}:o d}.2 = 1 we define the difference
“anchored” around the point y; as Z}:o d;yi4+j- When d > 1, there are multiple ways to enumerate observations lying around
vi. An example that explains how to do it in the case d = 2 is given in [15]. For a general d > 1, we first select a d-dimensional
index set J € z9 that contains 0. Next, we define the set R consisting of all d-dimensional vectors i = (iy, ..., iz) such that

R+J={(i+jljeJ)ieRyC{1,...,m}" (6)

Again, a subset of R + J corresponding to a specific i* € R is denoted as i* + J. Then, the difference “anchored” around the
point y; is defined by

Di* = Zdjyl*‘H' (7)
jel
The cardinality of the set J is called the order of the difference. For a good example that illustrates this notation style when
d =2 see[15].
Now we can define the variance estimator (x). To do this, we use kernel-based weights K''(x) that are generated by
either the regular kernel function K(-) or the boundary kernel function K, (-), depending on the location of the point x in the
support set S. The kernel function K(-) : R? — R has to satisfy the following set of assumptions:

K(x) is supported on T = [—1, 1]¢, /K(x)dx =1 (8)
T
/K(x)x’dx: 0 for0 < |J] < |B] and
T
/Kz(x)dx — ki < oo.
T

Specially designed boundary kernels are needed to control the boundary effects in kernel regression. In the one-dimensional
case boundary kernels with special properties are relatively easy to describe. See, for example, [5]. It is, however, more
difficult to define boundary kernels in the multidimensional case because not only the distance from the boundary of S but
also the local shape of the boundary region plays a role in defining the boundary kernels when d > 1. In this paper we use
the d-dimensional boundary kernels given in [ 14]. We only briefly describe the basic idea here. Recall that we work with a
nonnegative kernel function K : T — R with support T = [—1, 1]¢ C R¢. For a given point ¥ € S consider a “moving” support
set S, (x) = x+ h(S—x) which changes with x and depends on n through the bandwidth h. For example, if d = 1, the set S,(x)
becomes an interval [x — hx, x + h(1 — x)] = [(1 — h)x, h + x(1 — h)]. Plugging in x = 0 as the left boundary and x = 1 as the
right boundary brings us back to the regular support S = [0, 1]. Using this varying support set S, (X), it is possible to define
the support T, of the boundary kernel that is independent of n. To do this, first define the set T,,(x) = X — hT; the subscript n
again stresses that this set depends on n through the bandwidth h. This is the set of all points that form an h-neighborhood
of x. Using T, (x) and the moving support S, (x), we have the transposed and rescaled support of the boundary kernel as

Ta=h'[x—{T,®) NS,X)N=h"'"xX—{x+h(S—X)}N(x—hT)) = (x-S NT. (9)

The subscript n has been omitted since Ty is, indeed, independent of n. Thus, the support of the boundary kernel has been
stabilized. The boundary kernel K, (-) with support on T, can then be defined as a solution of a certain variational problem
in much the same way as a regular kernel K(-). For more details, see [14].

Using this notation, we can define the general variance estimator as

2
V(x) =Y K'®D! = > K'(x) (Z djy,-H) . (10)

ieR ieR jeJ
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The kernel weights are defined as

X —X
n~'h~K <'T> whenx — hT C S,
K!'(%) =

Xi—X
n’lh’dK*( ‘h ) whenx — hT € S.

It can also be described by the following algorithm:

—

. Choose a d-dimensional index set J.
. Construct the set R.

2
3. Define the estimator Y, K'(x) (Zjej d,—y,-ﬂ-) as a local average using kernel-generated weights K (x).

N

In this paper we will use the index set J selected to be a sequence of y points on the straight line in the d-dimensional
space that includes the origin:

J={0,0,...,0),(1,1,....1),....,(», ¥, . ... W} (11)

In addition, we use normalized binomial coefficients as the difference coefficients. This is the so-called polynomial sequence
(see, e.g.,[15]) and is defined as

2 1/2
a=(7) (—1)"/( )
k Yy
wherek =0, 1,...,y.ltisclearthat ¥")_,d, =0,>} ,d? = 1,and 3°}_, k%, = Oforanyq=1,2,...,y.

Remark 1. It is also possible to use the local linear regression estimator instead of the kernel estimator. In this case, the
boundary kernel adjustment is not necessary as it is well known that the local linear regression adjusts automatically in
boundary regions, preserving the asymptotic order of the bias intact. However, the proof'is slightly more technically involved
when using the local linear regression estimator; in particular, the local linear regression estimator has to be represented
as the "kernel” estimator where the shape of the function K(-) used to define the local weights now depends on the location
of the design points, the number of observations n and the point of estimation x. For details, see, for example, [3].

Remark 2. It is possible to define a more general estimator by considering averaging over several possible d-dimensional
index sets J;, | = 1, ..., L, and defining a set R, for each one of them according to (6). In other words, we define

L L 2
T = Y 1 Y K@D = 3 1 YK ) (z djyf+j) (12)
=1 iR, I=1  ieR jel

where p, is a set of weights such that >, 4, = 1. The proof of the main result in the general case is completely analogous
to the case L = 1. If some information about the geometry of the surface of V(x) is known, we may be able to choose the
collection of index sets J, as described above in order to minimize the constant factor in the asymptotic variance of the
estimator of V(x). In this paper we limit ourselves to the discussion of the case L = 1 and the definition (10) will be used
with the set J selected asin (11).

Like in the mean function estimation problem, the optimal bandwidth h, can be easily found to be h, = 0(n~1/2A+9) for
V € AP(My). For this optimal choice of the bandwidth, we have the following theorem.

Theorem 1. Under the regression model (1) with z being independent random variables with zero mean, unit variance and
uniformly bounded fourth moments, we define the estimator V as in (10) with the bandwidth h = 0(n=1/@f+9) and the order of
the difference sequence y = [d/4). Then there exists some constant Co > 0 depending only on «, 8, My, My and d such that for
sufficiently large n,

—~ _28
sup supE(V(x,) — V(x,))? < G - max{n*%, n 2p+d} (13)
gAY (Mg),VeAP (My) ¥«x€S
and

~ o 28
sup E/ V() —v(x)?dx < ¢ - max{nJT, n 2P}, (14)
gen(Mg),VerB(my) VR

Remark 3. The uniform rate of convergence given in (13) yields immediately the pointwise rate of convergence for any
fixed point x, € S,

~ 40 28
sup E(V(x,) — V(X,))* < Co-max{n~ ¢, n 2},
geA%(Mg),VerP(My)
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3. Lower bound

Theorem 1 gives the upper bounds for the minimax risks of estimating the variance function V(x) under the multivariate
regression model (1). In this section we shall show that the upper bounds are in fact rate-optimal. We derive lower bounds
for the minimax risks which are of the same order as the corresponding upper bounds given in Theorem 1. In the lower
bound argument we shall assume that the errors are normally distributed, i.e., z; XN 0, 1).

Theorem 2. Under the regression model (1) with z; YN 0, 1),

. ~ _ 28
inf sup EIlV-V|2=( - max{nJTa, n- 28} (15)
V' gea®(My),veaB(My)

and for any fixed x, < [0, 1]¢

—~ o _ 28
inf  sup E(V(x,) — V(x,))? > C; - max{n~ ¢, n %) (16)
V' gend(Mg),verf(My)

where C; > 0is a constant.

Combining Theorems 1 and 2 yields immediately the minimax rate of convergence,
4a _ 28
max {n’T, n d+2f } s

for estimating V under both the global and pointwise losses.

Theorem 2 is proved in Section 5. The proof is based on a moment matching technique and a two-point testing argument.
One of the main steps is studying a hypothesis testing problem where the alternative hypothesis is a Gaussian location
mixture with a special moment matching property.

4. Discussion

The first important observation that we can make on the basis of reported results is that the unknown mean function
g does not have any first order effect on the minimax rate of convergence of the estimator ¥ as long as the function g
has at least d/4 derivatives. When this is true, the minimax rate of convergence for V is n=2#/2f+4_which is the same as
if the mean function g had been known. Therefore the variance estimator V is adaptive over the collection of the mean
functions g that belong to Lipschitz classes A%(M,) for all « > d/4. On the other hand, if the function g has less than
d/4 derivatives, the minimax rate of convergence for V is determined by the relative smoothness of both g and V. When
4a/d < 28/(2B + d), the roughness of g becomes the dominant factor in determining the convergence rate for V. In other
words, when « < dB/(2(28+ d)), the rate of convergence becomes n~4%/¢ and thus is completely determined by c.. To make
better sense of this statement, let us consider the situation when g increases and can become arbitrarily large. Clearly, in
this case the cutoff d8/(2(28+ d)) approaches d/4. Thus, when d = 2, any mean function g with less than half of a derivative
will completely determine the rate of convergence for V; when d = 4, any mean function with less than one derivative will
do and so on. As the number of dimensions d grows and the function vV becomes smoother, the rate of convergence of V
becomes more and more dependent on the mean function. In other words, an ever increasing set of possible mean functions
will completely “overwhelm” the influence of the variance function in determining the minimax convergence rate.

As opposed to many common variance estimation methods, our approach does not estimate the mean function first.
Instead, we estimate the variance as the local average of squared differences of observations. Taking a difference of a set of
observations is, in a sense, an attempt to “average out” the influence of the mean. It is possible to say then that we use an
implicit “estimator” of the mean function g that is effectively a linear combination of all y;, j € J, except yo. Such an estimator
is, of course, not optimal since its squared bias and variance are not balanced. The reason that it has to be used is because
the bias and variance of the mean estimator g have very different influences on V. As is the case when d = 1 (again, see [21]),
the influence of the bias of g is impossible to reduce at the second stage of variance estimation. Therefore, at the first stage
we use an "estimator” of g that provides for the maximal reduction in bias possible under the assumption of g € A*(M,),
down to the order n—2%/¢, In fact, the variance of the “estimator” g is high but this is of little concern; it is incorporated easily
into the variance estimation procedure. Thus, in practical terms, subtracting optimal estimators of the mean function g first
may not be the most desirable course of action.

Note also that it is not enough to use here a simple first order difference as has been done in the case of d = 1 by Wang
etal. [21]. The reason is that this does not allow us to reduce the mean-related bias of the variance estimator V to the fullest
extent possible. It is not enough to consider only « < 1/4 as is the case when d = 1. Instead, when proving the upper bound
result, we have to consider mean functions with o < d/4. Thus, higher order differences are needed in order to reduce the
mean-related bias to the order of n=2%/¢ and to ensure the minimax rate of convergence.
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5. Proofs
5.1. Upper bound: Proof of Theorem 1

We will use M to denote a generic positive constant throughout this section. We shall only prove (13). Inequality (14) is
a direct consequence of (13). Recall that T = [—1, 1]¢ is the support of the kernel K. The following notation will be useful:

for any two vectors X = (x1,...,x;) andy = (y1 ..., yq) we define the differential operator
d 0
Dx,y=Z(y1<_Xk)7 ={y—xV) (17)
k=1 sz

where z, is a generic kth argument of a d-dimensional function while V is a gradient operator in R¢.
Using the notation that we introduced earlier, we can write the difference D; as

1
Di=) digXu) + a4V (Xis)ziy = 8 + Vi€ (18)

je ]
1
where §; = 3, dig(Xiy), V? = /> d?V(;;) and
~1/2
1
€ = (Z d,»ZV(XiH)) (Z vz (Xf+j)2i+j>

i€l jel

has zero mean and unit variance. Thus,
2 2 2 3
Dj =& + Vi + Vi(ef — 1) + 26,V €.

Without loss of generality, suppose h = n~/@8+d Because the kernel K(-) has a bounded support T = [—1, 1]¢, we have

2
(Z |1<!7(x*)|) < 2'nh? ) (K (*,))* < 2° /
1,1

icR icR -1,

, K2, (u)du < 2% (19)
]

where k = max(kq, k,). The first step follows from the fact that the h-neighborhood of x, has 2¢|nh?] points while the second
step follows from approximating the Riemann sum by the appropriate integral. Also, K, (#) = K(u) whenu € T,(u) NS and
K..(u) = K, (u) when u Z T,(u) N S with constants k; and k; resulting from one of these two respective choices. Recall that
V(x) —V(x,) = ik K'(%,)D? — V(x,). For all g € A%(M,) and V € AP(My), the mean squared error of V7 at x, satisfies

2
E(V(x,) — V(x.))> = E (Z Ki(x,) (D,}2 - v(x*)) + o(n‘hd)>

ieR

E {Zkr(x*)a? + YK )V — V(X))

ieR ieR

2
1
+ D KMEIVi(el — 1) + 2D KMN®)S Ve + o(nlhd)]

ieR ieR

IA

2 2
5 (Z Kﬁ(x*)é,?) +5 (Z K (®.) (Vi — vm»)

ieR ieR
2 N
+5E (Z KM (2, ) Vi(e? — 1)) + 20E (Z KM (x,)8;v? e,—) +o(n2h™2),
ieR ieR
Recall that it is enough to consider only @ < d/4. Define y = [d/4]. Thus defined, y will be the same as the maximum

possible value of |«] for all @ < d/4. Defining 0 < u < 1 and using Taylor expansion of g(x;,;) around x;, we have for a
difference sequence of order y

L] DX'+1~ X Mo(X;
|8,| = Zdjg(x,-H-) = Zd] (g(xl) + Z w
iel e m=1 m:
(1 —y)led—1
/ m((Dxi+pxi)Mg(Xi +uXiy; — %)) — (DXerjv"i)Lan(xi)du))‘ .

The first two terms in the above expression are zero by definition of the difference sequence d; of order y. Using the notation
x¥ for the kth coordinate of x;, the explicit representation of the operator (D, +].,,‘,.)L‘)‘J gives
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|(DXi+j,Xi)LDdg(Xi + u(xH—j - Xl)) - (DX,urj.X,')Lan(xi)l

L]
> [(]_[(xlﬂ Xy )D“’”g(xi + u(Xiyj — xi))} > [(H(&H X/ )D“’Jg(xi)} ‘

1<sty<<tq)=d 1<ty<=tq)=d

Now we use the definition of Lipschitz space A*(M,), Jensen’s and Holder’s inequalities to find that

laf
> (mﬂ —x?>>

1<ty <-<t|g)=d \r=1

|(D'))g (i + u(@ij — %)) — (D) “g@)| < Mgllu(@iy; —x)[*

/ &[5y —
< Mgl —x© Y. Y
1§f1‘“§f\_aj§d r=1 LaJ

IA

MI|Xiy; — Xil|* 1 Xisg — %] = M|xiyj — x|
as a consequence, we have |8;| < Mn=%/¢. Thus,
2 2
4 (Z 1<{1(x*)3$> <4 (Z |Ki”(x*)|M2n2°‘/d> < 282pmAn4e/d = o(n~4/9),
ieR ieR

In exactly the same way as above, for any x, y € [0, 1]%, Taylor’s theorem yields

L8] —_ L

V@) - V() - 29%@9'fﬂii—@mwm+m.m—@wwmm
Jj=1

(1 —ulp-t
_y|IB ~ 7 _yIB
<l =yl [ du < M-y
So,
Vi—V(x) = ) diV(xig) = V(x) =) df [V(xiy) — V(x,)]

i€l i€l

_ ) BI—
_yay w xaf %((% ) PVL) — (D) V() du
: jel

j€J k=1
Therefore, we have

LB] k
SREIY - V) = YK Yy Den V)

|
ieR ieR jel k=1 k!

+ZKh(X*)Zd2/ a- ”)w_

ieR jel

—————((Dx;.x.) A V(Xi1) — (Dxy, )P V(x,))du.

It is fairly straightforward to find out that the first term is bounded by

LB ¢
P ACADINDS (D) V()

icR i k=1 k!

a1y Xi — X, N try ok
h™ ZK( )Zdj ry > l_[(x,ﬁ—xi)DV(x*)

ieR jel k=1 I<t;<--<ty<dr=1

LB)
< |Mn TR R K (uy)uf

k=1 ieR

= o(n‘lh_(d_l)).

(20)

To establish the last inequality it is important to remember the fact that V € A#(My) and therefore |D*V(x,)| < My. To handle

the product [T*_ (xlﬂ x) the inequality [T, x; < n~! 3", x7, that is true for any positive numbers xi, ...

, X,, Must be

used. The equallty that follows is based on the fact that kernel K has | 8] vanishing moments. After taking the square the
above will become o(n~2h~2-V); comparing to the optimal rate of n=2#/28+4 it is easy to check that this term is always of

smaller order, o(n~2f/G+d-(2F+2)/2B+d))
Using (20), we find that the absolute value of the second term gives us

K x) Y2 / u((nxw PV (i) — (D) PV (2,))du

ieR jel
<Mh Py K (%)Y d? = o(n PP,
ieR jel

From here it follows by taking squares that 5 (3" KI'(%,) (V; — V(x*)))2 is of the order 0(n=2A/2A+d)),
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On the other hand, since V < My, we have due to (19)

2
5E (Z K" (x*)&v,.% ei> — 5Var (Z I({‘(x*)(Si\/i% e,») =5)" (K,." (xﬁﬂ))2 82V,

ieR ieR ieR

5Myn-2/4-2B/ @B+ o

IA

and
2 2
20E (Z K (x,)Vi(e — 1)) = 20Var (Z K (%,)Vi(? — 1)) < 20M2ps Y. (K}’ (x*))
ieR ieR ieR

1
< 20M§M4Wk = 20M2 pugn 2P/ D 5 k.

Putting the four terms together we have, uniformly for all x, € [0, 11, g € A%(M,) and V € A#(My),
E(V(x,) — V(x,))* < Co - max{n /¢, n=2P/@PH0)

for some constant Cy > 0. This proves (13). ®

6. Proof of Theorem 2
The proof of this theorem can be naturally divided into two parts. The first step is to show
~ 28
inf  sup  E(V(x.) - V(x))* = Cin #25, 21
V' gen(My),veaB(My)
This part is standard and relatively easy. The proof of the second step,

inf sup E(V(x,) — V(x,))? = Cin~ ¢, (22)

V' genv(Mg),vea (My)

is based on a moment matching technique and a two-point testing argument. More specifically, let X1, ..., X, “p and
consider the following hypothesis testing problem, between

Ho:P=Py=N(0,1+6?)
and

Hy:P =P = /N(Gnv, 1)G(dv)

where 6, > 0 is a constant and G is a distribution of the mean v with compact support. The distribution G is chosen in
such a way that, for some positive integer g depending on «, the first ¢ moments of G match exactly with the corresponding
moments of the standard normal distribution. The existence of such a distribution is given in the following lemma from
Karlin and Studden [10].

Lemma 1. For any fixed positive integer q, there exist a B < oo and a symmetric distribution G on [—B, B] such that G and the
standard normal distribution have the same first ¢ moments, i.e.

B +oo |
/ HG(dx) = / Yodx, j=1,2,....q
—B —00
where ¢ denotes the density of the standard normal distribution.

We shall only prove the lower bound for the pointwise squared error loss. The same proof with minor modifications
immediately yields the lower bound under integrated squared error. Note that, to prove inequality (22), we only need to
focus on the case where o < d/4; otherwise n=2#/(¢+2P) js always greater than n=%*/¢ for sufficiently large n and then (22)
follows directly from (21).

Foragiven 0 < o < d/4, there exists an integer g such that (g+ 1)« > d. For convenience we take q to be an odd integer.
From Lemma 1, there is a positive constant B < oo and a symmetric distribution G on [—B, B] such that G and N(0O, 1) have
the same first ¢ moments. Let r;, i = 1, ..., n, be independent variables with the distribution G. Set 6, = %m*a, g =0,

Vo(x) = 1+ 62 and Vi(x) = 1. Let h(x) = 1 — 2m|x| for |x| € [-5-, 7] and O otherwise (here [x| £ ,/x3 + - - + x3). Define
the random function g; by

g1 = Xn:@mh(x —x)I (x€[0,1]9.
i=1
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Then it is easy to see that g; is in A%(M,) for all realizations of r;. Moreover, g1(x;) = 6,r; are independent and identically
distributed.
Now consider testing the following hypotheses:

1
HO5}’i:gO(Xi)+V02(Xi)€h i:15"~an’

1
yi=g1(x) +Vie, i=1,...,n,

where ¢; are independent N(0, 1) variables which are also independent of the r;’s. Denote by Py and P; the joint distributions
of y;'s under Hy and Hy, respectively. Note that for any estimator V of V,

maX{E(V(X*) — VO(X*))27 E(V(X*) - Vl (X*))Z}

v

1
T6P4(P0, P1)(Vo(x,) — Vi(x,))?

= Ly, py M (23)
= 167 P P qgga™
where p(Py, Py) is the Hellinger affinity between Py and P;. See, for example, [11]. Let po and p; be the probability density
functions of Py and P; with respect to the Lebesgue measure p; then p(Po, P1) = [ ./pop1du. The minimax lower bound (22)
follows immediately from the two-point bound (23) if we show that for any n, the Hellinger affinity p(Po, P;) > C for some
constant C > 0. (Note that m—%* = n—4/d)
Note that under Ho, y; ~ N(O, 1+ 6?) and its density dy can be written as

1
%
J1+62 (‘/1 +02)
Under Hy, the density of y; is d1(t) £ [ ¢(t — v6,)G(dv).

It is easy to see that p(Po, P1) = (J +/dod;du)", since the y;'s are independent variables. Note that the Hellinger affinity is
bounded below by the total variation affinity,

[Vasarode = 1 : [ 160 ~ aro1de.

Taylor expansion yields ¢(t — v6,) = ¢(t) (Z;jio vk ”k(')) where H,(t) is the corresponding Hermite polynomial. And from

n k!

the construction of distribution G, [ viG(dv) = [ vig(v)dvfori=0,1,...,q. So,

do(t) £

[ ote=vogma.

ldo(t) — dy (6)] = / @(t — v0,)G(dv) — f ot — v0,)p(v)dv
= / (t)Z l(.)VG’G(dv) / <p(t)Z . v9'g0(v)dv
— / '9’G(dv) ‘9’<p(v)dv
i=q+1 ! i=q+1
=|[o0) 3 O gy ctam)| + ‘ [or > " © oo (24)
i=q+1 ! i=q+1

Suppose q + 1 = 2p for some integer p; it can be seen that

f () Z Ha® i 2ic )

l [o0 3 " Dvgcan)| =

i=q+1 (2)’
H; 1() i i H l(t) ig2i
2i 92 /VZG(dv) _(p(t)Z (22)' 02p2
and
i) i 2
191 d t 2 921 2i d
' b L p(v)dv| = |[¢(>Z(2), 2iv21(v)dv
H. z(t) i i i | H i(t) i
(r)Z (;),eﬁ Vigp(v)dv =¢<r)§Hz,<r)eﬁ 2,.1, fw(t)g |
where 2i — D' £ (2i — 1) x (2i — 3) x ---3 x 1. So from (24),

HZz(t)
(20!

HZl(t)

Tl

1do(6) — d1 (O] < (0) Z

9%1321_'_ (t)z
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and then
/,/do(l’)fh(f)dt > 1— — ( ()Z 1-2221(;) 91211 21+ (t)z HZI.([') 921) de
_ 1_ 1 (t)Z 722'()‘) 2B de — - / (t)Z HZ’(t, fdt. (25)

For the Hermite polynomial Hy;, we have

L (=2 =1 (i—k+1
/so(t) |Hai (D) dt = fso(t) (2i — 1t x {H;( i (;k)!( + )tzﬂ dt
; 20— (= k4 1)

< /go(t) [(21— DIt x (1 +k; o tZk)]dt
Qi D x (1 +Z 2%i(i — 1)(2k)(!i—k+ 1) /tZkgo(t)dt)
Qi D x (1 N Z 2ki(i — 1)(2k)(!i— KD 1)!!)

=(Zi—l)!!x(1—1—;1(1'_1)"}(!(1'_’("'1))

=2 x 2i— DL

For sufficiently large n, 8, < 1/2 and it then follows from the above inequality that

H. 1() i > 0 Zz .
/ (t)z B0 e <Z o /‘/’(t)lex(t)ldt Z e
2i 02i—2p
=¥ Z b 9 <6 xe”
and
Ho; ;
[o0> |20 grae < ZZ, = [o0 la
i=p ) .
00 021 ) 2
< 22,.—",'2’><(2i—1)!!:9§”27( ' , ) g2
i—p L i=p 1!
ZDO‘ i 2 200' 12i—2p
<OP) 2x0"F<6P ) 2'x <7)
% 52
= gﬁp % 22+1
Then from (25)

1 1
/,/do(t)ch(t)dt 2 1- 567 e — SO <2 =1 <2e8 +22p> 21— gt

where c is a constant that only depends on q. So

a(g+1)

Since “4D > 1, limy, oo (1 — cn~ ) > e~¢ > 0 and the theorem then follows. ®
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