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Variance function estimation in nonparametric regression is considered
and the minimax rate of convergence is derived. We are particularly interested
in the effect of the unknown mean on the estimation of the variance function.
Our results indicate that, contrary to the common practice, it is not desirable
to base the estimator of the variance function on the residuals from an optimal
estimator of the mean when the mean function is not smooth. Instead it is
more desirable to use estimators of the mean with minimal bias. On the other
hand, when the mean function is very smooth, our numerical results show
that the residual-based method performs better, but not substantial better than
the first-order-difference-based estimator. In addition our asymptotic results
also correct the optimal rate claimed in Hall and Carroll [J. Roy. Statist. Soc.
Ser. B 51 (1989) 3–14].

1. Introduction. Consider the heteroscedastic nonparametric regression
model

yi = f (xi) + V 1/2(xi)zi, i = 1, . . . , n,(1)

where xi = i/n and zi are independent with zero mean, unit variance and uni-
formly bounded fourth moments. Both the mean function f and variance function
V are defined on [0,1] and are unknown. The main object of interest is the vari-
ance function V . The estimation accuracy is measured both globally by the mean
integrated squared error

R(V̂ ,V ) = E

∫ 1

0

(
V̂ (x) − V (x)

)2
dx(2)

and locally by the mean squared error at a point

R(V̂ (x∗),V (x∗)) = E
(
V̂ (x∗) − V (x∗)

)2
.(3)

We wish to study the effect of the unknown mean f on the estimation of the vari-
ance function V . In particular, we are interested in the case where the difficulty in
estimation of V is driven by the degree of smoothness of the mean f .
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The effect of not knowing the mean f on the estimation of V has been studied
before in Hall and Carroll (1989). The main conclusion of their paper is that it
is possible to characterize explicitly how the smoothness of the unknown mean
function influences the rate of convergence of the variance estimator. In associa-
tion with this they claim an explicit minimax rate of convergence for the variance
estimator under pointwise risk. For example, they state that the “classical” rates
of convergence (n−4/5) for the twice differentiable variance function estimator is
achievable if and only if f is in the Lipschitz class of order at least 1/3. More
precisely, Hall and Carroll (1989) stated that, under the pointwise mean squared
error loss, the minimax rate of convergence for estimating V is

max
{
n−4α/(2α+1), n−2β/(2β+1)}(4)

if f has α derivatives and V has β derivatives. We shall show here that this result
is in fact incorrect.

In the present paper we revisit the problem in the same setting as in Hall and
Carroll (1989). We show that the minimax rate of convergence under both the
pointwise squared error and global integrated mean squared error is

max
{
n−4α, n−2β/(2β+1)}(5)

if f has α derivatives and V has β derivatives. The derivation of the minimax
lower bound is involved and is based on a moment matching technique and a two-
point testing argument. A key step is to study a hypothesis testing problem where
the alternative hypothesis is a Gaussian location mixture with a special moment
matching property. The minimax upper bound is obtained using kernel smoothing
of the squared first order differences.

Our results have two interesting implications. First, if V is known to belong
to a regular parametric model, such as the set of positive polynomials of a given
order, the cutoff for the smoothness of f on the estimation of V is 1/4, not 1/2
as stated in Hall and Carroll (1989). That is, if f has at least 1/4 derivative then
the minimax rate of convergence for estimating V is solely determined by the
smoothness of V as if f were known. On the other hand, if f has less than 1/4
derivative then the minimax rate depends on the relative smoothness of both f and
V and will be completely driven by the roughness of f .

Second, contrary to the common practice, our results indicate that it is often not
desirable to base the estimator V̂ of the variance function V on the residuals from
an optimal estimator f̂ of the mean function f when f is not smooth. Instead it is
more desirable to use estimators of the mean f with minimal bias. The main reason
is that the bias and variance of f̂ have quite different effects on the estimation of V .
The bias of f̂ cannot be removed or even reduced in the second stage smoothing of
the squared residuals, while the variance of f̂ can be incorporated easily. On the
other hand, when the mean function is very smooth, our numerical results show
that the residual-based method performs better, but not substantial better than the
first-order-difference-based estimator.
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The paper is organized as follows. Section 2 presents an upper bound for the
minimax risk while Section 3 derives a rate-sharp lower bound for the minimax
risk under both the global and local losses. The lower and upper bounds together
yield the minimax rate of convergence. Section 4 discusses the obtained results
and their implications for practical variance estimation in the nonparametric re-
gression. Section 5 considers finite sample performance of the difference-based
method for estimating the variance function. The proofs are given in Section 6.

2. Upper bound. In this section we shall construct a kernel estimator based
on the square of the first order differences. Such and more general difference
based kernel estimators of the variance function have been considered, for exam-
ple, in Müller and Stadtmüller (1987, 1993). For estimating a constant variance,
difference based estimators have a long history. See von Neumann (1941, 1942),
Rice (1984), Hall, Kay and Titterington (1990) and Munk, Bissantz, Wagner and
Freitag (2005).

Define the Lipschitz class �α(M) in the usual way,

�α(M) = {
g : for all 0 ≤ x, y ≤ 1, k = 0, . . . , �α� − 1,∣∣g(k)(x)

∣∣ ≤ M and
∣∣g(�α�)(x) − g(�α�)(y)

∣∣ ≤ M|x − y|α′}
,

where �α� is the largest integer less than α and α′ = α −�α�. We shall assume that
f ∈ �α(Mf ) and V ∈ �β(MV ). We say that the function f “has α derivative” if
f ∈ �α(Mf ) and V “has β derivatives” if V ∈ �β(MV ).

For i = 1,2, . . . , n − 1, set Di = yi − yi+1. Then one can write

Di = f (xi) − f (xi+1) + V 1/2(xi)zi − V 1/2(xi+1)zi+1 = δi + √
2V

1/2
i εi,(6)

where δi = f (xi) − f (xi+1), V
1/2
i =

√
1
2(V (xi) + V (xi+1)) and

εi = (
V (xi) + V (xi+1)

)−1/2(
V 1/2(xi)zi − V 1/2(xi+1)zi+1

)
has zero mean and unit variance.

We construct an estimator V̂ by applying kernel smoothing to the squared dif-
ferences D2

i which have means δ2
i + 2Vi . Let K(x) be a kernel function satisfying

K(x) is supported on [−1,1],
∫ 1

−1
K(x)dx = 1,

∫ 1

−1
K(x)xi dx = 0 for i = 1,2, . . . , �β� and

∫ 1

−1
K2(x) dx = k < ∞.

It is well known in kernel regression that special care is needed in order to avoid
significant, sometimes dominant, boundary effects. We shall use the boundary ker-
nels with asymmetric support, given in Gasser and Müller (1979, 1984), to control
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the boundary effects. For any t ∈ [0,1], there exists a boundary kernel function
Kt(x) with support [−1, t] satisfying the same conditions as K(x), that is,∫ t

−1
Kt(x) dx = 1,∫ t

−1
Kt(x)xi dx = 0 for i = 1,2, . . . , �β�,∫ t

−1
K2

t (x) dx ≤ k̂ < ∞ for all t ∈ [0,1].

We can also make Kt(x) → K(x) as t → 1 (but this is not necessary here).
See Gasser, Müller and Mammitzsch (1985). For any 0 < h < 1/2, x ∈ [0,1], and
i = 2, . . . , n − 2, let

Kh
i (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ (xi+xi+1)/2

(xi+xi−1)/2

1

h
K

(
x − u

h

)
du, when x ∈ (h,1 − h),∫ (xi+xi+1)/2

(xi+xi−1)/2

1

h
Kt

(
x − u

h

)
du, when x = th for some t ∈ [0,1],∫ (xi+xi+1)/2

(xi+xi−1)/2

1

h
Kt

(
−x − u

h

)
du,

when x = 1 − th for some t ∈ [0,1],
and we take the integral from 0 to (x1 +x2)/2 for i = 1, and from (xn−1 +xn−2)/2
to 1 fori = n−1. Then we can see that for any 0 ≤ x ≤ 1,

∑n−1
i=1 Kh

i (x) = 1. Define
the estimator V̂ as

V̂ (x) = 1
2

n−1∑
i=1

Kh
i (x)D2

i .(7)

Same as in the mean function estimation problem, the optimal bandwidth hn

can be easily seen to be hn = O(n−1/(1+2β)) for V ∈ �β(MV ). For this optimal
choice of the bandwidth, we have the following theorem.

THEOREM 1. Under the regression model (1) where xi = i/n and zi are in-
dependent with zero mean, unit variance and uniformly bounded fourth moments,
let the estimator V̂ be given as in (7) with the bandwidth h = O(n−1/(1+2β)). Then
there exists some constant C0 > 0 depending only on α, β , Mf and MV such that
for sufficiently large n,

sup
f ∈�α(Mf ),V ∈�β(MV )

sup
0≤x∗≤1

E
(
V̂ (x∗) − V (x∗)

)2

(8)
≤ C0 · max

{
n−4α, n−2β/(1+2β)}
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and

sup
f ∈�α(Mf ),V ∈�β(MV )

E

∫ 1

0

(
V̂ (x) − V (x)

)2
dx

(9)
≤ C0 · max

{
n−4α, n−2β/(1+2β)}.

REMARK 1. The uniform rate of convergence given in (8) yields immediately
the pointwise rate of convergence that for any fixed point x∗ ∈ [0,1]

sup
f ∈�α(Mf ),V ∈�β(MV )

E
(
V̂ (x∗) − V (x∗)

)2 ≤ C0 · max
{
n−4α, n−2β/(1+2β)}.

REMARK 2. It is also possible to use the local linear regression estimator in-
stead of the Priestley–Chao kernel estimator. In this case, the boundary adjustment
is not necessary as it is well known that the local linear regression adjusts auto-
matically in boundary regions, preserving the asymptotic order of the bias intact.
However, the proof is slightly more technically involved when using the local lin-
ear regression estimator. For details see, for example, Fan and Gijbels (1996).

REMARK 3. It is important to note here that the results given in Theorem 1 can
be easily generalized to the case of random design. In particular, if the observations
X1, . . . ,Xn are i.i.d. with the design density f (x) that is bounded away from zero
(i.e., f (x) ≥ δ > 0 for all x ∈ [0,1]), then the results of Theorem 1 are still valid
conditionally. In other words,

sup
f ∈�α(Mf ),V ∈�β(MV )

sup
0≤x∗≤1

E
(
V̂ (x∗) − V (x∗)2|X1, . . . ,Xn

)
≤ C0 · max

{
n−4α, n−2β/(1+2β)} + op

(
max

{
n−4α, n−2β/(1+2β)})

and

sup
f ∈�α(Mf ),V ∈�β(MV )

E

(∫ 1

0

(
V̂ (x) − V (x)

)2
dx|X1, . . . ,Xn

)

≤ C0 · max
{
n−4α, n−2β/(1+2β)} + op

(
max

{
n−4α, n−2β/(1+2β)})

where the constant C0 > 0 now also depends on δ.

3. Lower bound. In this section we derive a lower bound for the minimax risk
of estimating the variance function V under the regression model (1). The lower
bound shows that the upper bound given in the previous section is rate-sharp. As
in Hall and Carroll (1989) we shall assume in the lower bound argument that the

errors are normally distributed, that is, zi
i.i.d.∼ N(0,1).
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THEOREM 2. Under the regression model (1) with zi
i.i.d.∼ N(0,1),

inf
V̂

sup
f ∈�α(Mf ),V ∈�β(MV )

E‖V̂ − V ‖2
2 ≥ C1 · max

{
n−4α, n−2β/(1+2β)}(10)

and for any fixed x∗ ∈ (0,1)

inf
V̂

sup
f ∈�α(Mf ),V ∈�β(MV )

E
(
V̂ (x∗) − V (x∗)

)2

(11)
≥ C1 · max

{
n−4α, n−2β/(1+2β)},

where C1 > 0 is a constant depending only on α, β , Mf and MV .

It follows immediately from Theorems 1 and 2 that the minimax rate of conver-
gence for estimating V under both the global and local losses is

max
{
n−4α, n−2β/(1+2β)}.

The proof of this theorem can be naturally divided into two parts. The first step
is to show

inf
V̂

sup
f ∈�α(Mf ),V ∈�β(MV )

E
(
V̂ (x∗) − V (x∗)

)2 ≥ C1n
−2β/(1+2β).(12)

This part is standard and relatively easy. Brown and Levine (2006) contains a de-
tailed proof of this assertion for the case β = 2. Their argument can be easily
generalized to other values of β . We omit the details.

The proof of the second step,

inf
V̂

sup
f ∈�α(Mf ),V ∈�β(MV )

E
(
V̂ (x∗) − V (x∗)

)2 ≥ C1n
−4α,(13)

is much more involved. The derivation of the lower bound (13) is based on a mo-
ment matching technique and a two-point testing argument. One of the main steps
is to study a complicated hypothesis testing problem where the alternative hypoth-
esis is a Gaussian location mixture with a special moment matching property.

More specifically, let X1, . . . ,Xn
i.i.d.∼ P and consider the following hypothesis

testing problem between

H0 :P = P0 = N(0,1 + θ2
n)

and

H1 :P = P1 =
∫

N(θnν,1)G(dν),

where θn > 0 is a constant and G is a distribution of the mean ν with compact
support. The distribution G is chosen in such a way that, for some positive integer
q depending on α, the first q moments of G match exactly with the corresponding
moments of the standard normal distribution. The existence of such a distribution
is given in the following lemma from Karlin and Studden (1966).
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LEMMA 1. For any fixed positive integer q , there exist a B < ∞ and a sym-
metric distribution G on [−B,B] such that G and the standard normal distribution
have the same first q moments, that is,∫ B

−B
xjG(dx) =

∫ +∞
−∞

xjϕ(x) dx, j = 1,2, . . . , q,

where ϕ denotes the density of the standard normal distribution.

The moment matching property makes the testing between the two hypotheses
“difficult.” The lower bound (13) then follows from a two-point argument with an
appropriately chosen θn. Technical details of the proof are given in Section 6.

REMARK 4. For α between 1/4 and 1/8, a much simpler proof can be given
with a two-point mixture for P1 which matches the mean and variance, but not the
higher moments, of P0 and P1. However, this simpler proof fails for smaller α. It
appears to be necessary in general to match higher moments of P0 and P1.

REMARK 5. Hall and Carroll (1989) gave the lower bound
C max{n−4α/(1+2α), n−2β/(1+2β)} for the minimax risk. This bound is larger than
the lower bound given in our Theorem 2 and is incorrect. This is due to a mis-
calculation on appendix C of their paper. A key step in that proof is to find some
d ≥ 0 such that

D = E
{[

1 + exp
(1

2d + d1/2N1
)]−1(1

2d + d1/2N1
)} �= 0.

In the above expression, N1 denotes a standard normal random variable. But in
fact

D =
∫ ∞
−∞

(1/2)d + d1/2x

1 + exp((1/2)d + d1/2x)

1√
2π

exp
(
−x2

2

)
dx

=
∫ ∞
−∞

x

1 + exp(x)

1√
2πd

exp
(
−(x − (1/2)d)2

2d

)
dx

=
∫ ∞
−∞

x

exp(x/2) + exp(−x/2)

1√
2πd

exp
(
− x2

2d
− d

8

)
dx.

This is an integral of an odd function which is identically 0 for all d .

4. Discussion. Variance function estimation in regression is more typically
based on the residuals from a preliminary estimator f̂ of the mean function. Such
estimators have the form

V̂ (x) = ∑
i

wi(x)
(
yi − f̂ (xi)

)2(14)
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where wi(x) are weight functions. A natural and common approach is to subtract in
(14) an optimal estimator f̂ of the mean function f (x). See, for example, Hall and
Carroll (1989), Neumann (1994), Ruppert, Wand, Holst and Hössjer (1997), and
Fan and Yao (1998). When the unknown mean function is smooth, this approach
often works well since the bias in f̂ is negligible and V can be estimated as well as
when f is identically zero. However, when the mean function is not smooth, using
the residuals from an optimally smoothed f̂ will lead to a sub-optimal estimator
of V . For example, Hall and Carroll (1989) used a kernel estimator with optimal
bandwidthfor f̂ and showed that the resulting variance estimator attains the rate of

max
{
n−4α/(2α+1), n−2β/(2β+1)}(15)

over f ∈ �α(Mf ) and V ∈ �β(MV ). This rate is strictly slower than the minimax
rate when 4α

2α+1 <
2β

2β+1 or equivalently, α <
β

2β+2 .
Consider the example where V belongs to a regular parametric family, such

as {V (x) = exp(ax + b) :a, b ∈ R}. As Hall and Carroll have noted, this case is
equivalent to the case of β = ∞ in results like Theorems 1 and 2. Then the rate of
convergence for this estimator becomes nonparametric at n−4α/(2α+1) for α < 1/2,
while the optimal rate is the usual parametric rate n−1/2 for all α ≥ 1

4 and is n−4α

for 0 < α < 1
4 .

The main reason for the poor performance of such an estimator in the non-
smooth setting is the “large” bias in f̂ . An optimal estimator f̂ of f balances the
squared bias and variance. However, the bias and variance of f̂ have significantly
different effects on the estimation of V . The bias of f̂ cannot be further reduced
in the second stage smoothing of the squared residuals, while the variance of f̂

can be incorporated easily. For f ∈ �α(Mf ), the maximum bias of an optimal
estimator f̂ is of order n−α/(2α+1) which becomes the dominant factor in the risk
of V̂ when α <

β
2β+2 .

To minimize the effect of the mean function in such a setting one needs to use an
estimator f̂ (xi) with minimal bias. Note that our approach is, in effect, using a very
crude estimator f̂ of f with f̂ (xi) = yi+1. Such an estimator has high variance and
low bias. As we have seen in Section 2, the large variance of f̂ does not pose a
problem (in terms of rates) for estimating V . Hence for estimating the variance
function V an optimal f̂ is the one with minimum possible bias, not the one with
minimum mean squared error. [Here we should of course exclude the obvious, and
not useful, unbiased estimator f̂ (xi) = yi .]

Another implication of our results is that the unknown mean function does
not have any first-order effect for estimating V as long as f has more than 1/4
derivatives. When α > 1/4, the variance estimator V̂ is essentially adaptive over
f ∈ �α(Mf ) for all α > 1/4. In other words, if f is known to have more than 1/4
derivatives, the variance function V can be estimated with the same degree of first-
order precision as if f is completely known. However, when α < 1/4, the rate of
convergence for estimating V is entirely determined by the degree of smoothness
of the mean function f .
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5. Numerical results. We now consider in this section the finite sample
performance of our difference-based method for estimating the variance func-
tion. In particular we are interested in comparing the numerical performance of
the difference-based estimator with the residual-based estimator of Fan and Yao
(1998). The numerical results show that the performance of the difference-based
estimator is somewhat inferior when the unknown mean function is very smooth.
On the other hand, the difference-based estimator performs significantly better
than the residual-based estimator when the mean function is not smooth.

Consider the model 1 where the variance function is V (x) = (x − 1
2)2 + 1

2 while
there are four possible mean functions:

(i) f1(x) = 0,
(ii) f2(x) = 3

4 ∗ sin(10πx),
(iii) f3(x) = 3

4 ∗ sin(20πx),
(iv) f4(x) = 3

4 ∗ sin(40πx).

The mean functions are arranged from a constant to much rougher sinusoid func-
tion; the “roughness” (the difficulty a particular mean function creates in es-
timation of the variance function V ) is measured by the functional R(f

′
) =∫ [f ′

(x)]2 dx since the mean-related term in the asymptotic bias of the variance
estimator V̂ (x) is directly proportional to it. The numerical performance of the
difference-based method had been investigated earlier in Levine (2006) for a
slightly different set of mean functions.

For comparison purposes, the same four combinations of the mean and variance
functions are investigated using the two-step method described in Fan and Yao
(1998). We expect this method to perform better than the difference-based method
in the case of a constant mean function, but to get progressively worse as the rough-
ness of the mean function considered increases. The following table summarizes
results of simulations using both methods. In this case, the bandwidths for estimat-
ing the mean and variance functions were selected using a K-fold cross-validation
with K = 10. We consider the fixed equidistant design xi = i

n
on [0,1] where

the sample size is n = 1000; 100 simulations are performed and the bandwidth
h is selected using a K-fold cross-validation with K = 10. The performance of
both methods is measured using the cross-validation discrete mean squared error
(CDMSE) that is defined as

CDMSE = n−1
n∑

i=1

[V̂hCV(xi) − V (xi)]2(16)

with hCV being the K-fold cross-validation bandwidth. We report the median
CDMSE for variance function estimators based on 100 simulations. Table 1 pro-
vides the summary of the performance.

It is easily seen from the table that the two-step method of Fan and Yao, based
on estimating the variance using squared residuals from the mean function esti-
mation, tends to perform slightly better when the mean function is very smooth
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TABLE 1
Performance under the changing curvature of the mean function

Median CDMSE

Mean function R(f ′) Fan–Yao method Our method

f = 0 0 0.00299 0.00376
f = 3

4 sin(10πx) 278.15 0.07161 0.00344
f = 3

4 sin(20πx) 1110.89 0.08435 0.00384
f = 3

4 sin(40πx) 4441.88 0.08363 0.00348

but noticeably worse when it is rougher. Note that here we only use the first-order
differences. The performance of the difference based estimator can be improved in
the case of smooth mean function by using higher order differences. The Fan–Yao
method performs about 26% better in the first case of the constant mean function.
However, the risk (CDMSE) of the difference based method is over 95% smaller
than the risk of the Fan–Yao method for the second mean function. In the rougher
cases, the difference is approximately the same. The CDMSE of the difference
based method is over 95% and 96% less than the corresponding risk of the resid-
ual based method for the third and fourth mean functions, respectively.

6. Proofs.

6.1. Upper bound: Proof of Theorem 1. We shall only prove (8). Inequality
(9) is a direct consequence of (8). Recall that

D2
i = δ2

i + 2Vi + 2Vi(ε
2
i − 1) + 2

√
2δiV

1/2
i εi,

where δi = f (xi) − f (xi+1), V
1/2
i = √

1/2(V (xi) + V (xi+1)) and

εi = (
V (xi) + V (xi+1)

)−1/2(
V 1/2(xi)zi − V 1/2(xi+1)zi+1

)
.

Without loss of generality, suppose h = n−1/(1+2β). It is easy to see that for
any x∗ ∈ [0,1], ∑

i K
h
i (x∗) = 1, and when x∗ ≥ (xi + xi+1)/2 + h or x∗ ≤

(xi + xi−1)/2 − h, Kh
i (x∗) equals 0. Suppose k < k̂, we also have(∑

i

|Kh
i (x∗)|

)2

≤ 2nh
∑
i

(Kh
i (x∗))2

≤ 2
∫ 1

−1
K2∗(u) du

≤ 2k̂,
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where K∗(u) = K(u) when x∗ ∈ (h,1 − h); K∗(u) = Kt(u) when x∗ = th for
some t ∈ [0,1]; and K∗(u) = Kt(−u) when x∗ = 1 − th for some t ∈ [0,1].

The second inequality above is obtained as follows. For the sake of simplic-
ity, assume that K∗ = K ; the same argument can be repeated for boundary ker-
nels as well. Using the definition of Kh

i (x∗), we note that it can be rewritten as∫ (xi+xi+1)/2
(xi+xi−1)/2

1
nh

K(x−u
h

) d(nu). Since the last integral is taken with respect to the

probability measure on the interval [xi+xi−1
2 ,

xi+xi+1
2 ], we can apply Jensen’s in-

equality to obtain

(Kh
i (x∗))2 ≤ 1

nh

∫ (xi+xi+1)/2

(xi+xi−1)/2
K2

(
x − u

h

)
d(nu)

= 1

(nh)2

∫ (xi+xi+1)/2

(xi+xi−1)/2
K2

(
x − u

h

)
du.

Thus,

(∑
i

|Kh
i (x∗)|

)2

≤ 2

h

∑
i

∫ (xi+xi+1)/2

(xi+xi−1)/2
K2

(
x − u

h

)
du

= 2
∫ 1

−1
K2(u) du.

For all f ∈ �α(Mf ) and V ∈ �β(MV ), the mean squared error of V̂ at x∗ satisfies

E
(
V̂ (x∗) − V (x∗)

)2

= E

(
n−1∑
i=1

Kh
i (x∗)

(1
2D2

i − V (x∗)
))2

= E

{
n−1∑
i=1

Kh
i (x∗)1

2δ2
i +

n−1∑
i=1

Kh
i (x∗)

(
Vi − V (x∗)

)

+
n−1∑
i=1

Kh
i (x∗)Vi(ε

2
i − 1) +

n−1∑
i=1

Kh
i (x∗)

√
2δiV

1/2
i εi

}2

≤ 4

(
n−1∑
i=1

Kh
i (x∗)1

2δ2
i

)2

+ 4

(
n−1∑
i=1

Kh
i (x∗)

(
Vi − V (x∗)

))2

+ 4E

(
n−1∑
i=1

Kh
i (x∗)Vi(ε

2
i − 1)

)2

+ 4E

(
n−1∑
i=1

Kh
i (x∗)

√
2δiV

1/2
i εi

)2

.
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Suppose α ≤ 1/4, otherwise n−4α < n−2β/(1+2β) for any β . Since for any i, |δi | =
|f (xi) − f (xi+1)| ≤ Mf |xi − xi+1|α = Mf n−α , we have

4

(
n−1∑
i=1

Kh
i (x∗)1

2δ2
i

)2

≤ 4

(
n−1∑
i=1

|Kh
i (x∗)|1

2M2
f n−2α

)2

≤ 2k̂M4
f n−4α.

Note that for any x, y ∈ [0,1], Taylor’s theorem yields∣∣∣∣∣V (x) − V (y) −
�β�∑
j=1

V (j)(y)

j ! (x − y)j

∣∣∣∣∣
=

∣∣∣∣ ∫ x

y

(x − u)�β�−1

(�β� − 1)!
(
V (�β�)(u) − V (�β�)(y)

)
du

∣∣∣∣
≤

∣∣∣∣ ∫ x

y

(x − u)�β�−1

(�β� − 1)! MV |x − y|β−�β� du

∣∣∣∣
≤ MV

�β�! |x − y|β.

So,

Vi − V (x∗) = 1

2

(
V

(
i

n

)
+ V

(
i + 1

n

))
− V (x∗)

≤ 1

2

�β�∑
j=1

V (j)(x∗)
j

((
i

n
− x∗

)j

+
(

i + 1

n
− x∗

)j)

+ 1

2
MV

∣∣∣∣ in − x∗
∣∣∣∣β + 1

2
MV

∣∣∣∣ i + 1

n
− x∗

∣∣∣∣β
and

Vi − V (x∗) ≥ 1

2

�β�∑
j=1

V (j)(x∗)
j

((
i

n
− x∗

)j

+
(

i + 1

n
− x∗

)j)

− 1

2
MV

∣∣∣∣ in − x∗
∣∣∣∣β − 1

2
MV

∣∣∣∣ i + 1

n
− x∗

∣∣∣∣β.

Since the kernel functions have vanishing moments, for j = 1,2, . . . , �β�,
when n large enough∣∣∣∣∣

n−1∑
i=1

Kh
i (x∗)

(
i

n
− x∗

)j
∣∣∣∣∣

=
∣∣∣∣∣
n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

1

h
K

(
x∗ − u

h

)(
i

n
− x∗

)j

du

∣∣∣∣∣
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=
∣∣∣∣∣
∫ 1

0

1

h
K

(
x∗ − u

h

)
(u − x∗)j du

+
n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

1

h
K

(
x∗ − u

h

)[(
i

n
− x∗

)j

− (u − x∗)j
]
du

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

1

h
K

(
x∗ − u

h

)[(
i

n
− x∗

)j

− (u − x∗)j
]
du

∣∣∣∣∣
≤ c′

n−1∑
i=1

∫ (xi+xi+1)/2

(xi+xi−1)/2

∣∣∣∣ 1

h

(
x∗ − u

h

)∣∣∣∣ × j

n
du = c′n−1

for some generic constant c′ > 0. Similarly,
∑n−1

i=1 Kh
i (x∗)( i+1

n
− x∗)j ≤ c′n−1.

So, ∣∣∣∣∣
n−1∑
i=1

Kh
i (x∗)

( �β�∑
j=1

V (j)(x∗)
j

((
i

n
− x∗

)j

+
(

i + 1

n
− x∗

)j))∣∣∣∣∣ ≤ Ĉn−1

for some constant Ĉ > 0 which does not depend on x∗. Note that V �β� satisfies
Hölder condition with exponent 0 < α′ = α−�α� < 1 and is, therefore, continuous
on [0,1] and bounded. Then we have

4

(
n−1∑
i=1

Kh
i (x∗)

(
Vi − V (x∗)

))2

≤ 2Ĉ2n−2 + 2M2
V

(�n(x∗+h)�+1∑
i=�n(x∗−h)�

|Kh
i (x∗)|

(∣∣∣∣ in − x∗
∣∣∣∣β +

∣∣∣∣ i + 1

n
− x∗

∣∣∣∣β))2

≤ 2Ĉ2n−2 + 2M2
V

(�n(x∗+h)�+1∑
i=�n(x∗−h)�

|Kh
i (x∗)|

(∣∣∣∣h + 1

n

∣∣∣∣β +
∣∣∣∣h + 2

n

∣∣∣∣β))2

≤ 2Ĉ2n−2 + 8 × 32βM2
V n−2β/(1+2β) × (2k̂).

The last inequality is due to the fact 0 < h + 1
n

< h + 2
n

< 3h. On the other hand,
notice that ε1, ε3, ε5, . . . are independent and ε2, ε4, ε6, . . . are independent, we
have

4E

(
n−1∑
i=1

Kh
i (x∗)

√
2δiV

1/2
i εi

)2

= 4 Var

(
n−1∑
i=1

Kh
i (x∗)

√
2δiV

1/2
i εi

)

≤ 16
�n(x∗+h)�+1∑
i=�n(x∗−h)�

(Kh
i (x∗))2δ2

i Vi

≤ 16M2
f MV n−2α−2β/(1+2β) × k̂
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and

4E

(
n−1∑
i=1

Kh
i (x∗)Vi(ε

2
i − 1)

)2

= 4 Var

(
n−1∑
i=1

Kh
i (x∗)Vi(ε

2
i − 1)

)

≤ 8M2
V μ4

n−1∑
i=1

(Kh
i (x∗))2

≤ 8M2
V μ4

1

nh
k̂

= 8M2
V μ4n

−2β/(1+2β) × k̂

where μ4 denotes the uniform bound for the fourth moments of the εi .
Putting the four terms together we have, uniformly for all x∗ ∈ [0,1], f ∈

�α(Mf ) and V ∈ �β(MV ),

E
(
V̂ (x∗) − V (x∗)

)2

≤ 2k̂M4
f n−4α + 2Ĉ2n−2 + 8 × 32βM2

V n−2β/(1+2β) × (2k̂)

+ 8M2
V μ4n

−2β/(1+2β)k̂ + 16M2
f MV n−2α−2β/(1+2β)k̂

= C0 · max
{
n−4α, n−2β/(1+2β)}

for some constant C0 > 0. This proves (8).

6.2. Lower bound: Proof of Theorem 2. We shall only prove the lower bound
for the pointwise squared error loss. The same proof with minor modifications im-
mediately yields the lower bound under the integrated squared error. Note that, to
prove inequality (13), we only need to focus on the case where α < 1/4, other-
wise n−2β/(1+2β) is always greater than n−4α for sufficiently large n and then (13)
follows directly from (12).

For a given 0 < α < 1/4, there exists an integer q such that (q + 1)α > 1. For
convenience we take q to be an odd integer. From Lemma 1, there is a positive con-
stant B < ∞ and a symmetric distribution G on [−B,B] such that G and N(0,1)

have the same first q moments. Let ri , i = 1, . . . , n, be independent variables with
the distribution G. Set θn = Mf

2B
n−α , f0 ≡ 0, V0(x) ≡ 1 + θ2

n and V1(x) ≡ 1. Let
g(x) = 1 − 2n|x| for x ∈ [− 1

2n
, 1

2n
] and 0 otherwise. Define the random function

f1 by

f1(x) =
n∑

i=1

θnrig(x − xi)I (0 ≤ x ≤ 1).

Then it is easy to see that f1 is in �α(Mf ) for all realizations of ri . Moreover,
f1(xi) = θnri are independent and identically distributed.
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Now consider testing the following hypotheses:

H0 : yi = f0(xi) + V
1/2
0 (xi)νi, i = 1, . . . , n,

H1 : yi = f1(xi) + V
1/2
1 (xi)νi, i = 1, . . . , n,

where νi are independent N(0,1) variables which are also independent of the ri ’s.
Denote by P0 and P1 the joint distributions of yi ’s under H0 and H1, respectively.
Note that for any estimator V̂ of V ,

max
{
E

(
V̂ (x∗) − V0(x∗)

)2
,E

(
V̂ (x∗) − V1(x∗)

)2}
≥ 1

16
ρ4(P0,P1)

(
V0(x∗) − V1(x∗)

)2(17)

= 1

16
ρ4(P0,P1)

M4
f

16B4 n−4α

where ρ(P0,P1) is the Hellinger affinity between P0 and P1. See, for example, Le
Cam (1986). Let p0 and p1 be the probability density function of P0 and P1 with
respect to the Lebesgue measure μ, then ρ(P0,P1) = ∫ √

p0p1 dμ. The minimax
lower bound (13) follows immediately from the two-point bound (17) if we show
that for any n, the Hellinger affinity ρ(P0,P1) ≥ C for some constant C > 0.
(C may depend on q , but does not depend on n.)

Note that under H0, yi ∼ N(0,1 + θ2
n) and its density d0 can be written as

d0(t) � 1√
1 + θ2

n

ϕ

(
t√

1 + θ2
n

)
=

∫
ϕ(t − vθn)ϕ(v) dv.

Under H1, the density of yi is d1(t) �
∫

ϕ(t − vθn)G(dv).
It is easy to see that ρ(P0,P1) = (

∫ √
d0d1 dμ)n, since the yi ’s are independent

variables. Note that the Hellinger affinity is bounded below by the total variation
affinity ∫ √

d0(t)d1(t) dt ≥ 1 − 1
2

∫
|d0(t) − d1(t)|dt.

Taylor’s expansion yields

ϕ(t − vθn) = ϕ(t)

( ∞∑
k=0

vkθk
n

Hk(t)

k!
)
,

where Hk(t) is the corresponding Hermite polynomial. And from the construction
of the distribution G,∫

viG(dv) =
∫

viϕ(v) dv for i = 0,1, . . . , q.
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So,

|d0(t) − d1(t)|
=

∣∣∣∣ ∫ ϕ(t − vθn)G(dv) −
∫

ϕ(t − vθn)ϕ(v) dv

∣∣∣∣
=

∣∣∣∣∣
∫

ϕ(t)

∞∑
i=0

Hi(t)

i! viθ i
nG(dv) −

∫
ϕ(t)

∞∑
i=0

Hi(t)

i! viθ i
nϕ(v) dv

∣∣∣∣∣(18)

=
∣∣∣∣∣
∫

ϕ(t)

∞∑
i=q+1

Hi(t)

i! viθ i
nG(dv) −

∫
ϕ(t)

∞∑
i=q+1

Hi(t)

i! viθ i
nϕ(v) dv

∣∣∣∣∣
≤

∣∣∣∣∣
∫

ϕ(t)

∞∑
i=q+1

Hi(t)

i! viθ i
nG(dv)

∣∣∣∣∣ +
∣∣∣∣∣
∫

ϕ(t)

∞∑
i=q+1

Hi(t)

i! viθ i
nϕ(v) dv

∣∣∣∣∣.
Suppose q + 1 = 2p for some integer p, it can be seen that∣∣∣∣∣

∫
ϕ(t)

∞∑
i=q+1

Hi(t)

i! viθ i
nG(dv)

∣∣∣∣∣ =
∣∣∣∣∣
∫

ϕ(t)

∞∑
i=p

H2i (t)

(2i)! θ2i
n v2iG(dv)

∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)! θ2i
n

∣∣∣∣∣∣∣∣ ∫ v2iG(dv)

∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)!
∣∣∣∣θ2i

n B2i

and ∣∣∣∣∣
∫

ϕ(t)

∞∑
i=q+1

Hi(t)

i! viθ i
nϕ(v) dv

∣∣∣∣∣ =
∣∣∣∣∣
∫

ϕ(t)

∞∑
i=p

H2i (t)

(2i)! θ2i
n v2iϕ(v) dv

∣∣∣∣∣
≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)! θ2i
n

∣∣∣∣∣∣∣∣ ∫ v2iϕ(v) dv

∣∣∣∣
=

∣∣∣∣∣ϕ(t)

∞∑
i=p

H2i (t)θ
2i
n

1

2i · i!
∣∣∣∣∣

≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

2i · i!
∣∣∣∣θ2i

n .

So from (18),

|d0(t) − d1(t)| ≤ ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)!
∣∣∣∣θ2i

n B2i + ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

2i · i!
∣∣∣∣θ2i

n
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and then∫ √
d0(t)d1(t) dt

≥ 1 − 1

2

∫ (
ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)!
∣∣∣∣θ2i

n B2i + ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

2i · i!
∣∣∣∣θ2i

n

)
dt(19)

= 1 − 1

2

∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)!
∣∣∣∣θ2i

n B2i dt − 1

2

∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

2i · i!
∣∣∣∣θ2i

n dt.

Since
∫

t2iφ(t) dt = (2i −1)!! where (2i −1)!! � (2i −1)× (2i −3)×· · ·×3×1,
for the Hermite polynomial H2i we have∫

ϕ(t)|H2i (t)|dt

=
∫

ϕ(t)

∣∣∣∣∣(2i − 1)!! ×
[

1 +
i∑

k=1

(−2)ki(i − 1) · · · (i − k + 1)

(2k)! t2k

]∣∣∣∣∣dt

≤
∫

ϕ(t)

[
(2i − 1)!! ×

(
1 +

i∑
k=1

2ki(i − 1) · · · (i − k + 1)

(2k)! t2k

)]
dt

= (2i − 1)!! ×
(

1 +
i∑

k=1

2ki(i − 1) · · · (i − k + 1)

(2k)!
∫

t2kϕ(t) dt

)

= (2i − 1)!! ×
(

1 +
i∑

k=1

2ki(i − 1) · · · (i − k + 1)

(2k)! (2k − 1)!!
)

= (2i − 1)!! ×
(

1 +
i∑

k=1

i(i − 1) · · · (i − k + 1)

k!
)

= 2i × (2i − 1)!!.
For sufficiently large n, θn < 1/2 and it then follows from the above inequality that∫

ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

(2i)!
∣∣∣∣θ2i

n B2i dt ≤
∞∑

i=p

θ2i
n B2i

(2i)!
∫

ϕ(t)|H2i (t)|dt

≤
∞∑

i=p

θ2i
n B2i

(2i)! 2i × (2i − 1)!!

= θ2p
n

∞∑
i=p

B2iθ
2i−2p
n

i! ≤ θ2p
n × eB2
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and ∫
ϕ(t)

∞∑
i=p

∣∣∣∣H2i (t)

2i · i!
∣∣∣∣θ2i

n dt ≤
∞∑

i=p

θ2i
n

2i · i!
∫

ϕ(t)|H2i (t)|dt

≤
∞∑

i=p

θ2i
n

2i · i!2
i × (2i − 1)!!

= θ2p
n

∞∑
i=p

(2i − 1)!!
i! θ2i−2p

n

≤ θ2p
n

∞∑
i=p

2i × θ2i−2p
n ≤ θ2p

n

∞∑
i=p

2i ×
(

1

2

)2i−2p

= θ2p
n × 22p+1.

Then from (19)∫ √
d0(t)d1(t) dt ≥ 1 − θ2p

n

(1
2eB2 + 22p)

� 1 − cθq+1
n ,

where c is a constant that only depends on q . So

ρ(P0,P1) =
(∫ √

d0(t)d1(t) dt

)n

≥ (1 − cθq+1
n )n = (

1 − cn−α(q+1))n.
Since α(q + 1) ≥ 1, lim→∞(1 − cn−α(q+1))n ≥ e−c > 0 and the theorem then
follows from (17).
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