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Abstract

We study adaptive estimation of linear functionals over a collection of finitely many
parameter spaces.A between class modulus of continuity, a geometric quantity,
is introduced and is shown to be instrumental in characterizing the degree of
adaptability over two parameter spaces in the same way that the usual modulus
of continuity captures the minimax difficulty of estimation over a single parameter
space. The between class modulus of continuity is used to describe when full
adaptation is possible. A sharp rate optimal lower bound on the cost of adaptation
is derived. An ordered modulus of continuity is used to construct a procedure
which which is within a constant factor of attaining these bounds. The results are
complemented by several illustrative examples.
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1 Introduction

The problem of estimating linear functionals occupies an important position in the

general theory of nonparametric function estimation. In particular the global recovery

of an unknown function is sometimes best viewed as estimation at each point: an example

of a problem of estimating a linear functional. When attention is focused on pointwise

estimation a natural goal is the construction of estimators which adapt to the unknown

local smoothness of the function. In this framework an adaptive estimator would be

one which is simultaneously near minimax over a number of different local smoothness

classes.

As a step towards this goal of adaptive estimation attention first focused on the more

concrete goal of developing a minimax theory for estimating linear functionals over a

fixed parameter space which can for example specify the smoothness of the function.

This theory is now well developed particularly in the white noise with drift model:

dY (t) = f(t)dt +
1√
n

dW (t) (1)

where W (t) is a standard Brownian motion. Ibragimov and Hasminskii (1981) showed

that this model captures many of the essential conceptual difficulties of other nonpara-

metric models without some of the additional technical features. This model also arises

as an approximation to many other nonparametric function models such as that of den-

sity estimation,nonparametric regression and spectrum estimation. See for example Low

(1992), Brown and Low (1996a), Nussbaum (1996).

Based on white noise data a general theory for estimating a linear functional has

been given assuming only that the parameter space is convex. The first general result of

this type was given in Ibragimov and Hasminskii (1984) where the parameter space was

also assumed to be symmetric. Ibragimov and Hasminskii (1984) constructed a linear

estimator with the smallest maximum mean squared error. Donoho and Liu (1991) and

Donoho (1994) extended this theory to general convex parameter spaces.

In the general case of a fixed convex parameter space F , Donoho and Liu (1991) and

Donoho (1994) showed that the minimax theory for estimating a linear functional Tf

over F can be completely described by a modulus of continuity

ω(ε,F) = sup{|Tg − Tf | : ‖g − f‖2 ≤ ε; f ∈ F , g ∈ F}. (2)

Affine estimators play a fundamental role in this theory. The minimax affine risk

R∗
A(n,F) and the minimax risk R∗

N(n,F) of estimating Tf over a convex function class
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F can be defined respectively by

R∗
A(n,F) = inf

T̂ affine
sup
f∈F

E(T̂ − Tf)2

and

R∗
N(n,F) = inf

T̂
sup
f∈F

E(T̂ − Tf)2.

Donoho and Liu (1991) and Donoho (1994) have shown that

1

8
ω2(

1√
n

,F) ≤ R∗
A(n, F) = sup

ε>0
ω2(ε, F)

1
4n

1
n

+ ε2

4

≤ ω2(
1√
n

,F) (3)

and that the modulus can be used to give a recipe for constructing an affine procedure

which has the maximum mean squared error attaining the risk given in (3). In addition

Donoho and Liu (1991) also showed that

R∗
A(n, F)

R∗
N(n, F)

≤ 1.25 (4)

and so the maximum risk of the optimal affine procedure is within a small constant

factor of the minimax risk when the parameter space is convex. It should be stressed

that (3) and (4) taken together show that the minimax mean squared error for estimating

a linear functional over a convex parameter space is always of order ω2( 1√
n
,F).

It should also be emphasized that the minimax theory described above is a theory

for a given convex parameter space. The goal which we alluded to earlier of construct-

ing estimators which adapt to the smoothness of the function is not covered by this

theory. A natural way to extend the minimax theory to an adaptation theory is to con-

struct estimators which are simultaneously minimax or near minimax over a collection

of smoothness classes. In general however this goal cannot be realized.

In particular Lepski (1990) was the first to give examples which demonstrated that

rate optimal adaptation over a collection of Lipschitz classes is not possible when esti-

mating the function at a point. In this case a logarithmic penalty must be paid over all

but one of the parameter spaces. Efromovich and Low (1994) showed that this phenom-

ena is true in general whenever we try to adapt over a collection of nested symmetric

sets where the minimax rates are algebraic of different orders. Klemelä and Tsybakov

(2001) give sharp results for adaptive estimation over convex, symmetric renormaliz-

able function classes. Lepski and Levit (1998) study adaptive estimation over infinitely

differentiable functions.
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On the other hand the goal of fully rate adaptive estimation of linear functionals can

sometimes be realized. When the minimax rates over each parameter space is slower than

any algebraic rate Cai and Low (2001) have given examples of nested symmetric sets

where fully adaptive estimators can be constructed. In addition, when the sets are not

symmetric there are also examples where rate adaptive estimators can be constructed.

Such is the case for estimating monotone functions where an estimator can adapt over

different Lipschitz classes. See Kang and Low (2002). Other recent results on adaptive

estimation can be found in Butucea (2001), Efromovich (1997a,b, 2000) and Efromovich

and Koltchinskii (2001).

Although the above mentioned examples show that there are cases where fully rate

adaptive estimators exist and other cases where fully rate adaptive estimators do not

exist, to date there is no general theory that characterizes exactly when adaptation

is possible. In the present paper building upon the framework of Donoho and Liu

(1991) and Donoho (1994) we provide a general adaptation theory for estimating linear

functionals.

In Section 2 we extend the modulus of continuity defined by (2) to a between class

modulus of continuity and show that the between class modulus can be used to char-

acterize when adaptation is possible. This modulus captures the degree of adaptability

over two parameter spaces in the same way that the usual modulus of continuity cap-

tures the minimax difficulty of estimation over a single parameter space. In Section 2

a sharp rate optimal lower bound on the cost of adaptation is given in terms of the

between class modulus.

Another closely related modulus which we call an ordered modulus is introduced

in Section 2 and used in Section 4 to construct adaptive estimators that are within a

constant factor of this lower bound. The bounds and construction hold for an arbitrary

pair of convex parameter spaces and any linear functional. In particular we do not

assume that the parameter spaces are nested or symmetric. We also show that this

general theory for two parameter spaces can be extended to any finite nested collection

of convex parameter spaces and under mild regularity conditions on the modulus can

be extended to finitely many non-nested convex parameter spaces. An estimator with

minimum adaptation cost over a collection of parameter spaces is constructed in Section

5.

The theory also shows that there are three main cases in terms of the cost of adap-

tation. We shall call the first case the regular one where as in the case of estimating a
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function at a point over Lipschitz classes considered by Lepski (1990) the cost of adap-

tation is a logarithmic factor of the noise level. In the second case full adaptation is

possible as in the examples considered in Lepski and Levit (1998) and Cai and Low

(2001). More dramatically in the third case the cost of adaptation is much greater than

in the regular case. The cost of adaptation in this case is a power of the noise level.

Examples of all three cases are given in Section 3. In addition, we give in Section 5

an interesting example of adaptively estimating a function at a fixed point over a finite

collection of parameter spaces where one loses a necessary logarithmic penalty on some

parameter spaces and yet is fully adaptive over other spaces.

2 Lower bound on the cost of adaptation

In this section we focus on lower bounds for the cost of adaptation where it suffices to

consider just two parameter spaces, say F1 and F2. The bounds are easily expressed in

terms of a between class modulus of continuity. For convenience however we first define

an ordered modulus of continuity ω(ε, F1,F2) between two classes F1 and F2 as

ω(ε, F1,F2) = sup{Tg − Tf : ‖g − f‖2 ≤ ε; f ∈ F1, g ∈ F2}.
The ordered modulus of continuity will be useful in the construction of adaptive esti-

mators given in Sections 4 and 5. This is a quantity derived from the geometry of the

graph of the linear functional T between the regularity classes F1 and F2. Note that

ω(ε, F1,F2) does not necessarily equal ω(ε, F2,F1). It is however clear that the mod-

ulus ω(ε, F1,F2) is an increasing function of ε. Moreover if F1 and F2 are convex with

F1 ∩ F2 6= ∅, then for a linear functional T the modulus ω(ε, F1,F2) is also a concave

function of ε. See Cai and Low (2002). In particular, for D > 1

ω(Dε, F1,F2) ≤ Dω(ε, F1,F2). (5)

For the statement of lower bounds for the risk it is also convenient to define a between

class modulus of continuity ω+(ε,F1,F2)

ω+(ε, F1,F2) = sup{|Tg − Tf | : ‖g − f‖2 ≤ ε; f ∈ F1, g ∈ F2}. (6)

Clearly, ω+(ε, F1,F2) = max(ω(ε, F1,F2), ω(ε, F2,F1)). Note also that although ω+

need not be concave it follows from (5) that

ω+(Dε, F1,F2) ≤ Dω+(ε, F1,F2). (7)
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When F1 = F2 = F , ω(ε,F ,F) = ω+(ε,F ,F) is the usual modulus of continuity

over F and will be denoted by ω(ε, F) as in (2).

In the minimax theory of estimating linear functionals Donoho and Liu (1991) showed

that in many problems ω(ε,F) is Hölderian, ω(ε,F) ∼ Cεq(F) where 0 < q(F) ≤ 1 and

hence from (3) and (4) the minimax mean squared error rate is of order n−q(F). In related

adaptive estimation problems the between class modulus of continuity ω+(ε, F1, F2) is

also typically Hölderian ω+(ε, F1, F2) ∼ Cεq(F1,F2). We shall show later in this section

that the cost of adaptation can then easily be explained in terms of the relationship

between min(q(F1), q(F2)) and q(F1,F2). See the following discussion and examples in

Section 3.

The problem of adaptability is also easily explored when the modulus is ordinary.

Definition 1 We shall call a between class modulus ω+(ε,F1,F2) ordinary if

lim
D→∞

lim
ε→0

ω+(ε,F1,F2)

ω+(Dε,F1,F2)
= 0 (8)

or equivalently if for some D > 1

lim
ε→0

ω+(ε,F1,F2)

ω+(Dε,F1,F2)
< 1. (9)

Note that if the between class modulus is Hölderian with 0 < q ≤ 1 then it is also

ordinary.

The following results all give bounds for the risk under various assumptions on the

modulus of continuity. Theorem 1 is the most general whereas Theorem 2 is useful

for providing the lower bounds for the performance of the adaptive estimators given in

Sections 4 and 5. Corollary 1 considers an important case for adaptability and Corollary

2 gives sharp lower bounds for the cost of adaptation in the case of Hölderian moduli

when adaptation for free is impossible. Corollary 2 is also useful for the applications in

Section 3. In the results that follow we write

R(T̂ , Tf) = Ef (T̂ − Tf)2

for the mean squared error of an estimator T̂ based on the white noise data (1).

Theorem 1 Consider two function classes F1 and F2 with F1 ∩ F2 6= ∅. Let T be a

linear functional and suppose that

sup
f∈F1

R(T̂ , Tf) ≤ γ−2ω2
+(

1√
n

, F1, F2) (10)
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for some γ > 1. Then for any 0 < ρ ≤ 1

sup
f∈F2

(R(T̂ , Tf))
1
2 ≥ ω+(

√
ρ ln γ2

n
,F1, F2)− γ−(1−ρ)ω+(

1√
n

,F1, F2). (11)

Now suppose there exists a sequence dn > 0 such that

lim
n→∞ d−1

n · sup
f∈F1

R(T̂ , Tf) ≤ λ (12)

with 0 < λ < ∞ and

hn ≡ dn

ω2
+( 1√

n
, F1,F2)

→ 0. (13)

Then

lim
n→∞

supf∈F2
R(T̂ , Tf)

ω2
+(

√
An

n
, F1,F2)

≥ 1 (14)

with An = −1
2
ln(λhn) → ∞. In particular if in addition the modulus ω+(ε,F1, F2) is

ordinary as defined in (8) then

lim
n→∞

supf∈F2
R(T̂ , Tf)

ω2
+( 1√

n
, F1,F2)

= ∞. (15)

Remark: Conditions (12) and (13) are satisfied if

lim
n→∞

supf∈F1
R(T̂ , Tf)

ω2
+( 1√

n
,F1,F2)

= 0.

Proof of Theorem 1: We shall only consider the case where F1 and F2 are closed and

norm bounded. The general case is proved by taking limits of this case as in Section 14

of Donoho (1994).

For 0 < ρ ≤ 1, choose f1,n ∈ F1 and f2,n ∈ F2 such that

‖f1,n − f2,n‖2 ≤
√

ρ ln γ2

n

and such that the modulus is attained at {f1,n, f2,n}:

|Tf2,n − Tf1,n| = ω+(

√
ρ ln γ2

n
,F1,F2).

Let θ1 = Tf1,n, θ2 = Tf2,n and let βn = n‖f1,n − f2,n‖2
2. Then βn ≤ ρ ln γ2.
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Denote by Pi,n the probability measure associated with the white noise process

dY (t) = fi,n(t)dt +
1√
n

dW (t), −1

2
≤ t ≤ 1

2
, i = 1, 2.

Then a sufficient statistic for the family of measures {Pi,n : i = 1, 2} is given by

Sn = log(dP2,n/dP1,n) with

Sn ∼




N(−βn

2
, βn) under P1,n

N(βn

2
, βn) under P2,n.

Denote by θ1 = Tf1,n, θ2 = Tf2,n, and sθi
the density of Sn under Pi,n (i = 1, 2). Then,

I(θ1, θ2) =
∫ s2

θ2
(x)

sθ1(x)
dx = eβn ≤ γ2ρ.

Applying the constrained risk inequality of Brown and Low (1996b) with I(θ1, θ2) ≤ γ2ρ,

ε ≤ γ−1ω+( 1√
n
,F1,F2), and ∆ = |θ1 − θ2| = ω+(

√
ρ ln γ2

n
, F1,F2), we have

(R(T̂ , Tf2,n))
1
2 ≥ ω+(

√
ρ ln γ2

n
, F1,F2)− γ−1ω+(

1√
n

, F1, F2) γρ

= ω+(

√
ρ ln γ2

n
, F1,F2)− γ−(1−ρ)ω+(

1√
n

, F1, F2).

Inequality (14) follows by evaluating (11) with γ = (λhn)−
1
2 and ρ = 1

2
and from the

assumption that hn → 0. Inequality (15) now follows from the assumption that the

modulus ω+(ε,F1,F2) is ordinary, i.e.,

lim
D→∞

lim
ε→0

ω+(ε,F1,F2)

ω+(Dε,F1,F2)
= 0.

This completes the proof of Theorem 1.

Remark: Using a two point risk inequality in Cai, Low and Zhao (2001), Theorem 1

can be further generalized to `p-loss for all 1 ≤ p < ∞.

In most applications of interest the minimax rate of convergence differs on the pa-

rameter spaces F1 and F2. If the rate is faster over F1 then the following theorem can

be used to give a bound on the maximum risk over F2 assuming that the estimator is

minimax rate optimal over F1.
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Theorem 2 Let T be a linear functional and let F1 and F2 be parameter spaces with

F1 ∩ F2 6= ∅ and ω(ε,F1) ≤ ω(ε,F2) for all sufficiently small 0 < ε ≤ ε0. Suppose that

T̂ is an estimator of Tf based on the white noise data (1) satisfying

sup
f∈F1

R(T̂ , Tf) ≤ c2
∗ω

2(
1√
n

,F1) (16)

for some constant c∗ > 0. Let

γn = max





ω+( 1√
n
,F1,F2)

c∗ω( 1√
n
,F1)

, e



 .

Then for all sufficiently large n

sup
f∈F2

R(T̂ , Tf) ≥ c



ω2

+




√
ln γn

n
, F1, F2


 + ω2(

1√
n

, F2)



 (17)

where c > 0 is some fixed constant.

Proof: First note that standard two point testing arguments as for example contained

in Donoho and Liu (1991) or Brown and Low (1996b) show that the minimax risk for

estimating a linear functional Tf over F1 is bounded from below by

inf
T̂

sup
f∈F2

E(T̂ − Tf)2 ≥ 1

8
ω2

(
1√
n

, F2

)
. (18)

Let n be sufficiently large so 1√
n
≤ ε0. If γn = e, then

ω+(
1√
n

,F1,F2) ≤ ec∗ω(
1√
n

,F1) ≤ ec∗ω(
1√
n

,F2).

Hence

sup
f∈F2

R(T̂ , Tf) ≥ 1

8
ω2

(
1√
n

, F2

)
≥ c



ω2

+




√
ln γn

n
, F1, F2


 + ω2(

1√
n

, F2)





with c = 1
8(1+ec∗)

.

Now assume that γn > e. Then it follows from (16) that

sup
f∈F1

R(T̂ , Tf) ≤ γ−2
n ω2

+(
1√
n

, F1, F2).
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Applying Theorem 1 with γ > e and ρ = 1
2
, we have

sup
f∈F2

R(T̂ , Tf) ≥ (1− e−
1
2 )2ω2

+(

√
ln γn

n
, F1, F2).

This and equation (18) now yields

sup
f∈F2

R(T̂ , Tf) ≥ 1

16



ω2

+




√
ln γn

n
, F1, F2


 + ω2(

1√
n

, F2)



 .

In light of the lower bound given in Theorem 2 we give the following definition.

Definition 2 We shall call an estimator T̂ optimally adaptive over F1 and F2 if it

satisfies both (16) and (17).

Notation: For two sequences an and bn, we will denote by “an ³ bn” if as n →∞ the ratio

of an and bn is bounded away from 0 and ∞. Similar, for two functions a(ε) and b(ε),

“a(ε) ³ b(ε)” means a(ε)/b(ε) is bounded away from 0 and ∞ as ε → 0+. Throughout

of the paper, we denote by C a generic constant that may vary from place to place.

Although Theorem 2 holds whether or not F1 and F2 are convex, it should be noted

that estimators satisfying equation (16) are only guaranteed when F1 is convex or a

union of finitely many convex parameter spaces. As mentioned in the introduction when

the parameter space F is convex, Donoho (1994) establishes that the minimax risk

R∗
N(n,F) ³ ω2( 1√

n
, F), as n → ∞. In Cai and Low (2002) it is shown that if F is

the union of a fixed finite number of closed and convex sets, then this result still holds.

Therefore, in both these cases conditions in Theorem 2 are satisfied with γn → ∞ and

in these cases the following corollary which shows when fully rate adaptive estimators

do not exist immediately follows from Theorem 2.

Corollary 1 Let T be a linear functional and let F1 and F2 be parameter spaces with

F1 ∩ F2 6= ∅. Suppose the minimax risks R∗
N(n,Fi) ³ ω2( 1√

n
, Fi) for i = 1, 2 and

suppose that the modulus ω+(ε,F1,F2) is ordinary. If

lim
ε→0

ω(ε, F1)

ω(ε, F2)
= 0 and ω+(ε, F1,F2) ≥ Cω(ε, F2) (19)

for some C > 0 and all 0 < ε ≤ ε0, then for any estimator T̂ ,

max
i=1,2

lim
n→∞

supf∈Fi
R(T̂ ; Tf)

ω2( 1√
n
, Fi)

= ∞.

That is, adaptation over F1 and F2 without cost is impossible.
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Condition (19) holds for a wide range of functionals and function classes of interest.

In particular it holds whenever F1 and F2 are symmetric and the minimax rate of

convergence over the convex parameter spaces differ. Thus Corollary 1 shows in much

generality that the problem of estimating a functional Tf lacks adaptability.

Stronger statements can be made when the between class modulus is Hölderian, i.e.

ω+(ε,Fi,Fj) = Cεq(Fi,Fj)(1 + o(1))

for some constant C > 0. Such will be the case in the examples considered in Section 3.

The results in the following corollary give lower bounds for the cost of adaptation.

Corollary 2 Let T be a linear functional and let F1 and F2 be parameter spaces with

F1 ∩ F2 6= ∅. Suppose the minimax risks for estimating Tf over the function classes

F1 and F2 satisfy R∗
N(n,Fi) ³ n−ri for i = 1, 2. Suppose the between class modulus of

continuity ω+(ε,F1,F2) is Hölderian with exponent q = q(F1,F2).

If q = r2 < r1 or q < r2 ≤ r1 , then for any estimator T̂ attaining a rate of

convergence nr over F1 with r > q,

lim
n→∞

(
n

log n

)q

sup
f∈F2

R(T̂ , Tf) > 0. (20)

Proof: Let dn = n−r and hn = nq−r. Then (20) follows from (14) in Theorem 1 and the

condition that ω+(ε, F1, F2) ³ εq.

Remark: In the first case when q = r2 < r1 then (20) shows that the maximum risk

over F2 is elevated by at least a logarithmic factor. In the second case when q < r2 ≤ r1

the maximum risk over F2 must be increased by at least a power of the sample size.

3 Examples

Section 2 gave lower bounds on the cost of adaptation based on the between class

modulus. In this section we give examples of these lower bounds. In Section 4 we show

that the lower bound is in fact rate sharp.

As mentioned in Section 2 in most common cases when estimating a linear functional

over convex parameter spaces the modulus is Hölderian

ω+(ε, Fi, Fj) = Ci,jε
q(Fi,Fj)(1 + o(1)) (21)
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where we write q(Fi) for q(Fi,Fi). In such cases the most easily computed bounds in

Section 2 are given in Corollary 2 which can then be used to classify the problem of

adaptation over convex parameter spaces into three cases:

• Case 1: q(F1,F2) = min(q(F1), (F2)) < max(q(F1), q(F2)). This is the “regular

case” which holds for many linear functionals and common function classes of

interest. In this case, one must lose a logarithmic factor as the minimum cost

for adaptation. A common example of such a case is estimating a function or a

derivative at a point, i.e., Tf = f (s)(t0) for some s ≥ 0 when the parameter spaces

are assumed to be Lipschitz. See Example 2 below, Lepski (1990), Brown and Low

(1996b) and Efromovich and Low (1994).

Besides the regular case, there are two extreme cases.

• Case 2: q(F1,F2) > min(q(F1), q(F2)) or q(F1,F2) = q(F1) = q(F2). This is a

case which is not covered in Corollary 2. We shall show in Section 4 that in this case

adaptation for free is always possible. That is, one can attain the optimal rate of

convergence over F1 and F2 simultaneously. An example of this case is estimating

a function at a point over two monotone Lipschitz classes. See Examples 1 and 3

below and Kang and Low (2002).

• Case 3: q(F1,F2) < min(q(F1), q(F2)). In this case the cost of adaptation is

significant, much more than the usual logarithmic penalty in the regular case. If

f is known to be in F1, one can attain the rate of nq(F1); and if one knows that f

is in F2, the rate of convergence nq(F2) can be achieved. Without the information,

however, one can only achieve the rate of (n/ log n)q(F1,F2) at best. So the cost

of adaptation is a power of n rather than the logarithmic factor as in the regular

case. See Example 2 below.

Note that if the the parameter spaces F1 and F2 are nested, then only Cases 1 and 2

are possible and Case 3 does not arise.

We now consider a few examples below to illustrate the three different cases. Exam-

ples 1 and 3 covers Case 2 in which full adaptation is possible. Example 2 covers both

Case 1 and Case 3 with different choices of parameters. In each of these examples we

need to calculate the between class modulus of continuity. The basic idea behind these

calculations is contained in Donoho and Liu (1991) and consists of finding extremal
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functions. For the calculation of extremal functions it is useful to introduce the inverse

ω̃+(a,F1,F2) of the ordered modulus

ω̃(a,F1,F2) = inf{‖g − f‖2 : |Tg − Tf | = a, f ∈ F1, g ∈ F2}. (22)

We shall also write ω̃(a,F) for ω̃(a,F ,F).

Example 1: In this example we shall have 0 < q(F2) < q(F1,F2) = q(F1) < 1 and

ω(ε, F1,F2) = ω(ε, F2,F1). In this case full mean squared error adaptation is possible.

For 0 < α ≤ 1, let F (α,M) be the collection of functions f : [−1
2
, 1

2
] → IR such that

|f(x)− f(y)| ≤ M |x− y|α.

Let D be the set of all decreasing functions and let FD(α, M) = F (α, M)∩D be the set

of decreasing functions which are also members of F (α,M). Let Tf = f(0) and assume

that 0 < α2 < α1 ≤ 1. Let F1 = FD(α1,M1) and F2 = FD(α2,M2). Then for these

parameter spaces and the linear functional Tf = f(0)

f1(x) =





min(a,M1|x|α1), when x ≤ 0

a, when x ≥ 0

and

f2(x) =





a, when x ≤ 0

(a−M2x
α2)+, when x ≥ 0

are extremal and it follows that for sufficiently small a > 0

ω̃2(a,F1,F2) =
a

2α1+1

α1

M
1

α1
1 (2α1 + 1)

+
a

2α2+1

α2

M
1

α2
2 (2α2 + 1)

and hence as ε → 0

ω2(ε, F1,F2) = (2α1 + 1)
α1

2α1+1 M
1

2α1+1

1 ε
2α1

2α1+1 (1 + o(1)). (23)

Similar arguments yield ω(ε,F2,F1) = ω(ε,F1,F2) and

ω2(ε, F1) = (α1 +
1

2
)

α1
2α1+1 M

1
2α1+1

1 ε
2α1

2α1+1 (1 + o(1)) (24)

and

ω2(ε, F2) = (α2 +
1

2
)

α2
2α2+1 M

1
2α2+1

2 ε
2α2

2α2+1 (1 + o(1)). (25)
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In this case q(F1,F2) = max(q(F1), q(F2)) > min(q(F1), q(F2)) and hence adaptation

for free can be achieved.

Example 2: This example shows that sometimes we must lose more than a logarithmic

factor when we try to adapt.

Let FR(α,M) be the collection of functions f : [−1
2
, 1

2
] → IR such that

|f (s)(x)− f (s)(y)| ≤ M |x− y|α−s 0 ≤ x ≤ y ≤ 1

2

where s is the largest integer less than α. Similarly, let FL(α, M) be the collection of

functions f : [−1
2
, 1

2
] → IR such that

|f (s)(x)− f (s)(y)| ≤ M |x− y|α−s − 1

2
≤ x ≤ y ≤ 0.

Finally let F (α1,M1, α2, M2) = FL(α1,M1) ∩ FR(α2,M2).

Note that for the linear functional Tf = f(0) and the (ordered) parameter spaces

F1 = F (α1,M1, α2, M2) and F2 = F (β1, N1, β2, N2) the functions

f1(x) =





c1, when x ≤ b1

M1|x|α1 , when b1 ≤ x ≤ 0

M2|x|α2 , when 0 ≤ x ≤ b2

c2, when x ≥ b2

and

f2(x) =





c1, when x ≤ b1

a−N1|x|β1 , when b1 ≤ x ≤ 0

a−N2x
β2 , when 0 ≤ x ≤ b2

c2, when x ≥ b2

are extremal for sufficiently small a > 0 where b1 < 0 and b2 > 0 are determined by the

constraints

a−N1|b1|β1 = M1|b1|α1 and a−N2b
β2
2 = M2b

α2
1 ,

and c1 and c2 are constants chosen to make the functions continuous.

It is then easy to check that

ω2(ε, F1) = C(α1,M1, α2,M2)ε
2δ

2δ+1 (1 + o(1)) (26)

where δ = max(α1, α2). And similarly

ω2(ε, F2) = C(β1, N1, β2, N2)ε
2ρ

2ρ+1 (1 + o(1)) (27)
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where ρ = max(β1, β2).

We now assume that 0 < α2 ≤ α1 ≤ 1 and 0 < β1 ≤ β2 ≤ 1. Then

q(F1) =
2α1

2α1 + 1
and q(F2) =

2β2

2β2 + 1
.

The extremal functions given above also lead to the between class modulus

ω2(ε,F1,F2) = C(M1, α1, M2, α2, N1, β1, N2, β2)ε
2γ

2γ+1 (1 + o(1)) (28)

where γ = max(min(α1, β1), min(α2, β2)).

Two interesting cases may arise, depending on the relationship among α1, α2, β1

and β2.

• β2 > β1 ≥ α1 > α2. Then the quantity γ in equation (28) is γ = α1 and so

q(F1,F2) = 2α1

2α1+1
. Hence in this case

q(F1,F2) = min(q(F1), q(F2)) < max(q(F1), q(F2)).

This is a standard case where a logarithmic penalty term must be paid for adap-

tation.

• α1 ≥ β2 > β1 ≥ α2. In this case, the quantity γ in equation (28) is γ = β1 and

hence q(F1,F2) = 2β1

2β1+1
. Therefore in this case

q(F1,F2) < min(q(F1), q(F2)).

Consequently the cost of adaption between F1 and F2 is much more than a loga-

rithmic penalty. The maximum risk over the two different parameter spaces is of

the order n
− 2β1

2β1+1 .

A particularly interesting case is when α1 = β2 > β1 ≥ α2. In this case, the

minimax rates of convergence over F1 and F2 are the same, both equals n
− 2β2

2β2+1 .

Yet it is impossible to achieve this optimal rate adaptively over the two parameter

spaces, in fact the cost of adaption in this case is substantial.

Example 3: This will give an example where 0 < q(F1) < q(F1,F2) < q(F2) < 1.

It will also yield an example where ω(ε, F1,F2) 6= ω(ε, F2,F1). In this case full mean

squared error adaptation can be achieved. Let Tf = f(0). Now let

FD(α1,M1, α2,M2) = F (α1,M1, α2,M2) ∩D

15



where F (α1,M1, α2,M2) is defined as in Example 2.

It is easy to see that for the (ordered) parameter spaces F1 = FD(α1,M1, α2,M2)

and F2 = FD(β1, N1, β2, N2) the extremal functions are

f1(x) =





min(a,M1|x|α1), when x ≤ 0

a, when x ≥ 0
(29)

and

f2(x) =





a, when x ≤ 0

(a−N2x
β2)+, when x ≥ 0

(30)

and it follows as in the first example that

ω̃2(a,F1,F2) =
a

2α1+1

α1

M
1

α1
1 (2α1 + 1)

+
a

2β2+1

β2

N
1

β2
2 (2β2 + 1)

.

For now let β1 > β2 > α1 > α2. Then it is easy to check that

ω2(ε, F1) = Cε
2α1

2α1+1 (1 + o(1))

and

ω2(ε, F2) = Cε
2β1

2β1+1 (1 + o(1))

and also

ω2(ε,F1,F2) = Cε
2β2

2β2+1 (1 + o(1)). (31)

Now extremal functions for the ordered parameter spaces F2 and F1 analogous to (29)

and (30) also easily yield

ω2(ε,F2,F1) = Cε
2β1

2β1+1 (1 + o(1)). (32)

Hence this is an example where ω(ε,F1,F2) 6= ω(ε,F2,F1)(1+o(1)). Note that β1 > β2,

it then follows from (31) and (32) that q(F1,F2) = 2β2

2β2+1
. Hence this is an example

where

0 < q(F1) < q(F1,F2) < q(F2) < 1.

In particular, q(F1,F2) > min(q(F1), q(F2)) so it is also an example where full mean

squared error adaptation is possible.
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4 Adaptive estimators and upper bound for the cost

of adaptation

In this section we consider adaptation over two parameter spaces which are not neces-

sarily nested. The results in this section also shows that the lower bound on the cost of

adaptation given in Theorem 2 is rate sharp.

Let F1 and F2 be two closed, convex parameter spaces with F1 ∩ F2 6= ∅. Denote

by G = F1 ∪F2. In the case of non-nested convex parameter spaces adaptive estimation

theory requires a minimax analysis for sets which are not convex. The reason is that

we need to know the minimax risk and minimax rate optimal procedure over the union

G = F1 ∪ F2, which is in general nonconvex. The extension of the minimax theory for

estimating linear functionals over nonconvex parameter spaces has been considered in

Cai and Low (2002). In particular, it is shown that if G is a union of a finite number

of closed convex parameter spaces, the minimax risk is still of the order ω2( 1√
n
,G).

However, in general rate optimal estimators are necessarily nonlinear. Explicit rate

optimal procedures are constructed.

The following theorem is from Cai and Low (2002).

Theorem 3 Suppose the white noise model (1) is observed. Let G = ∪k
i=1Fi where Fi

are closed convex parameter spaces with nonempty intersections and k is fixed. The

minimax risk for estimating the linear functional Tf over G satisfies

C1ω
2

(
1√
n

, G
)
≤ inf

T̂
sup
f∈G

E(T̂ − Tf)2 ≤ C2ω
2

(
1√
n

, G
)

(33)

for some constants 0 < C1 ≤ C2 < ∞.

Furthermore, there exists a rate optimal estimator T̂ ∗ of the linear functional Tf

satisfying

sup
f∈G

E|T̂ ∗ − Tf |p ≤ C(k, p)ωp

(
1√
n

,G
)

(34)

for all 1 ≤ p < ∞, where the constant C(k, p) depends only on k and p.

In Section 2 we briefly introduced an ordered modulus of continuity although the bounds

given in that section are based on a between class modulus. In the construction of

adaptive estimators it is more convenient to work directly with the ordered modulus. In

Cai and Low (2002) it was shown that for any linear functional the ordered modulus of

17



continuity can be used to give a linear procedure which has upper bounds for the bias

over one parameter space and lower bounds for the bias over the other parameter space.

More specifically, for two convex sets F and H with F ∩ H 6= ∅, it was shown how to

construct a linear estimator T̂ which has variance and bias satisfying

Var(T̂ ) = E(T̂ − ET̂ )2 ≤ V, (35)

sup
f∈F

(ET̂ − Tf) ≤ 1

2
sup
ε>0

(
ω(ε, F ,H)−

√
nV ε

)
(36)

and

inf
f∈H

(ET̂ − Tf) ≥ −1

2
sup
ε>0

(
ω(ε, F ,H)−

√
nV ε

)
. (37)

Such linear estimators are useful because they trade bias and variance in a precise

manner. See Cai and Low (2002) for details of the construction.

4.1 Construction of the adaptive procedure

In this section we shall use the bias and variance properties given in (35) - (37) to

construct a test between F1 and F2 which will be used in the construction of our adaptive

estimator.

Let F1 and F2 be convex parameter spaces with F1 ∩ F2 6= ∅ and for i = 1 and 2,

let T̂i be linear estimators satisfying

sup
f∈Fi

E(T̂i − Tf)2 ≤ ω2(
1√
n

,Fi).

By (3) these estimators exist and are minimax rate optimal over Fi. In our problem

here, G = F1 ∪ F2 is the union of two closed convex sets. Denote by T̂ ∗
2 the estimator

given in Theorem 3 satisfying (34). In particular, T̂ ∗
2 satisfies

sup
f∈G

E(T̂ ∗
2 − Tf)2 ≤ Cω2(

1√
n

,G) (38)

and

sup
f∈G

E|T̂ ∗
2 − Tf |4 ≤ Cω4

(
1√
n

, G
)

. (39)

We will now construct two linear estimators T̂1,2 and T̂2,1 which have bias and variance

properties over F1 and F2 which allow for the construction of a test tailored to the
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construction of an adaptive estimator over F1 and F2. For 1 ≤ i 6= j ≤ 2 let

γi,j = 1 +
ω( 1√

n
,Fi,Fj)

ω( 1√
n
,F1)

(40)

and

γ+ = max(γ1,2, γ2,1) = 1 +
ω+( 1√

n
,F1,F2)

ω( 1√
n
,F1)

. (41)

Note that

γ1,2 ≥
ω( 1√

n
,F1,G)

ω( 1√
n
,F1)

, γ2,1 ≥
ω( 1√

n
,G,F1)

ω( 1√
n
,F1)

and γ+ ≥
ω+( 1√

n
,F1,G)

ω( 1√
n
,F1)

.

For i 6= j let

Vi,j =
1

ln γi,j

ω2(

√
ln γi,j

n
,Fi,Fj).

Then for i 6= j

Bi,j =
1

2
sup
ε>0

(ω(ε,Fi,Fj)− ε
√

nVi,j)

=
1

2
sup

ε≤
√

ln γi,j
n

(ω(ε, Fi,Fj)− ε

√
n

ln γi,j

ω(

√
ln γi,j

n
,Fi,Fj))

≤ 1

2
ω(

√
ln γi,j

n
,Fi,Fj).

For i 6= j let T̂i,j be the linear estimator satisfying (35) - (37) with F = Fi, H = Fj

and V = Vi,j. Then if f ∈ F1,

E(T̂1 − T̂1,2) = E(T̂1 − Tf)− E(T̂1,2 − Tf)

≥ −ω(
1√
n

,F1)− ω(

√
ln γ1,2

n
,F1,F2)

= −b1,2 (42)

and

E(T̂1 − T̂2,1) = E(T̂1 − Tf)− E(T̂2,1 − Tf)

≤ ω(
1√
n

,F1) + ω(

√
ln γ2,1

n
,F2,F1)

= b2,1. (43)
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Note also that

V ar(T̂1 − T̂1,2) ≤ 2(ω2(
1√
n

,F1) +
1

ln γ1,2

ω2(

√
ln γ1,2

n
,F1,F2))

= v1,2 (44)

and

V ar(T̂1 − T̂2,1) ≤ 2(ω2(
1√
n

,F1) +
1

ln γ2,1

ω2(

√
ln γ2,1

n
,F2,F1))

= v2,1. (45)

The estimators T̂1, T̂1,2 and T̂2,1 can be used as a test between F1 and F2. Let

In = 1(T̂1,2 − 5b1,2 − 3ω(
1√
n

,G) ≤ T̂1 ≤ T̂2,1 + 5b2,1 + 3ω(
1√
n

,G))

Finally let

T̂ = InT̂1 + (1− In)T̂ ∗
2 (46)

Remark : The estimator T̂ uses T̂1, which is rate optimal over F1, when the test In is

in favor of F1; the estimator T̂ uses T̂ ∗
2 , which is rate optimal over G = F1 ∪ F2, when

the test In is in favor of F2. It is important in this case to use T̂ ∗
2 instead of a rate

optimal estimator over F2.

4.2 Adaptivity of the procedure

Theorem 4 below shows that the estimator T̂ ∗ constructed above is adaptively rate

optimal and that the lower bound for adaptation between F1 and F2 as given in Theorem

2 is sharp.

Theorem 4 Suppose F1 and F2 are two closed convex parameter spaces with F1∩F2 6= ∅
and ω(ε,F1) ≤ ω(ε,F2). The estimator T̂ defined in (46) is adaptively rate optimal over

F1 and F2. That is, T̂ attains the exact minimax rate of convergence over F1 and attains

the lower bound on adaptation over F2 as given in Theorem 2. Hence,

sup
f∈F1

E(T̂ − Tf)2 ≤ Cω2(
1√
n

,F1) (47)

and

sup
f∈F2

E(T̂ − Tf)2 ≤ C



ω2

+(

√
ln γ+

n
,F1,F2) + ω2(

1√
n

,F2)



 (48)

where γ+ is defined in equation (41).

20



Remark: The estimator T̂ defined in (46) is also adaptive between F1 and G = F1∪F2.

Note that (48) is equivalent to

sup
f∈G

E(T̂ − Tf)2 ≤ C



ω2

+(

√
ln γ∗+

n
,F1,G) + ω2(

1√
n

,G)



 . (49)

where

γ∗+ = 1 +
ω+( 1√

n
,F1,G)

ω( 1√
n
,F1)

. (50)

Therefore T̂ attains the exact minimax rate of convergence over F1 and attains the lower

bound on adaptation over G as given in Theorem 2.

The proof of Theorem 4 is facilitated by the following lemmas.

Lemma 1 If f ∈ F1, then

(P (In = 0))
1
2 ≤

ω2( 1√
n
,F1)

ω2( 1√
n
,G)

. (51)

Proof: First note that for a standard normal random variable Z,

P (Z ≥ λ) ≤ exp(−λ2

2
)

holds for all λ ≥ 0. It then follows from (42) - (45) that

P (In = 0) ≤ P (T̂1 − T̂1,2 ≤ −5b1,2 − 3ω(
1√
n

,G))

+ P (T̂1 − T̂2,1 ≥ 5b2,1 + 3ω(
1√
n

,G))

≤ exp


−

(4b1,2 + 3ω( 1√
n
,G))2

2v1,2


 + exp


−

(4b2,1 + 3ω( 1√
n
,G))2

2v2,1




If ω2( 1√
n
,F1) ≥ 1

ln γ1,2
ω2(

√
ln γ1,2

n
,F1,F2), noting that e−2x > 1

2
x−2 for x > 0, then

exp


−

(4b1,2 + 3ω( 1√
n
,G))2

2v1,2


 ≤ exp


−2

ω2( 1√
n
,G)

ω2( 1√
n
,F1)


 ≤ 1

2

ω4( 1√
n
,F1)

ω4( 1√
n
,G)

. (52)
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If ω2( 1√
n
,F1) < 1

ln γ1,2
ω2(

√
ln γ1,2

n
,F1,F2), then

exp


−

(4b1,2 + 3ω( 1√
n
,G))2

2v1,2


 ≤ exp


−

16ω2(
√

ln γ1,2

n
,F1,F2) + 9ω2( 1√

n
,G)

4
ln γ1,2

ω2(
√

ln γ1,2

n
,F1,F2)




≤ exp


−(4 ln γ1,2 + 2

ω2( 1√
n
,G)

ω2( 1√
n
,F1,F2)

)


 ≤ exp


−(4 ln γ1,2 + 2

ω2( 1√
n
,G)

ω2( 1√
n
,F1,G)

)




≤
ω4( 1√

n
,F1)

ω4( 1√
n
,F1,G)

· 1

2

ω4( 1√
n
,F1,G)

ω4( 1√
n
,G)

=
1

2

ω4( 1√
n
,F1)

ω4( 1√
n
,G)

. (53)

Combining (52) and (53) yields that

exp


−

(4b1,2 + 3ω( 1√
n
,G))2

2v1,2


 ≤ 1

2

ω4( 1√
n
,F1)

ω4( 1√
n
,G)

.

Similarly,

exp


−

(4b2,1 + 3ω( 1√
n
,G))2

2v2,1


 ≤ 1

2

ω4( 1√
n
,F1)

ω4( 1√
n
,G)

.

Therefore,

(P (In = 0))
1
2 ≤

ω2( 1√
n
,F1)

ω2( 1√
n
,G)

.

Now consider the case f ∈ F2.

Lemma 2 If f ∈ F2 and |ET̂1 − Tf | ≥ λ(b1,2 + b2,1 + ω( 1√
n
,G)) for some λ > 6, then

P (In = 1) ≤ e−
(λ−6)2

4 . (54)

Proof: We shall only give details of the proof when

ET̂1 − Tf ≥ λ(b1,2 + b2,1 + ω(
1√
n

,G)).

The case of ET̂1 − Tf ≤ −λ(b1,2 + b2,1 + ω( 1√
n
,G)) can be handled similarly.

Let f ∈ F2. Then

P (In = 1) ≤ P (T̂1 − T̂2,1 ≤ 5b2,1 + 3ω(
1√
n

,G)).
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Note that

E(T̂1 − T̂2,1 − 5b2,1 − 3ω(
1√
n

,G))

= E(T̂1 − Tf)− E(T̂2,1 − Tf)− 5b2,1 − 3ω(
1√
n

,G))

≥ λb2,1 + λω(
1√
n

,G)− 1

2
ω(

√
ln γ2,1

n
,F2,F1)− 5b2,1 − 3ω(

1√
n

,G)

≥ (λ− 6)


ω(

√
ln γ2,1

n
,F2,F1) + ω(

1√
n

,G)


 .

Noting that V ar(T̂1 − T̂2,1) ≤ v2,1 = 2(ω2( 1√
n
,F1) + 1

ln γ2,1
ω2(

√
ln γ2,1

n
,F2,F1)), it follows

that

P (In = 1) ≤ exp


−(λ− 6)2

2
·
(ω(

√
ln γ2,1

n
,F2,F1) + ω( 1√

n
,G))2

v2,1




≤ exp(−(λ− 6)2

4
).

Proof of Theorem 4: The minimax rate optimality of T̂ over F1 now follows directly from

Lemma 1 and Theorem 3.

sup
f∈F1

E(T̂ − Tf)2 ≤ sup
f∈F1

E(T̂1 − Tf)2 + sup
f∈F1

(E|T̂ ∗
2 − Tf |4) 1

2 · (P (In = 0))
1
2

≤ ω2(
1√
n

,F1) + Cω2(
1√
n

, G) ·
ω2( 1√

n
,F1)

ω2( 1√
n
,G)

= Cω2(
1√
n

,F1). (55)

Now consider the case f ∈ F2. If f ∈ F2 and |ET̂1 − Tf | ≤ 6(b1,2 + b2,1 + ω( 1√
n
,G)),

then

E(T̂ − Tf)2 ≤ E(T̂1 − Tf)2 + E(T̂ ∗
2 − Tf)2

≤ ω2(
1√
n

,F1) + 36(b1,2 + b2,1 + ω(
1√
n

,G))2 + Cω2(
1√
n

,G)

≤ Cω2(

√
ln γ1,2

n
,F1,F2) + Cω2(

√
ln γ2,1

n
,F2,F1) + Cω2(

1√
n

,G) (56)
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where C is a constant not depending on f .

Now note that if X has a normal distribution with mean µ and variance σ2 then

(EX4)
1
2 ≤ 3(µ2 + σ2). (57)

If f ∈ F2 and |ET̂1−Tf | ≥ λ(b1,2 + b2,1 +ω( 1√
n
,G)) for some λ > 6, it then follows from

Lemma 2 and inequality (57) that

E(T̂ − Tf)2 ≤ (E|T̂1 − Tf |4) 1
2 · (P (In = 1))

1
2 + E(T̂ ∗

2 − Tf)2

≤
(

3V ar(T̂1) + 3λ2(b1,2 + b2,1 + ω(
1√
n

,G))2

)
· e− (λ−6)2

8 + Cω2(
1√
n

,G)

≤ Cω2(

√
ln γ1,2

n
,F1,F2) + Cω2(

√
ln γ2,1

n
,F2,F1) + Cω2(

1√
n

,G). (58)

Again, the constant C does not depend on f . It then follows by combining (56) and

(58) that

sup
f∈F2

E(T̂ − Tf)2 ≤ Cω2(

√
ln γ1,2

n
,F1,F2) + Cω2(

√
ln γ2,1

n
,F2,F1) + Cω2(

1√
n

,G)

≤ C



ω2

+(

√
ln γ+

n
,F1,F2) + ω2(

1√
n

,F2)



 . (59)

Now (48) follows from (55) and (59).

5 Adaptation over many parameter spaces

In Section 4 we showed that the lower bound on the cost of adaptation given in Section 2

is rate sharp. A general construction of adaptive estimators over two convex parameter

spaces was given. However in many situations one is interested in adaptation over more

than two parameter spaces. In this section we consider adaptation over a collection of

parameter spaces. The construction of the adaptive estimator is based on the construc-

tion of tests between pairs of parameter spaces. The adaptive estimator shows that

the lower bound on the cost of adaptation given in Section 2 can still be attained over

finitely many convex parameter spaces which satisfy certain regularity conditions on the

moduli. These conditions are always satisfied when the parameter spaces are nested.
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5.1 Adaptation over nested parameter spaces

We begin by considering the case of adaptation over a collection of nested convex sets.

Let F1 ⊂ F2 ⊂ · · · ⊂ Fk be closed convex parameter spaces. For convenience we will

set F0 = ∅.
As in Section 4.1 let T̂i be linear estimators which satisfy

sup
f∈Fi

E(T̂i − Tf)2 ≤ ω2(
1√
n

,Fi).

For i 6= j, define the quantity γi,j > 0 as follows. If i ∧ j = min(i, j) = 1, let

γ2
i,j = 1 +

ω2( 1√
n
,Fi,Fj)

ω2( 1√
n
,F1)

and γ2
i,j,+ = 1 +

ω2
+( 1√

n
,Fi,Fj)

ω2( 1√
n
,F1)

. (60)

If i ∧ j ≥ 2, define γi,j and γi,j,+ recursively by

γ2
i,j = 1 +

ω2( 1√
n
,Fi,Fj)

max
1≤m≤i∧j−1

{ω2
+(

√
ln γm,i∧j,+

n
,Fm,Fi∧j)}+ ω2( 1√

n
,Fi∧j)

. (61)

and

γ2
i,j,+ = max(γi,j, γj,i) = 1 +

ω2
+( 1√

n
,Fi,Fj)

max
1≤m≤i∧j−1

{ω2
+(

√
ln γm,i∧j,+

n
,Fm,Fi∧j)}+ ω2( 1√

n
,Fi∧j)

. (62)

Let Ai ≥ 0 be defined by A2
1 = ω2( 1√

n
,F1) and

A2
i (n) = max

1≤m≤i−1



ω2

+(

√
ln γm,i,+

n
,Fm,Fi)



 + ω2(

1√
n

,Fi). (63)

for 2 ≤ i ≤ k. Then

γ2
i,j = 1 +

ω2( 1√
n
,Fi,Fj)

A2
i∧j(n)

and γ2
i,j,+ = 1 +

ω2
+( 1√

n
,Fi,Fj)

A2
i∧j(n)

.

Let

Vi,j =
1

ln γi,j

ω2(

√
ln γi,j

n
,Fi,Fj).
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Then for i 6= j

Bi,j =
1

2
sup
ε>0

(ω(ε,Fi,Fj)− ε
√

nVi,j)

=
1

2
sup

ε≤
√

ln γi,j
n

(ω(ε, Fi,Fj)− ε

√
n

ln γi,j

ω(

√
ln γi,j

n
,Fi,Fj))

≤ 1

2
ω(

√
ln γi,j

n
,Fi,Fj).

For i 6= j let T̂i,j be the estimator satisfying (35) - (37) with F = Fi, H = Fj and

V = Vi,j.

Let 1 ≤ i < j ≤ k. Then if f ∈ Fi,

E(T̂i − T̂i,j) = E(T̂i − Tf)− E(T̂i,j − Tf)

≥ −ω(
1√
n

,Fi)− ω(

√
ln γi,j

n
,Fi,Fj)

= −bi,j (64)

and

E(T̂i − T̂j,i) = E(T̂i − Tf)− E(T̂j,i − Tf)

≤ ω(
1√
n

,Fi) + ω(

√
ln γi,j

n
,Fj,Fi)

= bj,i. (65)

Note also that

V ar(T̂i − T̂i,j) ≤ 2(ω2(
1√
n

,Fi) +
1

ln γi,j

ω2(

√
ln γi,j

n
,Fi,Fj))

= vi,j (66)

and

V ar(T̂i − T̂j,i) ≤ 2(ω2(
1√
n

,Fi) +
1

ln γi,j

ω2(

√
ln γi,j

n
,Fj,Fi))

= vj,i. (67)

For i < j define

Ii,j = 1
(
T̂i,j − (4k

1
2 + 1)bi,j − (8k)

1
2 Aj(n) ≤ T̂i

≤ T̂j,i + (4k
1
2 + 1)bj,i + (8k)

1
2 Aj(n)

)
. (68)
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The quantity Ii,j defines a test between Fi and Fj. The test is in favor of Fi if Ii,j = 1.

Our adaptive estimation procedure is defined in terms of the tests Ii,j and the minimax

rate optimal estimator over Fi, T̂i. The procedure can be described as follows.

1. Test between F1 and Fi based on I1,i for all 1 < i ≤ k.

2. If all the test I1,i are in favor of F1, use T̂1 as the estimate of Tf .

3. Otherwise, delete F1 and repeat Steps 1 and 2.

Formally the estimator T̂ ∗ can be written as

T̂ ∗ =
k∑

i=1

(1− ∏

m<i

∏

j>m

Im,j)(
∏

j>i

Ii,j)T̂i. (69)

Theorem 5 Let F1 ⊂ F2 ⊂ · · · ⊂ Fk be closed convex parameter spaces. The estimator

T̂ ∗ defined in (69) is adaptively rate optimal over Fi for i = 1, ..., k. That is, T̂ ∗ attains

the exact minimax rate of convergence over F1 and attains the lower bound on adaptation

over Fi for 2 ≤ i ≤ k as given in Theorem 2. More specifically,

sup
f∈F1

E(T̂ ∗ − Tf)2 ≤ Cω2(
1√
n

,F1) (70)

and for 2 ≤ i ≤ k

sup
f∈Fi

E(T̂ ∗ − Tf)2 ≤ C


 max

1≤m≤i−1



ω2

+(

√
ln γm,i,+

n
,Fm,Fi)



 + ω2(

1√
n

,Fi)


 . (71)

Remark: In light of the lower bound given in Theorem 2, it is easy to see that for any

1 ≤ i ≤ k the upper bound given in (71) for the maximum mean squared error over Fi

is rate optimal given the performance of the estimator T̂ ∗ over Fm for m = 1, 2, ..., i− 1.

The basic ideas for the proof of Theorem 5 is similar to that of Theorem 4, but the

calculations involved are more complicated.

Lemma 3 The quantities Ai(n) defined in (63) are nondecreasing in i for 1 ≤ i ≤ k.

Proof: Note that for j < m ≤ i, γj,m,+ ≤ γj,i,+ and consequently

ω+(

√
ln γj,m,+

n
,Fj,Fm) ≤ ω+(

√
ln γj,i,+

n
,Fj,Fi)

It then follows that Ai(n) are nondecreasing in i.
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Lemma 4 If f ∈ Fi, then for j > i,

P (T̂ ∗ = T̂j) ≤ k
A4

i (n)

A4
j(n)

. (72)

where Ai(n) is defined as in (63). In particular, (72) holds for f ∈ Fi \ Fi−1.

Proof: It follows from (64) - (67) that for f ∈ Fi and i < m ≤ k

P (Ii,m = 0) ≤ P (T̂i − T̂i,m ≤ −(4k
1
2 + 1)bi,m − (8k)

1
2 Am(n))

+ P (T̂i − T̂m,i ≥ (4k
1
2 + 1)bm,i + (8k)

1
2 Am(n))

≤ exp


−(4k

1
2 bi,m + (8k)

1
2 Am(n))2

2vi,m




+ exp


−(4k

1
2 bm,i + (8k)

1
2 Am(n))2

2vm,i


 .

If

ω2(
1√
n

,Fi) ≥ 1

ln γi,m

ω2(

√
ln γi,m

n
,Fi,Fm),

then vi,m ≤ 2A2
i (n). Noting that e−2kx > 1

2
x−2k for x > 0 and k ≥ 1, so

exp


−(4k

1
2 bi,m + (8k)

1
2 Am(n))2

2vi,m


 ≤ exp

(
−2k

A2
m(n)

A2
i (n)

)

≤ 1

2

A4k
i (n)

A4k
m (n)

. (73)

If ω2( 1√
n
,Fi) < 1

ln γi,m
ω2(

√
ln γi,m

n
,Fi,Fm), then

exp


−(4k

1
2 bi,m + (8k)

1
2 Am(n))2

2vi,m


 ≤ exp


−16kω2(

√
ln γi,m

n
,Fi,Fm) + 8kA2

m(n)

4
ln γi,m

ω2(
√

ln γi,m

n
,Fi,Fm)




≤ exp


−(4k ln γi,m + 2k

A2
m(n)

ω2( 1√
n
,Fi,Fm)

)




≤ A4k
i (n)

ω4k( 1√
n
,Fi,Fm)

· 1

2

ω4k( 1√
n
,Fi,Fm)

A4k
m (n)

=
1

2

A4k
i (n)

A4k
m (n)

. (74)
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Combining (73) and (74) yields that

exp


−(4k

1
2 bi,m + (8k)

1
2 Am(n))2

2vi,m


 ≤ 1

2

A4k
i (n)

A4k
m (n)

.

Similarly,

exp


−(4k

1
2 bi,m + (8k)

1
2 Am(n))2

2vi,m


 ≤ 1

2

A4k
i (n)

A4k
m (n)

.

Therefore,

P (Ii,m = 0) ≤ A4k
i (n)

A4k
m (n)

for 1 ≤ i < m ≤ k. (75)

Denote by Ii =
∏

j>i Ii,j. Then

P (T̂ ∗ = T̂j) ≤ P (Im = 0 for all m = i, ..., j − 1)

≤ min
i≤m≤j−1

P (Im = 0)

≤



j−1∏

m=i

P (Im = 0)




1
j−i−1

. (76)

Noting that Ai(n) is nondecreasing in i, it then follows from (75) that

P (Im = 0) ≤
k∑

l=m+1

P (Im,l = 0) ≤
k∑

l=m+1

A4k
m (n)

A4k
l (n)

≤ k
A4k

m (n)

A4k
m+1(n)

. (77)

By combining (76) and (77), it follows

P (T̂ ∗ = T̂j) ≤ k
A4

i (n)

A4
j(n)

.

Lemma 5 Suppose f ∈ Fi \ Fi−1 and j < i. If |ET̂j − Tf | ≥ λ(bj,i + bi,j + Ai(n)) for

some λ > 4k1/2 − 2, then

P (T̂ ∗ = T̂j) ≤ exp


−(λ− 4k

1
2 − 2)2

4


 . (78)

Proof: We shall only give details of the proof when

ET̂j − Tf ≥ λ(bj,i + bi,j + Ai(n)).
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The case of ET̂j − Tf ≤ −λ(bj,i + bi,j + Ai(n)) can be handled similarly.

Let f ∈ Fi \ Fi−1. Then

P (T̂ ∗ = Tj) ≤ P (Ij,i = 1) ≤ P (T̂j − T̂i,j ≤ (4k
1
2 + 1)bi,j + (8k)

1
2 Ai(n)).

Note that

E(T̂j − T̂i,j − (4k
1
2 + 1)bi,j − (8k)

1
2 Ai(n))

= E(T̂j − Tf)− E(T̂i,j − Tf)− (4k
1
2 + 1)bi,j − (8k)

1
2 Ai(n)

≥ λbi,j + λAi(n)− 1

2
ω(

√
ln γi,j

n
,Fi,Fj)− (4k

1
2 + 1)bi,j − (8k)

1
2 Ai(n)

≥ (λ− 4k
1
2 − 2)


ω(

√
ln γi,j

n
,Fi,Fj) + Ai(n)


 .

Note that

V ar(T̂j − T̂i,j) ≤ vi,j = 2(ω2(
1√
n

,Fj) +
1

ln γi,j

ω2(

√
ln γi,j

n
,Fi,Fj)),

it follows that

P (T̂ ∗ = Tj) ≤ exp


−(λ− 4k

1
2 − 2)2

2
· (ω(

√
ln γi,j

n
,Fi,Fj) + Ai(n))2

vi,j




≤ exp


−(λ− 4k

1
2 − 2)2

4


 .

Proof of Theorem 5: The minimax rate optimality of T̂ over F1 now follows directly from

Lemma 4.

sup
f∈F1

E(T̂ ∗ − Tf)2 ≤ sup
f∈F1

E(T̂1 − Tf)2 +
k∑

j=2

sup
f∈F1

(E|T̂j − Tf |4) 1
2 · (P (T̂ ∗ = T̂j))

1
2

≤ ω2(
1√
n

,F1) +
k∑

j=2

ω2(
1√
n

,Fj) · A2
1(n)

A2
j(n)

≤ kω2(
1√
n

,F1). (79)

Now consider the case f ∈ Fi \ Fi−1 for some i > 1. Denote

J1 = {j < i : |ET̂j − Tf | ≤ (4k
1
2 + 2)(bj,i + bi,j + Ai(n))}

J2 = {j < i : |ET̂j − Tf | > (4k
1
2 + 2)(bj,i + bi,j + Ai(n))}.
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Then for j ∈ J1,

E(T̂j − Tf)2 ≤ ω2(
1√
n

,Fj) + (4k
1
2 + 2)2(bj,i + bi,j + Ai(n))2

If j ∈ J2, then |ET̂j − Tf | = λ(bj,i + bi,j + Ai(n)) for some λ > 4k
1
2 + 2. So

(E|T̂j − Tf |4) 1
2 ≤ 3V ar(T̂j) + 3λ2(bj,i + bi,j + Ai(n))2

≤ 4λ2(bj,i + bi,j + Ai(n))2.

And it follows from Lemma 5 that

(P (T̂ ∗ = Tj))
1
2 ≤ exp


−(λ− 4k

1
2 − 2)2

8


 .

Hence, for f ∈ Fi \ Fi−1 with i > 1

E(T̂ ∗ − Tf)2 =
k∑

j=i

E{(T̂j − Tf)21(T̂ ∗ = T̂j)}

≤ ∑

j∈J1

E(T̂j − Tf)2 +
∑

j∈J2

(E|T̂j − Tf |4) 1
2 (P (T̂ ∗ = T̂j))

1
2

+ E(T̂i − Tf)2 +
k∑

j=i+1

(E|T̂j − Tf |4) 1
2 (P (T̂ ∗ = T̂j))

1
2

≤ ∑

j∈J1

{ω2(
1√
n

,Fj) + (4k
1
2 + 2)2(bj,i + bi,j + Ai(n))2}

+
∑

j∈J2

4λ2(bj,i + bi,j + Ai(n))2 · exp


−(λ− 4k

1
2 − 2)2

4




+ω2(
1√
n

,Fi) +
k∑

j=i+1

6 ω2(
1√
n

,Fj) · k 1
2
A2

i (n)

A2
j(n)

≤ CA2
i (n)

where C is a constant not depending on f . Note that in the last inequality we use the

fact that λ2 exp
(
− (λ−4k1/2−2)2

4

)
are bounded as a function of λ.

Hence,

sup
f∈Fi

E(T̂ ∗ − Tf)2 = max
1≤m≤i

{
sup

f∈Fm\Fm−1

E(T̂ ∗ − Tf)2

}

≤ C max
1≤m≤i

{A2
m(n)} = CA2

i (n)

= C


 max

1≤m≤i−1



ω2

+(

√
ln γm,i,+

n
,Fm,Fi)



 + ω2(

1√
n

,Fi)


 .
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5.2 Adaptation over non-nested parameter spaces

Many common parameter spaces of interest such as Lipschitz spaces and Besov spaces are

not nested. However, they often have nested structure in terms of modulus of continuity.

Theorem 5 can be generalized to such non-nested parameter spaces.

Let Fi, i = 1, ..., k be closed, convex parameter spaces which are not necessarily

nested. For any parameter set F , let C.Hull(F) denote the convex hull of F . Suppose

the parameter spaces Fi satisfy the following conditions on the modulus of continuity.

1. For l ≤ i and m ≤ j,

ω(ε,Fl,Fm) ≤ Cω(ε,Fi,Fj)

for some constant C > 0.

2. For 2 ≤ i ≤ k,

ω(ε,Gi) ³ ω(ε, C.Hull(Gi))

where Gi = ∪i
m=1Fm.

Note that conditions 1 and 2 are trivially satisfied if Fi are nested.

As shown in Cai and Low (2002), the minimax linear rate of convergence for estimat-

ing a linear functional Tf over a parameter set F is determined by the modulus over its

convex hull, ω( 1√
n
, C.Hull(F)). Conditions 1 and 2 together yield

ω(ε,Fi) ³ ω(ε, C.Hull(Gi))

and this consequently implies that for 1 ≤ i ≤ k there exists a rate optimal linear

estimator T̂i over Fi such that

sup
f∈∪i

m=1Fm

E(T̂i − Tf)2 ≤ Cω(
1√
n

,Fi). (80)

Now define the quantities γi,j and γi,j,+ as in (60), (61) and (62). Let the estimator T̂ ∗

be defined same as in Section 5.1 with the minimax rate optimal linear estimator T̂i over

Fi satisfying (80). Under the conditions 1 and 2 above, the estimator T̂ ∗ then achieves

adaptation over the parameter spaces Fi with minimum cost. More precisely, we have

the following.
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Theorem 6 Let Fi, i = 1, ..., k be closed convex parameter spaces satisfying conditions

1 and 2 above and let the estimator T̂ ∗ be given as above. Then T̂ ∗ attains optimal

adaptive rate of convergence over Fi for i = 1, ..., k. That is,

sup
f∈F1

E(T̂ ∗ − Tf)2 ≤ Cω2(
1√
n

,F1) (81)

and for 2 ≤ i ≤ k

sup
f∈Fi

E(T̂ ∗ − Tf)2 ≤ C


 max

1≤m≤i−1



ω2

+(

√
ln γm,i,+

n
,Fm,Fi)



 + ω2(

1√
n

,Fi)


 . (82)

The proof of Theorem 6 is essentially the same as that of Theorem 5. We omit the proof

for reasons of space.

5.3 An example of adaptation over non-nested spaces

The problem of estimating decreasing Lipschitz functions has been considered in Donoho

and Liu (1991). See also Kiefer (1982). A fully rate adaptive procedure over the de-

creasing Lipschitz classes has been introduced in Kang and Low (2002). The estimator

however performs poorly over general Lipschitz classes.

We now consider adaptive estimation over a mixed collection of decreasing and ar-

bitrary Lipschitz classes. For simplicity consider adaptive estimation of Tf = f(0) over

four parameter spaces, Fi, i = 1, 2, 3, and 4 where

F1 = FD(1,M), F2 = F (
2

3
,M), F3 = FD(

1

2
,M), and F4 = F (

1

2
,M).

Note that these parameter spaces are not nested. Standard arguments similar to those

found in Section 3 show that for i = 1, 2, 3, 4

ω+(ε,Fi,F4) ³ ω(ε,F4) = Cε
1
2 (1 + o(1)),

and

ω+(ε,F1,F3) ³ ω(ε,F1) = Cε
2
3 (1 + o(1)),

ω+(ε,F2,F3) ³ ω(ε,F3) = Cε
1
2 (1 + o(1)),

ω+(ε,F1,F2) ³ ω(ε,F2) = Cε
4
7 (1 + o(1)).

It is then easy to see that conditions 1 and 2 of Section 5.2 are satisfied.
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It then follows that the estimator given in Theorem 6 is fully rate adaptive in the sense

that it attains the minimax rate over the two decreasing parameter spaces FD(1, M) and

FD(1
2
,M) and only loses a logarithmic penalty over F (1,M) and F (1

2
,M). Note that

the loss of the logarithmic factor over both F (1,M) and F (1
2
,M) is in fact necessary

once you attain the optimal rate over FD(1,M). We believe that this is the first example

of such a phenomena where one loses a logarithmic factor on some classes yet is fully

adaptive over other function classes.

This example can be generalized to any finite number of Lipschitz classes, decreasing

Lipschitz classes and increasing Lipschitz classes with smoothness index 0 < α ≤ 1.

Hence although an adaptive estimator must pay a logarithmic penalty in terms of maxi-

mum risk over Lipschitz classes if the function is either monotonely increasing or mono-

tonely decreasing in a fixed interval of the point of interest then a penalty need not be

paid. This would of course be the case for most functions of interest.
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