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Professors Antoniadis and Fan are to be congratulated for their valuable work on the

penalized least-squares method for wavelet regression. In this very interesting article the

authors present a general characterization of the penalized least-squares estimators for a

class of additive smooth penalty functions. A main contribution of this paper is the unified

and systematic derivation of the oracle inequalities and minimax properties for a whole

class of wavelet estimators. An important advantage of the approach taken by the authors

is its generality. As demonstrated nicely by the authors, the penalized least-squares method

can be used successfully to treat both equispaced and non-equispaced samples. It can also

be readily applied to other nonparametric function estimation problems using wavelets.

My remarks will primarily be confined to the discussion of extensions of the penalized

least squares method presented in this paper.

As in the paper, I will use in the following discussion both a single index i and the more

conventional double indices (j, k) for wavelet coefficients.

∗Supported in part by NSF Grant DMS-0072578.
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1 Penalized least-squares

The general penalized least-squares can be written as

`(θ) = ‖Yn −Aθ‖2 + λp(θ). (1)

Assuming for the moment that the sample is equispaced and the sample size is a power

of 2, then the matrix A is the inverse discrete wavelet transform W−1 and (1) can be

equivalently written as

`(θ) = ‖Zn − θ‖2 + λp(θ), (2)

where Zn = WYn is the empirical wavelet coefficients. The estimator θ̂ of θ minimizes `(θ)

in (2). The performance of the penalized least-squares estimator depends on the penalty

p(θ) and the regularization parameter λ. Let us first consider the effect of the penalty

function p(θ).

Among possible choices of p(θ), the additive penalty p(θ) =
∑

i p(|θi|) is the most

intuitive choice. When an additive penalty is used, the minimization problem becomes

separable. Minimizing (2) is equivalent to minimizing

`(θi) = ‖zi − θi‖2 + λp(|θi|)

for each coordinate i. The resulting penalized least-squares estimator in this case is sepa-

rable. That is, the estimate of any coordinate θi depends solely on the empirical wavelet

coefficient zi, not on any other coefficients zj. This is intuitively appealing. However, sep-

arable estimators have their drawbacks. The difficulty arises through the need to guard

against “false positive” about the presence of true significant coordinates (corresponding

to irregularities of the regression function f), and introduced a logarithmic factor into both

the thresholding constant λ and the convergence rate. As a result, the estimator is often

oversmoothed. The problem is unavoidable for separable estimators, since decisions about

individual terms are based on a relatively low level of information. See Cai (1999a, 2000b)

and Hall et al. (1999).

Therefore there are true benefits to consider more general penalty function p(θ) in (2).

One possibility is to use a blockwise additive penalty. First we divide the coefficients into
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non-overlapping blocks and then define a blockwise additive penalty

p(θ) =
∑

b

p(θ(b)) (3)

where θ(b) denotes the coefficient vector in the b-th block. For example, one can divide the

coefficients into equal-length blocks of size L. Denote the indices in the b-th block by (b) =

{(b−1)L+1, . . . , bL} and denote by θ(b) = (θ(b−1)L+1, . . . , θbL) and z(b) = (z(b−1)L+1, . . . , zbL)

the true and empirical wavelet coefficient vectors in the b-th block, respectively. Let the

penalty be

p(θ(b)) = λI{θ(b) 6= 0}. (4)

Then the solution to the penalized least-squares problem (2) is a block thresholding

estimator:

θ̂i = ziI{‖z(b)‖2
`2 > λ}, for i ∈ (b).

Block thresholding estimators increase the estimation accuracy by pooling information

about neighboring coefficients together to make a simultaneous thresholding decision. The

estimators have been shown to enjoy some desirable properties for appropriately chosen

block size L and thresholding constant λ. For example the estimators can attain the

exact minimax convergence rate without a logarithmic penalty and enjoy good numerical

performance (Hall et al. (1999) and Cai (1999b)).

The penalty in (4) is only a particular choice and can be replaced by other penalty

functions. The block size can be allowed to vary from level to level. It will be interesting

to study the properties of estimators derived from this class of blockwise additive penalty

functions using the same unified approach as in this paper.

1.1 From Equispaced to non-equispaced

Wavelet methods for non-equispaced data in the literature are mostly based on interpola-

tion/approximation either in the original function domain or in the wavelet domain. The

regularized Sobolev interpolators used in this paper can be regarded as approximation in

the wavelet coefficient space. As indicated by Figure 1 in the paper, the regularization pa-

rameter s appears to be an important parameter. It will be interesting to find an empirical

rule for choosing the value of s.
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The approach of the regularized Sobolev interpolators has the advantage of naturally

extending the results for equispaced data to non-equispaced data. For example, one can

easily extend the penalized least-squares equation (4.3) in the paper to other penalty func-

tions such as a blockwise additive penalty. It will result in a block thresholding estimator

based on the synthetic data.

1.2 The choice of the regularization parameter λ

Besides the penalty function p(θ), the regularization parameter λ plays a crucial role in the

performance of the resulting estimators. In fact, some of the results in this paper appear

to indicate that the performance of the penalized least-squares estimators do not differ

significantly for all the smooth penalty functions under consideration. This means that it

might be even more important to choose λ in an optimal way than to choose the penalty

function. Penalized least-squares has also been considered by Chambolle et al. (1998) in

the context of image processing. The regularization parameter λ in Chambolle et al. (1998)

is chosen empirically by minimizing an upper bound of the risk. Similar approach can be

used here for the general class of smooth penalty functions. The advantage of this approach

is that it is computationally simple and fast. Another possibility is to use cross-validation

which is computationally more intense.

2 Other function estimation problems

The penalized least-squares approach can be applied to other statistical contexts. In par-

ticular it can be used in statistical inverse problems where one observes a function of

the interest indirectly. For example, let us consider the estimation of the derivative of a

regression function. Suppose we observe

yi = f(i/n) + εi, i = 1, . . . , n(= 2J), εi
iid∼ N(0, σ2),

and wish to estimate the derivative f ′ under the mean squared error E‖f̂ ′−f ′‖2
2. Using the

Vaguelet-Wavelet Decomposition approach (Abramovich, et al. (1998) and Cai (2000a)),

one can first construct an appropriate estimator f̂ of f and then use its derivative f̂ ′ as an
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estimator of f ′. Suppose f has the standard orthonormal wavelet expansion:

f(x) =
2j0∑
k=1

ξj,kφj0,k(x) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(x),

where φ and ψ are the father and mother wavelets respectively. Let

f̂(x) =
2j0∑
k=1

ξ̂j0,kφj0,k(x) +
J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(x).

Then, under regularity conditions, the risk E‖f̂ ′ − f ′‖2
2 of f̂ ′ as an estimator of f ′ equals

E

 2j0∑
k=1

2j0(ξ̂j0,k − ξj0,k)φ
′
j0,k(x) +

J−1∑
j=j0

2j∑
k=1

2j(θ̂j,k − θj,k)ψ
′
j,k(x) +

∞∑
j=J

2j∑
k=1

2jθj,kψ
′
j,k(x)

2

� 22j0E‖ξ̂j0,· − ξj0,·‖2
`2 +

J−1∑
j=j0

22jE‖θ̂j,· − θj,·‖2
`2 +

∞∑
j=J

22j‖θj,·‖2
`2 ,

where ψ′
j,k(x) = 2j/2ψ′(2jx − k), θj,· = (θj,1, . . . , θj,2j), and φ′j0,k, ξj0,· and θ̂j,· are defined

analogously.

Ignoring higher order approximation errors, this problem is in principle equivalent to

the following normal mean problem. Given

zj,k = θj,k + εj,k, εj,k
iid∼ N(0, n−1σ2),

with k = 1, ..., 2j, j = j0, . . . , J − 1, and 2J = n, we wish to estimate θ under the risk

R(θ̂, θ) =
J−1∑
j=j0

2j∑
k=1

22jE(θ̂j,k − θj,k)
2.

The minimax convergence rate over a Besov ball Br
p,q(C) in this case is n2(r−1)/(1+2r). The

penalized least squares approach can be used to construct near-optimal estimators of θ.

For example, using an additive penalty pλ(θ) with p0 = (6 log n)1/2 as defined in Theorem

1 (instead of the standard choice p0 = (2 log n)1/2), the resulting estimator is adaptively

within a logarithmic factor of the minimax risk over a wide range of Besov balls Br
p,q(C),

assuming that the additive penalty p in (2) satisfies the conditions of Lemma 1. The

blockwise additive penalty (4) can also be used here to obtain an exact rate-optimal block

thresholding estimator of θ.

5



This problem can also be reformulated as a more general penalized weighted-least-

squares problem. By renormalizing zj,k, θj,k and εj,k, one can equivalently consider the

following heteroscedastic normal mean problem. Given

z∗j,k = θ∗j,k + ε∗j,k, ε∗j,k
iid∼ N(0, 22jn−1σ2),

with k = 1, ..., 2j, j = j0, . . . , J − 1, and 2J = n, we wish to estimate θ∗ under the conven-

tional mean squared error E‖θ̂∗ − θ∗‖2
`2 . In this case, estimators of θ∗ can be constructed

by solving a penalized weighted-least-squares problem. The estimator θ̂
∗

minimizes

`(θ∗) =
J−1∑
j=j0

∑
k

2−2j(z∗j,k − θ∗j,k)
2 + λp(θ∗). (5)

The weights here are inverse proportional to the variances of z∗j,k. For general inverse

problems the weights 2−2j in (5) are replaced by a−2j for some a > 0.

3 Conclusion

Penalized least-squares provides a unified framework for many seemingly different wavelet

thresholding rules in different nonparametric function estimation contexts. This general

framework enables us to systematically study a large class of wavelet estimators simulta-

neously. Clearly, there is much work ahead of us. This paper provides us a means for

generating new ideas that can guide our future research in this area. I thank the authors

for their clear and imaginative work.
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