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Abstract

This paper investigates the theoretical foundations of the t-distributed stochastic neighbor
embedding (t-SNE) algorithm, a popular nonlinear dimension reduction and data visu-
alization method. A novel theoretical framework for the analysis of t-SNE based on the
gradient descent approach is presented. For the early exaggeration stage of t-SNE, we show
its asymptotic equivalence to power iterations based on the underlying graph Laplacian,
characterize its limiting behavior, and uncover its deep connection to Laplacian spectral
clustering, and fundamental principles including early stopping as implicit regularization.
The results explain the intrinsic mechanism and the empirical benefits of such a compu-
tational strategy. For the embedding stage of t-SNE, we characterize the kinematics of
the low-dimensional map throughout the iterations, and identify an amplification phase,
featuring the intercluster repulsion and the expansive behavior of the low-dimensional map,
and a stabilization phase. The general theory explains the fast convergence rate and the
exceptional empirical performance of t-SNE for visualizing clustered data, brings forth the
interpretations of the t-SNE visualizations, and provides theoretical guidance for applying
t-SNE and selecting its tuning parameters in various applications.

Keywords: Clustering; Data visualization; Foundation of data science; Nonlinear dimen-
sion reduction; t-SNE

1. Introduction

Data visualization is critically important for understanding and interpreting the structure
of large datasets, and has been recognized as one of the fundamental topics in data sci-
ence (Donoho, 2017). A collection of machine learning algorithms for data visualization
and dimension reduction have been developed. Among them, the t-distributed stochastic
neighbor embedding (t-SNE) algorithm, proposed by van der Maaten and Hinton (2008),
is arguably one of the most popular methods and a state-of-art technique for a wide range
of applications (Wang et al., 2021).

Specifically, t-SNE is an iterative algorithm for visualizing high-dimensional data by
mapping the data points to a two- or finite-dimensional space. It creates a single map that
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reveals the intrinsic structures in a high-dimensional dataset, including trends, patterns,
and outliers, through a nonlinear dimension reduction technique. In the past decade, the
original t-SNE algorithm, along with its many variants (for example, Yang et al. (2009);
Carreira-Perpinán (2010); Xie et al. (2011); van der Maaten (2014); Gisbrecht et al. (2015);
Pezzotti et al. (2016); Im et al. (2018); Linderman et al. (2019); Chatzimparmpas et al.
(2020)), has made profound impact to the practice of scientific research, including ge-
netics (Platzer, 2013), molecular biology (Olivon et al., 2018), single-cell transcriptomics
(Kobak and Berens, 2019), computer vision (Cheng et al., 2015) and astrophysics (Traven
et al., 2017). In particular, the extraordinary performance of t-SNE for visualizing high-
dimensional data with intrinsic clusters has been widely acknowledged (van der Maaten,
2014; Kobak and Berens, 2019).

Compared to the extensive literature on the computational and numerical aspects of
t-SNE, there is a paucity of fundamental results about its theoretical foundations (see
Section 1.3 for a brief overview). The lack of theoretical understanding and justifications
profoundly limits the users’ interpretation of the results as well as the potentials for further
improvement of the method.

This paper aims to investigate the theoretical foundations of t-SNE. Specifically, we
present a novel framework for the analysis of t-SNE, provide theoretical justifications for
its competence in dimension reduction and visualizing clustered data, and uncover the
fundamental principles underlying its exceptional empirical performance.

1.1 Basic t-SNE Algorithm

Let {Xi}1≤i≤n be a set of p-dimensional data points. t-SNE starts by computing a joint
probability distribution over all pairs of data points {(Xi, Xj)}1≤i 6=j≤n, represented by a
symmetric matrix P = (pij)1≤i,j≤n ∈ Rn×n, where pii = 0 for all 1 ≤ i ≤ n, and for i 6= j,

pij =
pi|j + pj|i

2n
with pj|i =

exp(−‖Xi −Xj‖22/2τ2
i )∑

`∈{1,2,...,n}\{i} exp(−‖Xi −X`‖22/2τ2
i )
. (1)

Here τi are tuning parameters, which are usually determined based on a certain perplexity
measure and a binary search strategy (Hinton and Roweis, 2002; van der Maaten and Hinton,
2008). Similarly, for a two-dimensional1 map {yi}1≤i≤n ⊂ R2, we define the joint probability
distribution over all pairs {(yi, yj)}1≤i 6=j≤n through a symmetric matrix Q = (qij)1≤i,j≤n
where qii = 0 for all 1 ≤ i ≤ n and for i 6= j,

qij =
(1 + ‖yi − yj‖22)−1∑

`,s∈{1,2,...,n},` 6=s(1 + ‖y` − ys‖22)−1
. (2)

Intuitively, P and Q are similarity matrices summarizing the pairwise distances of the high-
dimensional data points {Xi}1≤i≤n, and the two-dimensional map {yi}1≤i≤n, respectively.
Then t-SNE aims to find {yi}1≤i≤n that minimizes the KL-divergence between P and Q,
that is,

(y1, ..., yn) = arg min
y1,...,yn

DKL(P,Q) = arg min
y1,...,yn

∑
i,j∈{1,2,...,n}

i 6=j

pij log
pij
qij
. (3)

1. Throughout, we focus on the two-dimensional embedding for ease of presentation. However, all the
theoretical results obtained in this work holds for any finite constant embedding dimension.
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Many algorithms have been proposed to solve this optimization problem. The most widely
used algorithm was proposed in van der Maaten and Hinton (2008), which draws on a
variant of gradient descent algorithm, with an updating equation

y
(k+1)
i = y

(k)
i + hD

(k)
i +m(k+1)(y

(k)
i − y

(k−1)
i ), for i = 1, ..., n, (4)

where h ∈ R+ is a prespecified step size parameter, D
(k)
i = 4

∑
1≤j≤n,j 6=i(y

(k)
j − y

(k)
i )S

(k)
ij ∈

R2 is the gradient term corresponding to yi, with S
(k)
ij = (pij − q(k)

ij )/(1 + ‖y(k)
i − y

(k)
j ‖22) ∈

R, and m(k) ∈ R+ is a prespecified momentum parameter. The algorithm starts with

an initialization y
(0)
i = y

(−1)
i for i ∈ {1, 2, ..., n}, drawn independently from a uniform

distribution on [−0.01, 0.01]2, or from N(0, δ2I) for some small δ > 0.
As indicated by van der Maaten and Hinton (2008), the inclusion of the momentum

term m(k+1)(y
(k)
i − y

(k−1)
i ) in (4) is mainly to speed up the convergence and to reduce the

risk of getting stuck in a local minimum. In this paper, for simplicity and generality we
focus on the basic version of the t-SNE algorithm based on the simple gradient descent,
with the updating equation

y
(k+1)
i = y

(k)
i + hD

(k)
i , for i = 1, ..., n. (5)

In van der Maaten and Hinton (2008) and van der Maaten (2014), the recommended total
number of iterations is 1000, while the step size h is initially set as 400 or 800, and is
updated at each iteration by an adaptive learning rate scheme of Jacobs (1988).

The standard gradient descent algorithm as in (5) suffers from a slow convergence rate
and even non-convergence in some applications. As an amelioration, van der Maaten and
Hinton (2008) proposed an early exaggeration technique, applied to the initial stages of the
optimization, that helps create patterns in the visualization and speed up the convergence.
Such a computational strategy has been standard in practical use. In fact, most of the
current software implementations of t-SNE are based on an early exaggeration stage followed
by an embedding stage that iterates a certain gradient descent algorithm. In our setting,
these two stages can be summarized as follows.

Early exaggeration stage. For the first K0 > 0 iterations, the pij ’s in the gradient term

D
(k)
i are multiplied by some exaggeration parameter α > 0, so the updating equation for

this early exaggeration stage becomes

y
(k+1)
i = y

(k)
i + h

∑
1≤j≤n,j 6=i

(y
(k)
j − y

(k)
i )S

(k)
ij (α), i = 1, ..., n, (6)

where S
(k)
ij (α) = (αpij − q(k)

ij )/(1 + ‖y(k)
i − y

(k)
j ‖22) ∈ R, and the factor 4 in D

(k)
i is absorbed

into the step size parameter h. We refer to this first stage of the t-SNE algorithm as the
early exaggeration stage.

In van der Maaten and Hinton (2008), the authors choose α = 4 and K0 = 50 for the
early exaggeration stage, whereas later in van der Maaten (2014), it is recommended that
α = 12 and K0 = 250. In particular, it is empirically observed that, the early exaggeration
technique enables t-SNE to find a better global structure in the early stages of the opti-
mization by creating very tight clusters of points that easily move around in the embedding
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space (van der Maaten, 2014); this observation is later supported by some pioneering the-
oretical investigations (see Section 1.3). Nevertheless, there are interesting questions to be
answered concerning (i) the underlying principles and mechanism behind such a computa-
tional strategy, (ii) the limit behavior of the low-dimensional map, (iii) how sensitive is the
performance of t-SNE with respect to the choice of tuning parameters (α, h,K0), and (iv)
how to efficiently determine these parameters to achieve the best empirical performance.

Figure 1: An illustration of the t-SNE iterations that visualize samples from the MNIST
dataset (Section 5). Each sample corresponds an image of handwritten digit
“2,” “4,” “6,” or “8.” The visulaizations are obtained using the Rtsne function
in the R package Rtsne, by selecting the exact t-SNE mode (theta=0, pca=F),
dropping the momentum terms (momentum=0, final momentum = 0), and set-
ting perplexity=30 (default), α = 12 (default), h = 200 (default) in (6), and
K0 = 40. The first three plots (top row) correspond to the early exaggeration
stage, while the last three plots (bottom row) correspond to the embedding stage.

Embedding stage. After the early exaggeration stage, the exaggeration parameter α is
dropped and the original iterative algorithm (5) is carried out till attaining a prespecified
number of steps. We refer to this second stage as the embedding stage. The final output is

a two-dimensional map {y(K1)
i }1≤i≤n, commonly treated as a low-dimensional embedding

of the original data {Xi}1≤i≤n, expected to preserve its intrinsic geometric structures.
In addition to data visualization, t-SNE is sometimes also used as an intermediate step

for clustering, signal detection, among many other purposes. In particular, it has been
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observed that, when applied to high-dimensional clustered data, t-SNE tends to produce
a visualization with more separated clusters, which are often in good agreement with the
clusters found by a dedicated clustering algorithm (Kobak and Berens, 2019). See Figure 1
for an example of data visualization using such a basic t-SNE algorithm.

1.2 Main Results and Our Contribution

A formal theoretical framework is introduced for the analysis of t-SNE that relies on a joint
statistical and computational analysis. The key contribution of the present work can be
summarized as follows:

• We rigorously establish the asymptotic equivalence between the early exaggeration
stage and power iterations. Our theory unveils novel properties such as the implicit
regularization effect and the necessity of early stopping in the early exaggeration stage
for weakly clustered data.

• We characterize the behavior of t-SNE iterations at the embedding stage by identifying
an amplification phase along with its intercluster repulsion and expansion phenomena,
and a stabilization phase of this stage.

• We give the theoretical guidance for initialization and selecting the tuning parameters
at both stages in a flexible and data-adaptive manner.

• We provide practical advice on applying t-SNE and interpreting the t-SNE visualiza-
tions of high-dimensional clustered data.

The main results can be explained in more detail from three perspectives.

Early exaggeration stage. Through a discrete-time analysis (Sections 2.1 and 2.2),
we establish the asymptotic equivalence between the early exaggeration stage and power
iterations based on the underlying graph Laplacian associated with the high-dimensional
data, providing a spectral-graphical interpretation of the algorithm. We show the implicit
spectral clustering mechanism underlying this stage, which explains the adaptivity and
flexibility of t-SNE for visualizing clustered data without specifying the number of clusters.
Specifically, for the cases where {Xi}1≤i≤n are approximately clustered into R groups, we

make the key observation that the coordinates of {y(k)
i }1≤i≤n converge to the R-dimensional

Laplacian null space, leading to a limiting embedding where the elements of {y(k)
i }1≤i≤n are

well-clustered according to their true cluster membership. On the other hand, through a
continuous-time analysis (Section 2.3), we study the underlying gradient flow and uncover
an implicit regularization effect depending on the number of iterations. In particular, our
analysis implies that when dealing with noisy and approximately clustered data, one should
stop early in the early exaggeration stage to avoid “overshooting.” These results justify the
empirical observations about the benefits of the early exaggeration technique in creating
cluster structures and speeding up the algorithm. For more details about comparison with
the existing results, see Section 1.3 and the discussions after Corollaries 7 in Section 2.

Embedding stage. We provide a mechanical interpretation of the algorithm by char-
acterizing the kinematics of the low-dimensional map at each iteration. Specifically, in
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Section 3 we identify an amplification phase within the embedding stage, featuring the lo-
cal intercluster repulsion (Theorem 13) and the global expansive behavior (Theorem 15)

of {y(k)
i }1≤i≤n. In the former case, it is shown that the movement of each y

(k)
i to y

(k+1)
i

is jointly determined by the repulsive forces pointing toward y
(k)
i from each of the other

clusters (Figure 2), that amounts to increasing spaces between the existing clusters; in the

latter case, it is shown the diameter of {y(k)
i }1≤i≤n may strictly increase after each iter-

ation. We observe that, following the amplification phase, there is a stabilization phase

where {y(k)
i }1≤i≤n is locally adjusted to achieve at a finer embedding of {Xi}1≤i≤n. These

results together explain the fast convergence rate and the exceptional empirical performance
of t-SNE for visualizing clustered data. The articulation of these phenomena also leads to
useful practical guidances. See below and Remark 16 in Section 3 for more details.

Figure 2: Illustration of the intercluster repulsion where the original data {Xi}1≤i≤n have

three clusters. The position of y
(k+1)
i is jointly determined by y

(k)
i and two repul-

sive forces f
(k)
i1 and f

(k)
i2 pushing y

(k)
i away from the other two clusters.

Practical implications. The general theory brings forth the interpretations of the t-SNE
output, and provides theoretical guidance for selecting tuning parameters and for initial-
ization. In Section 4 we illustrate the general theory on two examples of high-dimensional
clustered data, one generated from a Gaussian mixture model, and another from a noisy
nested sphere model. We also analyze in Section 5 a real-world dataset to further demon-
strate the practical implications of our theory. In particular, our analysis allows for a wider
spectrum of tuning parameters (Figure 10 and Equation (39)) and initialization procedures
than those considered in previous theoretical works (Arora et al., 2018; Linderman and
Steinerberger, 2019). Moreover, our theoretical results support the state-of-art practice
(Kobak and Berens, 2019; Kobak and Linderman, 2021), but also lead to novel insights
(e.g., the first item below) that has been unknown to our knowledge. In the following, we
summarize our general advice on applying t-SNE to potentially clustered data:
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• For weakly clustered data, one may adopt the early exaggeration technique, but needs
to stop early (for example, set K0 = b(log n)2c) to avoid overshooting – failure of
stopping early may lead to false clustering; see Figure 5 below for an illustration.

• t-SNE visualization based on random initialization and early exaggeration is reliable
in terms of cluster membership but not relative position of clusters. For example, the
neighboring clusters in visualization may not be interpreted as neighboring clusters
in the original data; see Figure 6 below for an illustration.

• Occasionally, false clustering may appear as an artifact of random initialization and
intercluster repulsion. Therefore, it is helpful to run t-SNE multiple times to fully
assess the effect of random initialization; see Figure 6 below for an illustration.

• For strongly clustered data, one can speed up the algorithm by replacing the early

exaggeration stage by a simple spectral initialization2 where (y
(0)
1 ,y

(0)
2 ) are the eigen-

vectors associated with the smallest two eigenvalues of L(P).

1.3 Related Work

The impressive empirical performance of t-SNE has recently attracted much theoretical
interests. Lee and Verleysen (2011) investigated the benefits of the so-called shift-invariant
similarities used in the stochastic neighbor embedding and its variants. Later on, they
further identified two key properties of these visualization methods (Lee and Verleysen,
2014). In Shaham and Steinerberger (2017), a large family of methods including t-SNE as a
special case were studied and shown to successfully map well-separated disjoint clusters from
high dimensions to the real line so as to approximately preserve the clustering. In Arora
et al. (2018), a theoretical framework was developed to formalize the notion of visualizing
clustered data, which is used to analyze the early exaggeration stage of t-SNE, and to
justify its high visualization quality. Linderman and Steinerberger (2019) showed that, in
the early exaggeration stage of t-SNE, with properly chosen parameters α and h, a subset of
the two-dimensional map belonging to the same cluster will shrink in diameter, suggesting
well-clustered visualization following iterations. We note that connections between the early
exaggeration stage and power iterations have been pointed out in Arora et al. (2018) and
Linderman and Steinerberger (2019), but the discussions therein are mostly informal and
heuristic. In contrast, we provide rigorous theoretical justification for such a connection,
identify its condition and explicate its consequences. By extending the idea of t-SNE,
Im et al. (2018) considered a class of methods with various loss functions based on the
f -divergence, and theoretically assessed the performances of these methods based on a
neighborhood-level precision-recall analysis. More recently, Zhang and Steinerberger (2021)
proposed to view t-SNE as a force-based method which generates embeddings by balancing
attractive and repulsive forces between data points. In particular, the limiting behavior
of t-SNE was analyzed under a mean-field model where a single homogeneous cluster is
present. At the empirical side, the recent works of Kobak and Berens (2019) and Kobak
and Linderman (2021) summarize the state-of-art practice of using t-SNE to biological data.

2. An illustration is provided in Figure 4.1 of Linderman and Steinerberger (2019).
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A comprehensive survey of existing data visualization methods and their properties can be
found in Nonato and Aupetit (2018).

Despite these pioneering endeavors, the theoretical understanding of t-SNE is still lim-
ited. Many intriguing phenomena and important features that arise commonly in practice
have not been well understood or properly explained. Moreover, it remains unclear how to
properly interpret the t-SNE visualization and its potential artifacts. These important ques-
tions are carefully addressed in the current work for the case of clustered data. Compared to
the existing works, the theoretical framework developed in our work leads to identification
and explication of novel properties, phenomena, and important practical implications on
t-SNE, as summarized at the beginning of Section 1.2.

1.4 Notation and Organization

For a vector a = (a1, ..., an)> ∈ Rn, we denote diag(a1, ..., an) ∈ Rn×n as the diagonal

matrix whose i-th diagonal entry is ai, and define the `p norm ‖a‖p =
(∑n

i=1 a
p
i

)1/p
. For

a matrix A = (aij) ∈ Rn×n, we define its Frobenius norm as ‖A‖F =
√∑n

i=1

∑n
j=1 a

2
ij , its

`∞-norm as ‖A‖∞ = max1≤i,j≤n |aij |, and its spectral norm as ‖A‖ = sup‖x‖2≤1 ‖Ax‖2; we
also denote A.i ∈ Rn as its i-th column and Ai. ∈ Rn as its i-th row. Let O(n, k) = {V ∈
Rn×k : V>V = Ik} be the set of all n× k orthonormal matrices and On = O(n, n), the set
of n-dimensional orthonormal matrices. For a rank r matrix A ∈ Rn×n with 1 ≤ r ≤ n, its
eigendecomposition is denoted as A = UΓU> where U ∈ O(n, r) with its columns being
the eigenvectors, and Γ = diag(λ1(A), λ2(A), ..., λr(A)) with λmin(A) = λ1(A) ≤ ... ≤
λn(A) = λmax(A) being the ordered eigenvalues of A. For a smooth function f(x), we
denote ḟ(x) = df(x)/dx and f̈(x) = d2f(x)/dx2. For any integer n > 0, we denote the set
[n] = {1, 2, ..., n}. For a finite set S, we denote its cardinality as |S|. For a subset S ⊆ Rn,
we define its diameter diam(S) = supx,y∈S ‖x− y‖2. For sequences {an} and {bn}, we write
an = o(bn) or an � bn if limn an/bn = 0, and write an = O(bn), an . bn or bn & an if there
exists a constant C such that an ≤ Cbn for all n. We write an � bn if an . bn and an & bn.
Throughout, C,C1, C2, ... are universal constants, that can vary from line to line.

The rest of the paper is organized as follows. Section 2 presents the theoretical analysis
for the early exaggeration stage of t-SNE. Section 3 analyzes the embedding stage. The
general theory is then applied in Section 4 to two specific settings of model-based clus-
tered data, one under a Gaussian mixture model and another under a noisy nested sphere
model. Analysis of a real-world dataset is presented in Section 5. Section 6 discusses po-
tential applications, extensions and other related problems. Proofs of our main results and
supplementary figures are collected in Appendix A to F.

2. Analysis of the Early Exaggeration Stage

2.1 Asymptotic Graphical Interpretation and Localization

We start with a key observation that connects the updating equation (6) to some graph-
related concepts. To this end, we introduce the following definition.

8



Theoretical Foundation of t-SNE

Definition 1 (Degree & Laplacian Operators) For a symmetric matrix A = (aij)1≤i,j≤n ∈
Rn×n, define the degree operator D : Rn×n → Rn×n by D(A) = diag(

∑n
i=1 ai1, ...,

∑n
i=1 ain),

and the Laplacian operator L : Rn×n → Rn×n by L(A) = D(A)−A.

We define S
(k)
α = (S

(k)
ij (α))1≤i,j≤n ∈ Rn×n with S

(k)
ii (α) ≡ 0 for all i ∈ [n]. Then we can

rewrite the updating equation (6) using the matrix form as

y
(k+1)
` = [In − hL(S(k)

α )]y
(k)
` , ` = 1, 2, (7)

where In ∈ Rn×n is the identity matrix, and y
(k)
` ∈ Rn consists of the `-th coordinates

of {y(k)
i }1≤i≤n. As a consequence, for each iteration k, if we treat the symmetric matrix

S
(k)
α as the adjacency matrix of a weighted graph G(k) with n nodes that summarizes the

pairwise relationships between n data points {Xi}1≤i≤n, Equation (7) has an interpretation
that links to the Laplacian matrix of such a weighted graph.

To better understand the meaning and the properties of the underlying graph G(k) that

evolve over iterations, we take a closer look at its adjacency matrix S
(k)
α . In particular, one

should keep in mind that in common applications of t-SNE, the early exaggeration stage has
the following empirical features: (i) moderate or relatively large values of the exaggeration

parameter α (default 12 in the R package Rtsne), (ii) local initializations {y(0)
i }1≤i≤n around

the origin (see Section 1.1), and (iii) relative small diameters diam({y(k)
i }1≤i≤n) over the

iterations (Figure 1).

Our next result shows that, these empirical features of t-SNE have deep connections
to the asymptotic behavior of the evolving underlying graphs and their adjacency matrices

{S(k)
α }k≥1 in the large sample limit (as n→∞).

Theorem 2 (Asymptotic Graphical Interpretation) Recall that P = (pij)1≤i,j≤n is

defined in (1) and denote η(k) = [diam({y(k)
i }1≤i≤n)]2. Then for any i, j ∈ [n] with i 6= j,

and each k ≥ 1 such that η(k) < 1, we have∣∣∣∣S(k)
ij (α)− αpij +

1

n(n− 1)

∣∣∣∣ ≤ αpijη(k) +
2η(k)

n(n− 1)(1− η(k))
. (8)

Consequently, if we denote 1n = (1, ..., 1)> ∈ Rn, and Hn = 1
n(n−1)(1n1

>
n − In), then for

each k ≥ 1, as long as (η(k), α) satisfies

η(k) � ‖P‖
n‖P‖∞

, α� 1

n‖P‖
, as n→∞, (9)

we have

lim
n→∞

‖S(k)
α − (αP−Hn)‖
‖αP−Hn‖

= 0. (10)

The above theorem implies that, for large n, as long as the diameter of {y(k)
i }1≤i≤n

remains sufficiently small and the exaggeration parameter α sufficiently large, the adjacency
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matrix S
(k)
α behaves almost like a fixed matrix αP−Hn across the iterations. In other words,

we may treat the updating equation (7) as an approximately linear equation

y
(k+1)
` ≈ [In − hL(αP−Hn)]y

(k)
` , ` = 1, 2, (11)

where the linear operator In−hL(αP−Hn) only relies on the Laplacian of a fixed weighted
graph whose adjacency matrix is given by the scaled and shifted similarity matrix αP−Hn.
This essentially opens the door to our key result on the asymptotic equivalence between the
early exaggeration stage and power iterations.

Before we formally present such a result, we need to first point out an important phe-
nomenon concerning the global behavior of the low-dimensional map at the early exagger-
ation stage. Specifically, we make the following assumptions on the initialization and the
tuning parameters (α, h, k):

(I1) {y(0)
i }1≤i≤n satisfies min`∈[2] ‖y

(0)
` ‖2 > 0, and max`∈[2] ‖y

(0)
` ‖∞ = O(1) as

n→∞; and

(T1) the parameters (α, h, k) satisfy k(nhα‖P‖∞ + h/n) = O(1) as n→∞.

Intuitively, Condition (I1) says that the initialization {y(0)
i }1≤i≤n should not be simply all

zeros or unbounded, whereas the condition (T1) – as a consequence of (8) – essentially

requires the cumulative deviations of hL(S
(k)
α ) from hL(αP−Hn) to be bounded. Our next

result shows that, under these assumptions, the diameter of {y(k)
i }1≤i≤n may not increase

throughout the iterations, so the embedding remains localized within the initial range.

Proposition 3 (Localization) Suppose (I1) and (T1) hold. We have

diam({y(k+1)
i }1≤i≤n) ≤ C max

`∈[2]
‖y(0)

` ‖∞, (12)

for some universal constant C > 0.

The above proposition confirmed the globally localized and non-expansive behavior of

{y(k)
i }1≤i≤n over the early exaggeration stage observed in practice (Figure 1). Concerning

Theorem 2, it tells us the step-specific condition η(k) � ‖P‖/(n‖P‖∞) therein can be

generalized to all finite k’s as long as the initialization {y(0)
i }1≤i≤n is concentrated around

0, that is, max`∈[2] ‖y
(0)
` ‖

2
∞ � ‖P‖/(n‖P‖∞). Furthermore, when (α, h) are chosen such

that the step-wise deviation diminishes (i.e., rn = nhα‖P‖∞ + h/n → 0), Proposition
3 indicates that (10) may remain true for even larger numbers of iterations as long as
k = O(r−1

n ).

2.2 Asymptotic Power Iterations, Implicit Spectral Clustering and Early
Stopping

With the above graphical interpretation of the updating equation (7) in mind, we now
present our key result concerning the asymptotic equivalence between the early exaggeration
stage and a power method based on the Laplacian matrix L(αP −Hn). In particular, we
make the following assumptions on the initialization and the tuning parameters:

10
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(I2) {y(0)
i }1≤i≤n satisfies max`∈[2] ‖y

(0)
` ‖

2
∞ = o(‖P‖/(n‖P‖∞)) as n→∞; and

(T1.D) The parameters (α, h, k) satisfy α � (n‖P‖)−1 and k(nhα‖P‖∞ +
h/n) = o(1) as n→∞.

Condition (I2) follows from the discussion subsequent to Proposition 3, which along with
Condition (T1.D), which is analogous to but stronger than (T1), ensures the conditions for
Theorem 2 and Proposition 3 to hold simultaneously.

Theorem 4 (Asymptotic power iterations) Under Conditions (I1) (I2) and (T1.D),
we have (10) and (12) hold, and so does the asymptotic equivalence

lim
n→∞

‖y(k)
` − [In − hL(αP−Hn)]ky

(0)
` ‖2

‖y(0)
` ‖2

= 0. (13)

The above theorem suggests that each step of the early exaggeration stage may be
treated as a power method in the sense that

y
(k+1)
` ≈ [In − hL(αP−Hn)]ky

(0)
` . (14)

The normalization by ‖y(0)
` ‖2 in (13) makes sure the result to be scale-invariant to the

initialization. It is well-known that, for a fixed matrix G ∈ Rn×n with 1 as its unique
largest eigenvalue in magnitude, the power iteration y(k) = Gky(0) converges to the asso-
ciated eigenvector as k →∞. As a result, when treated as an approximate power method,
the early exaggeration stage of t-SNE essentially aims to find the direction of the leading
eigenvector(s) of the matrix In− hL(αP−Hn), which, as will be shown shortly, is actually
equivalent to finding the eigenvector(s) associated with the smallest eigenvalue of the graph
Laplacian L(αP−Hn), or the null space of L(P).

Led by these observations, our next results concern the limiting behavior of the low-

dimensional map {y(k)
i }1≤i≤n as the number of iterations k →∞. Note that any Laplacian

matrix has an eigenvalue 0 associated with a trivial eigenvector n−1/21. Given the affinity
(14) between t-SNE and the power method, we start by showing that, the linear operator
[In − hL(αP −Hn)]k would converge eventually to a projection operator associated with
the null space of the Laplacian L(P). In particular, we let R ≥ 1 be the dimension of the
null space of the Laplacian L(P) ∈ Rn×n; and assume

(T2) the parameters (α, h) satisfies κ < hλR+1(L(αP)) ≤ hλn(L(αP)) < 1 for
some constant κ ∈ (0, 1).

This assumption corresponds to the so-called “eigengap” condition in the random matrix
literature, which gives the signal strength requirements for the recovery of the eigenval-
ues/eigenvectors, and, in the meantime, the conditions for the tuning parameters.

Theorem 5 (Convergence of power iterations) Let U ∈ O(n,R) such that its columns
consist of an orthogonal basis for the null space of L(P). Suppose kh = o(n) and (T2) hold.
Then, we have

lim
k→∞

‖[In − hL(αP−Hn)]ky −UU>y‖2
‖y‖2

= 0. (15)

11
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Combining Theorems 4 and 5, we know that for sufficiently large n and k, the t-SNE

iterations y
(k)
` may converge to the projection of the initial vectors y

(0)
` into the null space

of the Laplacian L(P), that is

y
(k)
` ≈ UU>y

(0)
` , ` ∈ [2]. (16)

Now, to better understand the above theorem and its implications on the limiting behavior
of t-SNE applied to clustered data, we study the null space of a special class of Laplacian
matrices, corresponding to the family of weighted graphs consisting of R ≥ 2 connected
components. In fact, when the original data {Xi}1≤i≤n are well-clustered and τi’s are ap-
propriately chosen, the family of disconnected weighted graphs arise naturally since their
adjacency matrices are good approximations of P based on these data (Balakrishnan et al.,
2011). We illustrate this point further in Section 4. In the following, we say a symmetric
adjacency matrix P is “well-conditioned” if its associated weighted graph has R ≥ 2 con-
nected components. Our next result characterizes the Laplacian null space corresponding
to these disconnected weighted graphs.

Proposition 6 (Laplacian null space) Suppose A ∈ Rn×n is symmetric and well con-
ditioned. Then the smallest eigenvalue of the Laplacian L(A) is 0 and has multiplicity R,
and the associated eigen subspace is spanned by {θ1, ...,θR} where for each r ∈ {1, ..., R},

[θr]j =

{
1/
√
nr if the j-th node belongs to the r-th component

0 otherwise
,

and nr is the number of nodes in the r-th connected component. In particular, up to possible
permutation of coordinates, any vector u in the null space of L(A) can be expressed as

u =
a1√
n1


1n1

0
...
0

+
a2√
n2


0

1n2

...
0

+ ...+
aR√
nR


0
0
...

1nR

 , (17)

for some a1, ..., aR ∈ R.

From the above proposition, for a well-conditioned matrix, the components of any u in
the Laplacian null space has at most R distinct values, and whenever |{a1, ..., aR}| = R,
the coordinates share the same value if and only if the corresponding nodes fall in the
same connected component, i.e., the same cluster. Combining (16) and (17), one can see
that, for strongly clustered data, the output from the early exaggeration stage essentially
converges to the eigenvectors associated with the Laplacian null space. This leads to our
fourth practical advice at the end of Section 1.2.

We now generalize the analysis to the setting where the data {Xi}1≤i≤n is only weakly
clustered in the sense that there exists a well-conditioned symmetric matrix P∗ close to
P under properly chosen {τi}, and the underlying graph associated with P may not be
necessarily disconnected. More specifically, we assume

(T2.D) there exists a symmetric and well-conditioned matrix P∗ ∈ Rn×n satis-
fying (T2) and is sufficiently close to P in the sense that khα‖L(P∗−P)‖ = o(1).

12
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For a given P satisfying (T2.D), let nr with r ∈ [R] be the size of the r-th connected
component in the graph associated with P∗. Our next theorem obtains the implicit spectral
clustering and early stopping properties of the early exaggeration stage.

Theorem 7 (Implicit clustering and early stopping) Suppose the similarity P and
the tuning parameters (α, h, k) satisfy (T1.D) and (T2.D), and the initialization satisfies
(I1) and (I2). Then there exists some permutation matrix O ∈ Rn×n such that, for ` ∈ [2],

lim
(k,n)→∞

‖y(k)
` −Oz`‖2
‖y(0)

` ‖2
= 0, (18)

where
z` = (z`1, ..., z`1︸ ︷︷ ︸

n1

, z`2, ..., z`2︸ ︷︷ ︸
n2

, ..., z`R, ..., z`R︸ ︷︷ ︸
nR

)> ∈ Rn, (19)

and z`r = θ>r y
(0)
` /
√
nr for r ∈ [R].

Theorem 7 describes the limiting behavior of the low-dimensional map {y(k)
i }1≤i≤n as

(n, k)→∞, when the original data is approximately clustered. Specifically, elements from

{y(k)
i }1≤i≤n associated with a connected component of the underlying graph would converge

cluster-wise towards a few points on R2. In particular, Theorem 7 suggests that, at the end of
the early exaggeration stage, although the samples belonging to the same underlying cluster
tend to be clustered together in the t-SNE embeddings, the cluster centers of the t-SNE
embeddings only rely on the initialization, rather than the actual positions of the underlying
clusters. Therefore, if initialized randomly and noninformatively, the t-SNE embeddings at
the end of the early exaggeration stage tend to preserve only the local structures (i.e.,
the closeness of the samples from the same cluster) but not the global structures (i.e., the
relative positions of different clusters) of the original data (Kobak and Berens, 2019; Kobak
and Linderman, 2021). This observation, as illustrated in Figure 6, leads to our second
practical advice at the end of Section 1.2.

Our theory refines and improves the existing works such as Linderman and Steinerberger
(2019) and Arora et al. (2018) in various aspects. Firstly, our theoretical framework formal-
izes and explains the asymptotic equivalence between the early exaggeration stage and the
power iterations. The theory provides a precise description of the limiting behavior of the
low-dimensional map and the theoretical conditions. Secondly, unlike the previous works
where only one particular initialization and relatively limited range of tuning parameters
were considered, our analysis yields general conditions and allows for more flexible choices
of the initialization procedures and tuning parameters. Finally, our analysis unveils the
need of stopping early in the early exaggeration stage for weakly clustered data, which is
a novel feature. Specifically, both Conditions (T1.D) and (T2.D) allow k → ∞ but in a
controlled manner – whenever ‖L(P∗−P)‖ 6= 0, there is a data dependent upper bound on
the iteration number

k � 1

hα‖L(P∗ −P)‖
,

which becomes more stringent for weakly clustered data (i.e., ‖L(P∗ −P)‖ not too small).
Such a phenomenon is also observed empirically (Figure 5), where failing to stop early would
lead to false clustering.
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2.3 Gradient Flow and Implicit Regularization

For ` ∈ {1, 2}, let {ỹ(k)
` }k≥0 be the sequence defined by the power iterations ỹ

(k)
` = [In −

hL(αP−Hn)]ky
(0)
` . Theorem 4 shows that {ỹ(k)

` }k≥0 well approximates the t-SNE iterations

{y(k)
` }k≥0 in the large sample limit. The sequence {ỹ(k)

` }k≥0 admits the updating equation

ỹ
(k+1)
` = ỹ

(k)
` − hL(αP−Hn)ỹ

(k)
` , k ≥ 0, (20)

with an initial value ỹ
(0)
` = y

(0)
` . Treating Equation (20) as an auxiliary gradient descent

algorithm to the original algorithm (7), a continuous-time analysis can be developed ac-

cordingly, which yields interesting insights about the t-SNE iterations {y(k)
` }k≥0.

We begin by modeling {ỹ(k)
` }k≥0 by a smooth curve Y`(t) with the Ansatz ỹ

(k)
` ≈

Y`(kh). Define a step function y`,h(t) = ỹ
(k)
` for kh ≤ t < (k + 1)h, and as h → 0, y`,h(t)

approaches Y`(t) satisfying

Ẏ`(t) = L(αP−Hn)Y`(t), (21)

with the initial value Y`(0) = ỹ
(0)
` = y

(0)
` . The above first-order differential equation (21) is

usually referred as the gradient flow associated with the power iteration sequence {ỹ(k)
` }k≥0,

whose limiting behavior can be studied through the step function y`,h(t). The following
theorem provides a non-asymptotic uniform upper bound on the deviation of y`,h(t) from

Y(t) over t ∈ [0, T ] and that of ỹ
(k)
` from Y(kh) over k ≤ T/h.

Proposition 8 (Gradient flow) For ` = 1, 2, and any given T > 0, we have

sup
t∈[0,T ]

‖y`,h(t)−Y`(t)‖2
‖Y`(t)‖2

≤ Th‖L(αP−Hn)‖2, (22)

where y`,h(t) is the continuous-time step process of {ỹ(k)
` } generated by (20), and Y`(t) is

the solution to the ordinary differential equation (21). As a consequence, for t = hk, if
kh2‖L(αP−Hn)‖2 → 0 as n→∞, then for ` ∈ {1, 2},

lim
(n,k)→∞

‖ỹ(k)
` −Y`(hk)‖2
‖y(0)

` ‖2
= 0. (23)

Combining Theorems 4 and 8, we obtain the approximation y
(k)
` ≈ Y`(kh) over a range

of k ≥ 0, for properly chosen parameters (α, h, k) and initialization. Consequently, the
properties of the solution path Y`(t) may provide important insights on the behavior of
the t-SNE iterations at the early exaggeration stage. We start by stating the following
proposition concerning the explicit expression of Y`(t).

Proposition 9 (Solution path) For ` ∈ {1, 2}, the first-order linear differential equation

(21) with initial value Y`(0) = y
(0)
` has the unique solution Y`(t) = exp(−tL(αP−Hn))y

(0)
` ,

where exp(·) is the matrix exponential defined as exp(A) =
∑∞

k=0
1
k!A

k. In particular,
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suppose L(P) have the eigendecomposition L(P) =
∑n

i=1 λiuiu
>
i where 0 = λ1 ≤ ... ≤ λn

and u1 = n−1/21n. Then we also have

Y`(t) = (u>1 y
(0)
` )u1 +

n∑
i=2

e−t(αλi−
1

n−1
)(u>i y

(0)
` )ui. (24)

Several important observations about the solution path Y`(t) can be made. Firstly, by
Proposition 9, for {u1, ...,um} where m ∈ [n] is the largest integer such that αλm ≤ 1

n−1 ,
we have

lim
t→∞

Y`(t) ∈ span({u1, ...,um}). (25)

This can be treated as a continuous version of the limiting behavior of the power iterations
obtained in Theorem 5: under the conditions of Theorem 5, we have αλm ≤ 1

n−1 for all

m ∈ [R] but αλR+1 >
1

n−1 , so that (25) implies that Y`(t) converges to the null space of
L(P). Secondly, as long as t = O(n), by orthogonality of {ui}, we have

‖Y`(t)‖22 .
n∑
i=1

e−2tαλi(u>i y
(0)
` )2. (26)

The right-hand side is monotonically nonincreasing in t. Hence, the average distance of
the rows in (Y1(hk),Y2(hk)) to the origin remains non-expansive over the iterations and is
bounded up to a constant by that of (Y1(0),Y2(0)). This result echos Proposition 3 based
on the discrete-time analysis.

The third and more insightful observation from (24) is its implications on the finite-

time behavior of the original t-SNE sequence {y(k)
` }k≥1, which complements our discrete-

time analysis. Specifically, for finite t > 0, the coefficient of the i-th basis ui in Y`(t) is
proportional to e−tαλi , which is nonincreasing in λi. Consequently, (24) implies that, in the
early steps of the iterations, the t-SNE algorithm imposes an implicit regularization effect

on the low-dimensional map {y(k)
i }1≤i≤n, in the sense that

y
(k)
` ≈ n

−1(1>n y
(0)
` )1n +

n∑
i=2

e−kh(αλi− 1
n−1

)(u>i y
(0)
` )ui. (27)

Comparing to the limit (25) or (16), during the early steps of the iterations, y
(k)
` is regu-

larized as a conical sum of all the eigenvector basis {ui}1≤i≤n, with larger weights on the
eigenvectors ui corresponding to the smaller eigenvalues of L(P), and smaller weights on
those corresponding to the larger eigenvalues of L(P). As the iteration goes, the contribu-
tions from the less informative eigenvectors with larger eigenvalues λi such that αλi >

1
n−1

decrease exponentially in k, whereas the contributions from the more informative eigenvec-
tors with smaller eigenvalues λi such that αλi <

1
n−1 increase with k.

Importantly, the inclusion of all the eigenvectors helps to better summarize the cluster
information in the original data and to avoid convergence to the trivial eigenvector n−1/21n.
Indeed, the convergence (25) by itself may not lead to a cluster structure in the limit, as
in many applications with weakly clustered data, the graph corresponding to P may be
simply connected under finite samples, so that the null space span({u1, ...,um}) is effec-
tively the one-dimensional space spanned by n−1/21 alone. However, as our next theorem
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shows, the benefit of the implicit regularization, brought about by stopping early at the

exaggeration stage, can be seen in the creation of desirable clusters in {y(k)
i }1≤i≤n for weakly

clustered data with approximately block-structured P. In particular, we make the following
assumptions analogous to (T1.D) and (T2.D) in the discrete-time analysis.

(T1.C) the parameters (α, h, t) satisfy α � [nλR+1(L(P))]−1 and t = o(n) as
n→∞;

(T2.C) there exists a symmetric and well-conditioned matrix P∗ ∈ Rn×n such
that λR+1(L(P∗))� max{(tα)−1, ‖L(P∗−P)‖}, and tα‖L(P∗−P)‖ = o(1) as
n→∞.

Similar to the previous conditions, Conditions (T1.C) and (T2.C) concerns the approximate
block structure of P, and ensures sufficient exaggeration and early stopping of the iterations.

Theorem 10 (Implicit regularization, clustering and early stopping) Under Con-
ditions (I1), (T1.C) and (T2.C), let U0 ∈ O(n,R) such that its columns span the null space
of P∗. Then, we have

lim
n→∞

‖Y`(t)−U0U
>
0 Y`(t)‖2

‖Y`(0)‖2
= 0, ` ∈ {1, 2}, (28)

and, for z` defined in Theorem 7, there exists a permutation matrix O ∈ Rn×n such that

lim
n→∞

‖Y`(t)−Oz`‖2
‖Y`(0)‖2

= 0, ` ∈ {1, 2}. (29)

An immediate consequence of the above theorem is the following corollary, which arrives
at the same conclusion as Theorem 7 through a different route.

Corollary 11 Suppose the conditions of Theorems 4 and 10 hold with t = hk, and kα2h2‖L(P−
Hn)‖2 → 0. Then the conclusion of Theorem 7 holds.

The above theorems provide a deeper theoretical explanation of the need of stopping
early at the exaggeration stage. On the one hand, the number of iterations should be

sufficiently large so that {y(k)
i }1≤i≤n moves away from the initialization and is sufficiently

close to a subspace where the underlying cluster information is properly stored. On the
other hand, the iterations should be also stopped early for weakly clustered data to avoid
“overshooting,” that is, convergence to the null space of the superficial Laplacian L(P),
which may only include the non-informative trivial eigenvector n−1/21n (Figure 5 right).

3. Analysis of the Embedding Stage

We have shown in Section 2 that the iterations in the early exaggeration stage essentially

create clusters in the low-dimensional map {y(k)
i }1≤i≤n, that agree with those underlying

{Xi}1≤i≤n. However, as indicated by Proposition 3, so far the low-dimensional map is con-
centrated and localized around zero, which may not be ideal for visualization purpose. In
addition, by Theorem 7, much information about {Xi}1≤i≤n other than its cluster mem-
bership are not reflected by the low-dimensional map. In this section, we show that, after
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transition to the embedding stage, the t-SNE iterations (5) essentially start by amplifying
and refining the existing cluster structures in the low-dimensional map and then aim at a
proper embedding of the original data.

We show that, starting from the embedding stage, the diameter of the low-dimensional

map {y(k)
i }1≤i≤n grows fast and they move in clusters as inherited from the early exag-

geration stage. Importantly, over the iterations, the elements of {y(k)
i }1≤i≤n belonging to

different clusters would in general move away from each other, resulting to an enlarged
visualization with more separated clusters. We refer these iteration steps presenting such a

drastically expansive, and intercluster-repulsive behavior of {y(k)
i }1≤i≤n as the amplification

phase of the embedding stage. We also show that, after a certain point, the conditions for
the fast expansion phenomenon no longer hold, which likely causes the change of behavior,
into a new phase which we refer as the stabilization phase. This is in line with the empir-
ical observation (Figure 3) that, after a few fast expansive iterations in the amplification
phase, the speed of expansion/amplification gradually reduces towards zero, and in the
stabilization phase the diameter only increases very slowly with the iterations.

Figure 3: An illustration of the two phase of the embedding stage based on the 1600 MNIST
samples described in Section 5. The iterations are counted from the beginning of
the embedding stage, and the amplification rate is the ratio between the diameters
of two consecutive embeddings.

Recall that the updating equation at the embedding stage is

y
(k+1)
i = y

(k)
i + h′

∑
j 6=i

S
(k)
ij (y

(k)
j − y

(k)
i ), (30)

where h′ is the step size that may not be identical to the one in the early exaggeration stage.
To understand the behavior of t-SNE at this stage, we start with the following proposition

characterizing the matrix S(k) = (S
(k)
ij )1≤i,j≤n over the amplification phase.

Proposition 12 For any integer k, if diam({y(k)
i }1≤i≤n) = o(1) as n → ∞, then, for any

i, j ∈ [n] such that i 6= j,
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1. if limn→∞ n
2pij = 0, it holds that S

(k)
ij = −1+O(η(k))

n(n−1) as n→∞; and

2. if limn→∞ n
2pij ≥ c for some constant c > 0, it holds that |S(k)

ij | � pij as n→∞.

Roughly speaking, Proposition 12 says that over the amplification phase, the matrix

S(k) = (S
(k)
ij )1≤i,j≤n essentially has two types of entries, determined by the magnitude of

the corresponding entries in P. Specifically, S
(k)
ij is negative with magnitude n−2 if pij is

much smaller than n−2, and otherwise S
(k)
ij has the same magnitude as pij . This observation

leads to the next theorem, which provides important insights on the updating equation (30)

by partitioning the contributions of {y(k)
i }1≤i≤n to an updated y

(k+1)
i into a few major

components, each corresponding to a distinct cluster in the original data. To this end,
we consider again the similarity matrix P that is only approximately well-conditioned, as
characterized by the following assumption.

(T2.E) There exists a symmetric and well-conditioned matrix P∗ ∈ Rn×n satis-
fying (T2.D), limn→∞ n

2‖P−P∗‖∞ = 0, and limn→∞
nr
n → γr ∈ (0, 1) for each

r ∈ [R].

The existence of well-conditioned P∗ induces an equivalence class on [n] characterizing the
underlying cluster membership. Specifically, for any i, j ∈ [n], we denote i ∼ j if and only if
the i-th node and the j-th node belong to the same graph component. Therefore, we have
the partition [n] = ∪r∈[R]Hr for mutually disjoint sets {Hr}1≤r≤R, with Hr corresponding
to the r-th equivalence class.

Next, we make assumptions on the initialization and parameters (α, h,K0) in the early
exaggeration stage, where K0 = K0(n)→∞ is the total number of iterations in that stage.
Specifically, we assume

(I3) the initialization is chosen such that ‖y(0)
1 ‖2 � ‖y

(0)
2 ‖2, max`∈[2] ‖y

(0)
` ‖∞ =

o(n−1/2) as n→∞, and there exists some constant C > 1 such that z` defined

in Theorem 7 satisfies C−1 ≤ n|z`i − z`j |/‖y
(0)
` ‖2 ≤ C for any i, j ∈ [R] such

that i 6= j, and ` ∈ {1, 2}; and

(T1.E) the parameters (α, h,K0) in (6) satisfy (T1.D), and, for Rn = (1 −
κ)K0+hK0[(αn‖P‖∞+1/n)·max`∈[2] ‖y

(0)
` ‖

2
∞+α‖L(P∗−P)‖], we have nRn(1+

n2‖P∗‖∞) = o(1) as n→∞.

Condition (I3) is mild as it can be satisfied with high probability by a straightforward
random initialization procedure, to be presented shortly. Condition (T1.E) is analogous to
but slightly stronger than (T1.D), by requiring a smaller cumulative approximation error

Rn between L(S
(k)
α ) and L(αP∗ −Hn), that is, more distinct clusters in {Xi}1≤i≤n.

Finally, for the parameters (h′,K1) in embedding stage, whereK1 = K1(n) is the number
of iterations within the amplification phase, we make the following assumption that controls
the cumulative approximation error in S(k) as suggested by Proposition 12.

(T3.E) diam({y(K0+K1)
i }1≤i≤n) = o(1), and the parameter h′ in (30) satisfies

K1h
′(n‖P∗‖∞ + 1/n) = O(1) as n→∞.
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Theorem 13 (Intercluster repulsion) Under Conditions (T1.E) (T2.E) (T3.E) and (I3),
for each K0 ≤ k ≤ K0 +K1 and any i ∈ [n], we have

y
(k+1)
i = y

(k)
i +

∑
r∈[R]\r0

f
(k)
ir + ε

(k)
i , (31)

where r0 ∈ [R] such that i ∈ Hr0, limn→∞ ‖ε(k)
i ‖2/‖f

(k)
ir ‖2 = 0 for all r ∈ [R] \ r0, and

f
(k)
ir =

h′|Hr|
n(n− 1)

(
y

(k)
i −

1

|Hr|
∑
j∈Hr

y
(k)
j

)
∈ R2.

In addition, we have

sup
K0≤k≤K0+K1

max
(i,j):i∼j

‖y(k)
i − y

(k)
j ‖2 � n−1(‖y(0)

1 ‖2 + ‖y(0)
2 ‖2), (32)

and
inf

K0≤k≤K0+K1

min
(i,j):i�j

‖y(k)
i − y

(k)
j ‖2 & n−1(‖y(0)

1 ‖2 + ‖y(0)
2 ‖2). (33)

A few remarks about the above theorem are in order. Firstly, Conditions (T1.E) (T2.E)
and (I3) concerning the initialization, parameter selection and the number of iterations in
the early exaggerations are not only compatible but also sufficient for the previous results,
including Theorems 4 and 7. This suggests the above intercluster repulsive phenomenon
at the embedding stage actually relies on the properties of the outputs from the early
exaggeration stage, again yielding the necessity of the early exaggeration, or equivalent
techniques. Secondly, as indicated by the next theorem, Condition (I3) on the initialization
can be satisfied by the following simple local random initialization procedure.

Theorem 14 (Random initialization) For any sequence σn → 0 as n → ∞, let y
(0)
` =

σng`/‖g`‖2, where g` ∈ Rn for ` ∈ [2] is independently generated from a standard multi-

variate normal distribution. Then {y(0)
i }1≤i≤n satisfies Condition (I3) with probability at

least 1− δ for some sufficiently small constant δ > 0.

Thirdly, the above theorem provides a precise characterization of the kinematics of each

yki during the iterations, and its reliance on the data points {y(k−1)
i } in the previous step,

as well as the cluster structure inherited from the early exaggeration stage. Specifically,

f
(k)
ir summarizes the contributions from the points {y(k)

i }i∈Hr in the r-th cluster to the

new point y
(k+1)
i . The theorem implies that, at the amplification phase, the behavior of

{y(k)
i }1≤i≤n is mainly driven by the relative positions of the R clusters produced in the

early exaggeration stage: for each point, a vector sum of the repulsive forces coming from
all the other clusters at their current positions determine the direction and distance of its
movement of each point in this iteration (Figure 2). As a consequence, after each iteration,

the diameter of {y(k)
i }1≤i≤n would increase, till the end of the amplification phase, that

is, when Condition (T3.E), or more specifically, diam({y(k)
i }1≤i≤n) = o(1) no longer holds.

This process improves the visualization quality by making the clusters more distinct and
separated (Figure 1 with k = 40 and 80).

Our next result confirms the intuition that the diameter of {y(k)
i }1≤i≤n is bound to

increase after each iteration in the amplification phase of the embedding stage.
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Theorem 15 (Expansion) Suppose the conditions of Theorem 13 hold. If in addition
‖P∗‖∞ . n−2, then for any k ∈ {K0,K0 + 1, ...,K1}, we have

diam({y(k+1)
i }1≤i≤n) > diam({y(k)

i }1≤i≤n), (34)

where diam({y(k+1)
i }1≤i≤n)− diam({y(k)

i }1≤i≤n) & h′

n2 min`=1,2 ‖y
(0)
` ‖2.

Once the diameter of {y(k)
i }1≤i≤n exceeds certain threshold, that is, when diam({y(k)

i }1≤i≤n)
is at least of constant order, we arrive at the final stabilization phase. In this phase, the
condition of Proposition 12 is violated, and, unlike what is claimed in part one of Propo-
sition 12, the entries of the matrix S(k) corresponding to the smaller entries in P, that is,
pij ’s with pij � n−2, no longer remain an almost constant value 1/n(n− 1). In particular,

the sign of S
(k)
ij would generally rely on the relative magnitudes between pij and qij .

We rewrite (30) as

y
(k+1)
i = y

(k)
i + h′

∑
j 6=i

pij − q(k)
ij

1 + d
(k)
ij

(y
(k)
j − y

(k)
i ). (35)

In the stabilization phase, the new position for y
(k+1)
i is determined by the starting point

y
(k)
i , and the averaged contributions from each of the other data points {y(k)

j }j 6=i. The

contribution from y
(k)
j to y

(k+1)
i is either in or against the direction of (y

(k)
j −y

(k)
i ), depending

on sign(pij−qij). If sign(pij−qij) = −1, or, the similarity between y
(k)
i and y

(k)
j as measured

by qij is greater than the similarity between Xi and Xj as measured by pij , the contribution

from y
(k)
j to y

(k+1)
i is in the direction of y

(k)
i −y

(k)
j , resulting to a repulsive force that enlarges

the distance between y
(k+1)
i and y

(k+1)
j after the iteration. Similarly, if sign(pij−qij) = 1, it

means the similarity between y
(k)
i and y

(k)
j is smaller than their counterparts in {Xi}1≤i≤n,

so the contribution y
(k)
j to y

(k+1)
i is in the opposite direction y

(k)
j − y(k)

i , resulting to an

attractive force that reduces the distance between y
(k+1)
i and y

(k+1)
j after the iteration. The

iterations over the stabilization phase aim to locally adjust the relative positions of the
low-dimensional map to make the final visualization more reliable and faithful.

Remark 16 In practice, expansion and repulsion effects help make clusters identified from
the early exaggeration step more salient in the final visualization, and possibly more infor-
mative in terms of the local structures within the clusters. This is especially helpful if two
clusters are positioned too close to each other at the end of the early exaggeration stage,
as an artifact of the random initialization (e.g., the middle column of Figure 5). Moreover,
the intercluster repulsion phenomenon explains the occasional appearance of false clusters
in the t-SNE visualization (Kobak and Linderman, 2021). Specifically, our theory indicates
that false clustering may appear due to an incidental combination of overlapped clusters
from the early exaggeration stage with random initialization, and the intercluster repulsion
from the embedding stage (Figures 5 and 6). This leads to our third general advice on
practice at the end of Section 1.2.
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4. Application I: Visualizing Model-Based Clustered Data

In the previous sections, we established the theoretical properties for the basic t-SNE algo-
rithm under general conditions on the parameters (α, h, h′,K1,K2), the initialization, and
the similarity matrix P constructed from the original data. In this section, we apply our
general theory in two concrete examples of clustered data, one generated from a Gaussian
mixture model and another from a noisy nested sphere model.

4.1 Gaussian Mixture Model

Consider the Gaussian mixture model

Xi|zi = r ∼ N(µr,Σ), zi
i.i.d.∼ Multinomial(π1, ..., πR), for i ∈ [n], (36)

where µr ∈ Rp and
∑R

r=1 πr = 1. We make the following assumptions.

(C1) The mixing proportions {πr}1≤r≤R satisfy minr πr ≥ c > 0.

(C2) There exists some large constant C ′ > 0 such that ρ2 = min1≤j 6=k≤R ‖µj−
µk‖22 ≥ C ′max{p, log n}.
(C3) There exists some constant C > 0 such that the population covariance
matrix Σ ∈ Rp×p satisfies C−1 ≤ λ1(Σ) ≤ λp(Σ) ≤ C and tr(Σ)/p ≤ C.

Under the above Gaussian mixture model, we obtain the following corollary that provides
the conditions for the theoretical results presented in the previous sections.

Corollary 17 Suppose Conditions (C1) (C2) and (C3) hold, and τ2
i � max{p, log n}. If

α � 1, K0h = o(n), hα � n, 1� K0 � exp{ ρ2

max{p,logn}} and K0hασ
2
n log n = o(n2), then

Conditions (T1.D) and (T2.D) hold. If in addition log n � K0 � n−1 exp{ ρ2

max{p,logn}},
K0hασ

2
n log n = o(n), and K1h

′ = O(n), then Conditions (T1.E) (T2.E) and (T3.E) hold.

As a consequence, suitable choices of the tuning parameters (α, h, h′,K0,K1) under
the Gaussian mixture model can be determined efficiently. For example, if ρ2 & log n ·
max{p, log n}, one could choose K0 = b(log n)2c, σn = (log n)−2, h = h′ = nδ and α = n1−δ

for any constant δ ∈ (0, 1). By Corollary 17, Conditions (T1.D) and (T2.D) hold, so the
conclusions of Theorem 7 follows for k = K0; meanwhile, Conditions (T1.E) (T2.E) and
(T3.E) also hold, so the conclusions of Theorem 13 hold for each K1 with K0 ≤ K1 ≤ n1−δ.
Note that the above results apply to both low-dimensional settings where p = o(n) and
high-dimensional settings where p & n.

To demonstrate the effectiveness of the theoretical guidance, we generate n = 1500 sam-
ples of dimension p = 100 from a Gaussian mixture model with r = 6, ρ2 = p,Σ = Ip, and
the cluster proportion vector (0.1, 0.1, 0.1, 0.15, 0.25, 0.3). We use the above tuning param-
eters with various δ ∈ {1/2, 1/3} and perplexity=30 (default). The t-SNE embeddings
at the end of the early exaggeration stage k = K0 = b(log n)2c = 53 and at k = 1000 are
included in Figure 4 below and Figure 7 in Appendix F, confirming the theoretical predic-
tions. Moreover, Figure 8 in Appendix F shows that when the above separation condition
(C2) is slightly violated (e.g., ρ2 = p4/5), t-SNE is still able to visualize clusters, which
demonstrates the robustness of t-SNE with respect to the separation condition.
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Figure 4: t-SNE visualizations of the model-generated samples as described in Section 4,
using the theory-guided tuning parameters with δ = 1/3 (see Figure 7 for similar
results with δ = 1/2). The left column shows outputs from the early exaggeration
stage, whereas the right column are the corresponding final embeddings.

Remark 18 Arora et al. (2018) analyzed the early exaggeration stage of t-SNE based on
a slightly different theoretical framework under the Gaussian mixture model with a mean
separation condition ρ & p1/4, and under the mixture model of log-concave distributions
with a separation condition ρ & p5/12. Compared to these results, our separation condition
ρ & p1/2 in (C2) is strong, and it is unclear to us if such a restriction is intrinsic to our
theoretical framework or an artifact from our proof strategy. Nevertheless, nailing down
the sharp information threshold for t-SNE visualization is an important and fundamental
problem – we plan to have a more systematic treatment of this in a subsequent work.

4.2 Noisy Nested Sphere Model

Consider the model of nested spheres with radial noise (Amini and Razaee, 2021), where
for i ∈ [n], we have

Xi = µi +
µi
‖µi‖2

ξi, ξi
i.i.d.∼ N(0, σ2) (37)

22



Theoretical Foundation of t-SNE

and
µi|zi = r ∼ Pk, zi

i.i.d.∼ Multinomial(π1, ..., πR), (38)

with
∑R

r=1 πr = 1 and {Pk} being uniform distributions on nested spheres in Rp of various
radii ρmin = ρ1 < ρ2 < ... < ρR = ρmax. We make the following assumptions concerning the
separation distances between the underlying nested spheres.

(C4) There exists some γ such that max{n−1, σ2ρ−2
min} log n � γ � 1 and

maxr∈[R−1]
ρr
ρr+1

� 1− C
√
γ log γ for some sufficiently large constant C > 0.

(C5) There exists some small constant c > 0 such that cmin |ρr+1 − ρr| ≥
σ
√

log n.

In Condition (C4), the separation distance is characterized by the ratio ρr/ρr+1 whereas
in Condition (C5) the distance is characterized by the difference ρr+1 − ρr. The following
corollary provides a sufficient condition for the results presented in the previous sections.

Corollary 19 Suppose Assumptions (C1) (C4) and (C5) hold, and τ2
i � γρ2

zi. If K0h =
o(n), αh = O(γn), hαλR+1(L(P∗)) ≥ κ for some constant κ ∈ (0, 1), K0 � 1, K0h(α/γ +
1)σ2

n log n = o(n2), and log K0hα
n � γ−1(1 − maxr∈[R−1]

ρr
ρr+1

)2 + log γ, then Conditions

(T1.D) and (T2.D) hold. If in addition K0 � log n, K0h(α/γ + 1)σ2
n log n = o(n),

logK0hα� γ−1(1−maxr∈[R−1]
ρr
ρr+1

)2 + log γ, and K1h
′ = O(γn), then Conditions (T1.E)

(T2.E) and (T3.E) hold.

Again, suitable choices of the tuning parameters (α, h, h′,K0,K1) under the noisy nested
sphere model can be determined efficiently. For example, let’s consider the case where
ρr+1 − ρr = ∆ for all r ∈ [R − 1]. Specifically, suppose there exists some small constant
c > 0 such that ∆ ≥ cρR, and that γ = c(log n)−1 satisfies (C4) and λR+1(L(P∗)) & 1

γn
in probability. Then, by Corollary 19, the desired visualization properties such as those in
Theorems 7 and 13 would hold with high probability, as long as we choose K0 = b(log n)2c,
K1 ≤ n1−δ/ log n, σn = (log n)−2, h = h′ = nδ and α = γn1−δ for any constant δ ∈ (0, 1).
Figures 4 and 7 in the Appendix show the t-SNE embeddings of n = 1500 samples of
dimension p = 50, at the end of the early exaggeration stage k = K0 = b(log n)2c = 53 and
at k = 1000, generated from Model (37) with r = 3, σ = 1, (ρ1, ρ2, ρ3) = (10, 25, 50) and
cluster proportion (0.17, 0.33, 0.5). For the tuning parameters, the above analytical values
with γ = 0.5 and δ ∈ {1/3, 1/2} are used. As a result, clusters of three nested spheres are
visible in all t-SNE embeddings, confirming our theoretical predictions.

5. Application II: Visualizing Real-World Clustered Data

Finally, we demonstrate our theory by applying t-SNE to the MNIST3 dataset, which
contains images of hand-written digits. Specifically, we focus on n = 4N = 1600 images of
hand-written digits “2,” “4,” “6” and “8,” with each digit having N = 400 images. Each
image contains 28 × 28 pixels and was treated as a 784-dimensional vector. Based on our
theoretical analysis, we set the tuning parameters

α = n1−δ, h = h′ = nδ, K0 = b(log n)2c (39)

3. http://yann.lecun.com/exdb/mnist/
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with δ = 2/3. Again, we use the default perplexity (=30), leading to an approximate block
matrix P, with block structure corresponding to the cluster membership (Figure 9).

Figure 5: Illustration of t-SNE embeddings of 1600 MNIST samples at the end of embedding
stage (bottom row), and their corresponding outputs from the early exaggeration
stage (top row). Different columns have identical initializations and tuning pa-
rameters, but distinct number of iterations for the early exaggeration stage. The
colors of the dots indicate the underlying four clusters.

To demonstrate the necessity of stopping early at the early exaggeration stage, in Figure
5, we show the t-SNE embeddings at the end of embedding stage (bottom row), and their
corresponding outputs from the early exaggeration stage (top row). Different columns have
identical initialization and tuning parameters, but distinct numbers of iterations for the
early exaggeration stage, namely K0 = b(log n)2c = 54 (left), K0 = bn2/3c = 137 (middle),
and K0 = bn3/4c = 253 (right). Comparing the top three plots in Figure 5, we can clearly
see that when K0 far exceeds our theory-guided value b(log n)2c, the cluster patterns is no
longer visible, which, in the case of K0 = 253, led to false clustering in the final visualization.
Moreover, the middle column of Figure 5 also demonstrates the importance of the embedding
stage, especially its underlying intercluster repulsion and expansion effects, as to making
the cluster patterns more salient in the final visualization.

Next we assess the effects and artifacts of the random initialization. In Figure 6, we fix
all the tuning parameters as in (39) and generate t-SNE visualizations from three different
random initializations. Comparing the first two plots, we observe that the relative positions
of the clusters vary with the initialization. For example, the purple cluster and red cluster
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Figure 6: t-SNE visualizations of 1600 MNIST samples based on three different random
initializations and identical tuning parameters in (39).

are neighbors in the left panel but not in the middle panel. This echos our theoretical
prediction (discussion after Theorem 7) and justifies our second practical advice in Section
1.2. On the other hand, on the right panel of Figure 6, we find that even with a proper
choice of the tuning parameters, false clustering may still appear as an artifact of the random
initialization (cf. Remark 16 and the third practical advice in Section 1.2).

Finally, we point out that our theory-guided values for the tuning parameters are flexible,
robust and adaptive to the sample size. For example, in Figure 10, we present three more
visualizations of n = 2400 (N = 600 for each digit) MNIST samples, by using the tuning
parameters in (39) with various δ ∈ {1/3, 1/2, 2/3}, and an identical random initialization.
The cluster patterns are visible and similar in all the cases, showing the effectiveness of our
tuning parameters and the insensitivity to the choice of δ.

6. Discussion

The present paper provides theoretical foundations of t-SNE for visualizing clustered data
and obtains insights about its theoretical properties and interpretations. We believe that
some of the conditions may be relaxed by adopting more advanced technical tools. For
example, the current analysis of the early exaggeration stage relies on the well-celebrated
Davis-Kahan matrix perturbation inequality (cf. Section B.3), which may be further im-
proved by leveraging advanced results in Random Matrix Theory, such as Benaych-Georges
and Nadakuditi (2012) and Bao et al. (2021).

There are still many interesting questions that remain to be explored. For instance,

what is the limiting behavior of the low-dimensional map {y(k)
i }1≤i≤n towards the end of

the embedding stage, after transition to the stabilization phase? How to interpret the local
structure within a cluster (DePavia and Steinerberger, 2020; Robinson and Pierce-Hoffman,
2020)? How many iterations are needed for the embedding stage? How to determine the
bandwidth {τi} in a data-driven and adaptive manner (Ding and Ma, 2022)? The present
work is a first step towards answering these important questions.
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Moreover, our theoretical framework is generic and can be generalized to study other
algorithms that are closely related to or share similar features with t-SNE. For example,
in addition to the variants of t-SNE mentioned in Section 1, many dimension reduction
and data visualization methods, such as multidimensional scaling (Kruskal, 1978), kernel
principal component analysis (Schölkopf et al., 1997), and Laplacian eigenmap (Belkin and
Niyogi, 2003), start with a similarity matrix summarizing the pairwise distances within a
dataset, and then proceed by either explicitly or implicitly exploiting the spectral proper-
ties of the similarity matrix. In this connection, the general ideas behind our theoretical
analysis, such as identifying the underlying structured graph and properties of its adjacency
or Laplacian matrix (Sections 2.1 and 2.2), studying the gradient flow associated with the
discrete algorithm (Section 2.3), and the mechanical/kinematic view of the updating equa-
tion (Section 3), can be adopted to uncover the underlying mechanism and the properties
of these methods.

It is also interesting to explore the fundamental limit for data visualization and dimen-
sion reduction. For example, what are the necessary conditions for the data {Xi}1≤i≤n to
guarantee the existence of a low-dimensional map {yi}1≤i≤n being a metric embedding of
it? Whether t-SNE has to sacrifice some global structures in order to locally embed the
data well (Chari et al., 2021)? These problems are left for future investigation.
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Appendix A. Discrete-Time Analysis of the Early Exaggeration Stage

A.1 Proof of Theorem 2

For simplicity, we ignore the superscript (k) in y
(k)
i , q

(k)
ij , η

(k) and S
(k)
ij (α). Since Sij(α) =

αpij−qij
1+‖yi−yj‖22

, if we denote dij = ‖yi − yj‖22, we have∣∣∣∣Sij(α)− αpij +
1

n(n− 1)

∣∣∣∣ ≤ |αpij − αpij
1 + dij

|+
∣∣∣∣ qij
1 + dij

− 1

n(n− 1)

∣∣∣∣
= dijαpij +

∣∣∣∣ 1

Z(1 + dij)2
− 1

n(n− 1)

∣∣∣∣,
where

Z =
∑
i 6=j

(1 + dij)
−1 =

∑
i 6=j

(
1− dij

1 + dij

)
= n(n− 1)−

∑
i 6=j

dij
1 + dij

≡ n(n− 1)−∆.

Now since ∆ ≤ n(n− 1) min{η, 1} = n(n− 1)η, we have∣∣∣∣ 1

Z(1 + dij)2
− 1

n(n− 1)

∣∣∣∣ =

∣∣∣∣(1 + dij)
−2n(n− 1)− n(n− 1) + ∆

n2(n− 1)2 − n(n− 1)∆

∣∣∣∣
≤ |[(1 + dij)

−2 − 1]n(n− 1) + ∆|
n2(n− 1)2(1− η)

≤ 2η

n(n− 1)(1− η)
(40)

Hence ∣∣∣∣Sij(α)− αpij +
1

n(n− 1)

∣∣∣∣ ≤ ηαpij +
2η

n(n− 1)(1− η)
.

For the second statement, we note that

‖Hn‖ ≤
1

n− 1
+

1

n(n− 1)
.

1

n
. (41)

Then as long as ‖αP‖ � 1
n , we have ‖αP −Hn‖ ≥ ‖αP‖ − 1

n � ‖αP‖. Therefore, under

the condition that η � ‖P‖
n‖P‖∞ ≤ 1,

‖Sα − (αP−Hn)‖
‖αP−Hn‖

.
n‖Sα − (αP−Hn)‖∞

‖αP‖
.
αn‖P‖∞η + η/n

‖αP‖

Then, the first term ηn‖P‖∞/‖P‖ → 0 as η � ‖P‖/(n‖P‖∞); the second term η
nα‖P‖ .

1
nα‖P‖ → 0 as α� (n‖P‖)−1.

A.2 Proof of Proposition 3

Note that y
(k+1)
`i ≤ ‖[I− hL(S

(k)
α )]i.‖1‖y(k)

` ‖∞ for any k ≥ 0, where

‖[I− hL(S(k)
α )]i.‖1 =

∣∣∣∣1− h n∑
j=1

S
(k)
ij (α)

∣∣∣∣+ h
∑
j 6=i
|S(k)
ij (α)| ≤ 1 + 2h

n∑
j=1

|S(k)
ij (α)|.
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For the last term, we have

h

n∑
j=1

|S(k)
ij (α)| ≤ hn‖S(k)

α ‖∞ ≤ nh(α‖P‖∞ + ‖Q(k)‖∞) ≤ nhα‖P‖∞ +
h(1 + η(k))

n− 1

where the last inequality follows from (40), that is, ‖Q(k)‖∞ ≤ 1/Z, Z ≥ n(n−1)/(1+η(k)),
so that ‖Q(k)‖∞ ≤ (1 + η(k))/n(n− 1). Then we have

y
(k+1)
`i ≤

(
1 + 2nhα‖P‖∞ +

2h(1 + η(k))

n− 1

)
‖y(k)

` ‖∞,

or

‖y(k+1)
` ‖∞ ≤

(
1 + 2nhα‖P‖∞ +

2h(1 + η(k))

n− 1

)
‖y(k)

` ‖∞.

Whenever η(k) and max{‖y(k)
1 ‖∞, ‖y

(k)
2 ‖∞} are bounded by an absolute constant, by setting

rn = nhα‖P‖∞ + h
n and assuming rn = O(1) (by Condition (T1)), we have

‖y(k+1)
` ‖∞ ≤ (1 + Crn)‖y(k)

` ‖∞, (42)

and

η(k+1) ≤ 4 max
i∈[n],`∈[2]

|y(k)
i` |

2 ≤ 8 max{‖y(k+1)
1 ‖2∞, ‖y

(k+1)
2 ‖2∞}

≤ 8(1 + Crn) max{‖y(k)
1 ‖

2
∞, ‖y

(k)
2 ‖

2
∞} = O(1)

In other words, we have shown that for any k such that η(k) and max{‖y(k)
1 ‖∞, ‖y

(k)
2 ‖∞}

are bounded, then (42) holds, and η(k+1) and max{‖y(k+1)
1 ‖∞, ‖y(k+1)

2 ‖∞} are bounded.

Now Condition (I1) says that max{‖y(0)
1 ‖∞, ‖y

(0)
2 ‖∞} = O(1) and η(0) ≤ 4 max`∈[2] ‖y

(0)
` ‖

2
∞ =

O(1). By induction, we know that η(k) and max{‖y(k+1)
1 ‖∞, ‖y(k+1)

2 ‖∞} are bounded and
(42) holds for all k ≥ 1. Applying (42) iteratively, we have for any k ≥ 1,

‖y(k)
` ‖∞ ≤ (1 + Crn)k‖y(0)

` ‖∞. (43)

Therefore, as long as k = k(n) such that krn = O(1) (by Condition (T1)), we have

‖y(k)
` ‖∞/‖y

(0)
` ‖∞ = O(1), or

diam({y(k)
i }1≤i≤n)

maxi∈[n],`∈[2] |y
(0)
i` |
≤

maxi∈[n],`∈[2] |y
(k)
i` |

maxi∈[n],`∈[2] |y
(0)
i` |

= O(1).

A.3 Proof of Theorem 4

The results concerning (10) and (12) follows directly from Theorem 2 and Proposition 3.
To see that (13) holds, we first prove the following proposition.
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Proposition 20 Let E
(k)
α = S

(k)
α − (αP − Hn) and ζ = supk≥0 ‖L(E

(k)
α )‖. Suppose the

initialization satisfies ‖y(0)
` ‖ 6= 0 for ` = 1, 2, and (α, h,K) satisfies h‖L(αP)‖ < 2, Khζ =

O(1) and Kh = O(n) as n→∞. Then for ` ∈ {1, 2}, it holds that

sup
1≤k≤K

‖y(k)
` − [I− hL(αP−Hn)]ky

(0)
` ‖2

‖y(0)
` ‖2

= O(Khζ). (44)

Consequently, for (α, h, k) such that h‖L(αP)‖ < 2, khζ = o(1) and kh = O(n), we have

lim
n→∞

‖y(k)
` − [I− hL(αP−Hn)]ky

(0)
` ‖2

‖y(0)
` ‖2

= 0. (45)

Proof By linearity of the Laplacian operator, we have

L(E(k)
α ) = L(S(k)

α )− L(αP−Hn) = L(S(k)
α )− L(αP−Hn)

For ` = 1, 2, the updating equation y
(k+1)
` = (I− hL(S

(k)
α ))y

(k)
` can be written as

y
(k+1)
` = (I− hL(S(k)

α ))(I− hL(S(k−1)
α ))...(I− hL(S(0)

α ))y
(0)
`

= (I− hL(αP−Hn)− hL(E(k)
α ))(I− hL(αP−Hn)− L(E(k−1)

α ))...

× (I− hL(αP−Hn)− L(E(0)
α ))y

(0)
`

= (I− hL(αP−Hn))k+1y
(0)
` + ε(k),

where

‖ε(k)‖2 ≤ ‖y(0)
` ‖2

[(
k + 1

1

)
hζλk +

(
k + 1

2

)
(hζ)2λk−1 + ...+

(
k + 1

k + 1

)
(hζ)k+1λ0

]
≤ ‖y(0)

` ‖2[(hζ + λ)k+1 − λk+1]

≤ ‖y(0)
` ‖2λ

k+1[(hζ/λ+ 1)k+1 − 1]

where λ = ‖I− hL(αP−Hn)‖ and ζ = supk≥0 ‖L(E
(k)
α )‖. We need the following lemma.

Lemma 21 If ‖hL(αP)‖ < 2, then 1 ≤ ‖I− hL(αP−Hn)‖ ≤ 1 + h
n−1 .

The above lemma implies

‖ε(k)‖2 ≤ ‖y(0)
` ‖2(1 + Ch/n))k+1[(hζ + 1)k+1 − 1.

By the binomial identity,

(1 + xn)k = 1 + kxn +
k(k − 1)

2
x2
n +

k(k − 1)(k − 2)

3!
x3
n + ...+ xkn

≤ 1 + kxn +
k2

2
x2
n +

k3

3!
x3
n + ...+

kk

k!
xkn

≤ 1 + kxn

(
1 + kxn +

k2x2
n

2!
+ ...+

kk−1xk−1
n

(k − 1)!

)
≤ 1 + kxne

kxn .
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Then, as long as khζ = O(1) as n → ∞, there exits some universal constant C > 0 such
that, for all n,

(1 + hζ)k+1 − 1 ≤ Ckhζ. (46)

Similarly, whenever kh/n = O(1), we have (1+Ch/n))k+1 ≤ C. Hence, we have ‖ε(k)‖2/‖y(0)
` ‖2 ≤

Ckhζ. This proves the theorem.

By the above proposition, it suffices to reduce the following full list of conditions –

α � 1
n‖P‖ , kh = O(n), nhα‖P‖∞ < 1, maxi∈[n],`∈[2] |y

(0)
i` |

2 = o(‖P‖/(n‖P‖∞)), ‖y(0)
` ‖ 6= 0

for ` ∈ {1, 2}, k(nhα‖P‖∞ + h/n) = O(1), and k(nhα‖P‖∞ + h/n) ·maxi∈[n],`∈[2] |y
(0)
i` |

2 =
O(1) – to those in (I1) (I2) and (T1.D). To see this, note that k

(
nhα‖P‖∞ + h/n

)
·

maxi∈[n],`∈[2] |y
(0)
i` |

2 → 0, can be implied by

k
(
nhα‖P‖∞ + h/n

)
= o(1), max

i∈[n],`∈[2]
|y(0)
i` |

2 � ‖P‖/(n‖P‖∞) ≤ 1.

In addition, kh = O(n) and αhn‖P‖∞ < 1 can be implied by the above first inequality.

A.4 Proof of Theorem 5

Since L(Hn) = 1
n−1In − 1

n(n−1)1n1
>
n , it follows that

In − hL(P−Hn) = In − hL(P) +
h

n− 1
In −

h

n(n− 1)
1n1

>
n . (47)

Without loss of generality, we assume R ≥ 2, as the case for R = 1 follows similarly. Let ui
be the i-th column of U′ ∈ O(n,R − 1), which consists of the eigenvectors corresponding
to the eigenvalue 0 of L(P) other than the trivial eigenvector n−1/21n, and let U be the
matrix that binds an additional column n−1/21n to U′. Let λ1 ≤ ... ≤ λn be the eigenvalues
of L(P), with λ1 = ... = λR = 0. Then it follows that

I− hL(P−Hn)

= [U′ n−1/21n U⊥]



1 + h
n−1

− hλ1

.
.
.

1 + h
n−1

− hλR−1

1 + h
n−1

− hλR

1 + h
n−1

− hλR+1

.
.
.

1 + h
n−1

− hλn


× [U′ n−1/21 U⊥]> − h

n(n− 1)
11>

= [U′ n−1/21 U⊥]



1 + h
n−1

.
. .

1 + h
n−1

1

1 + h
n−1

− hλR+1

.
.
.

1 + h
n−1

− hλn

[U′ n−1/21 U⊥]>
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Then if we denote uR+1, ...,un as the columns of U⊥, we have

(I− hL(P−Hn))k =
R−1∑
i=1

(
1 +

h

n− 1

)k
uiu

>
i + n−111> +

n∑
i=R+1

(
1 +

h

n− 1
− hλi

)k
uiu

>
i .

Hence∥∥∥∥(I− hL)ky −
(

1 +
h

n− 1

)k R−1∑
i=1

uiu
>
i y − n−111>y

∥∥∥∥
2

=

∥∥∥∥ n∑
i=R+1

(
1 +

h

n− 1
− hλi

)k
uiu

>
i y

∥∥∥∥
2

=

√√√√ n∑
i=R+1

(
1 +

h

n− 1
− hλi

)2k

(u>i y)2 ≤
(

1 +
h

n− 1
− hλR+1

)k
‖y‖2.

The final result follows by noting that 1 + h
n−1 − hλR+1 < 1− κ/2 < 1.

A.5 Proof of Proposition 6

Firstly, since A is nonnegative, by the Geršgorin circle theorem (Varga, 2010), L(A) is
positive semi-definite. For any θr, r ∈ {1, ..., R}, it holds that L(P)θr = 0. It follows that
{θr}Rr=1 is a set of eigenvectors corresponding to the smallest eigenvalue 0. In addition, since
the graph corresponding to the weighted adjacency matrix P has R connected components,
by the spectral property of the Laplacian matrix (see, for example, Theorem 3.10 of Marsden
(2013)), the null space of L(P) has dimension R. This implies that the eigenvalue 0 of
L(P) has multiplicity R. Lastly, as {θk}Kk=1 are linearly independent, the eigen subspace
associated with the eigenvalue 0 is spanned by {θr}Rr=1.

A.6 Proof of Theorem 7

Let E′(k)
α = S

(k)
α −αP∗+ Hn and ζ ′ = supk≥1 ‖L(E′(k)

α )‖. Then similar arguments as in the

proof of Theorem 4 imply that ε′(k) = y
(k+1)
` − (I− hL(αP∗ −Hn))k+1y

(0)
` satisfies

‖ε′(k)‖2
‖y(0)

` ‖2
≤ (1 + Ch/n))k+1[(1 + hζ ′)k+1 − 1].

As a result, as long as hζ ′ � 1/k, we have

lim
(n,k)→∞

‖y(k)
` − [I− hL(αP∗ −Hn)]ky

(0)
` ‖2

‖y(0)
` ‖2

= 0.

Now by the inequality ‖L(A)‖ ≤ ‖D(A)‖+‖A‖ ≤ 2n‖A‖∞, and the bounded initialization,
we have

‖L(E′
(k)
α )‖ ≤ ‖L(S(k)

α − αP + Hn)‖+ α‖L(P∗ −P)‖
≤ 2n‖S(k)

α − αP + Hn‖∞ + α‖L(P∗ −P)‖

≤ (αn‖P‖∞ + 1/n) · max
i∈[n],`∈[2]

|y(0)
i` |

2 + α‖L(P∗ −P)‖ (48)
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where the last inequality follows from Proposition 2. Thus, the condition hζ ′ � 1/k can be
implied by

k[(nhα‖P‖∞ + h/n) · max
i∈[n],`∈[2]

|y(0)
i` |

2 + αh‖L(P∗ −P)‖] = o(1),

which holds under Conditions (I2) (T1.D) and (T2.D). Now, if we further assume κ <
hλR+1(L(αP∗)) ≤ h‖L(αP∗)‖ ≤ 1 and k →∞, by Theorem 5, we also have

lim
(n,k)→∞

‖y(k)
` −UU>y

(0)
` ‖2

‖y(0)
` ‖2

= 0,

where the columns of U ∈ O(n,R− 1) span the null space of L(P∗). By Proposition 6, we

know that the matrix UU>
[
y

(0)
1 y

(0)
2

]
∈ Rn×2 has at most R distinct rows, and any two

rows corresponding to the same graph component in G have the identical values. Then, the
final results follow by setting {z1, ..., zR} such that zr = (z1r, z2r) is the same as the rows

in UU>
[
y

(0)
1 y

(0)
2

]
corresponding to the r-th graph component.

Appendix B. Continuous-Time Analysis of the Early Exaggeration Stage

B.1 Proof of Proposition 8

Note that the algorithm (20) is in fact the Euler scheme for solving the differential equation
(21). We can apply the standard differential equation theory to obtain the global approx-
imation error for the Euler scheme. By taking derivative on both sides of the differential
equation (21), we have

Ÿ`(t) = L(αP−Hn)Ẏ`(t) = L2(αP−Hn)Y`(t).

Since ‖Ÿ`(t)‖2 ≤ ‖L(αP−Hn)‖2‖Y`(t)‖2, by Theorem 212A of Butcher (2008), we have

sup
t∈[0,T ]

‖y`,h(t)−Y`(t)‖2
‖Y`(t)‖2

≤ Th‖L(αP−Hn)‖2.

Consequently, for any k ≤ T/h, if we set t = kh ≤ T , then

‖ỹ(k)
` −Y`(kh)‖2
‖Y`(kh)‖2

=
‖y(t)

`,h −Y`(t)‖2
‖Y`(t)‖2

≤ Th‖L(αP−Hn)‖2.

This proves the second statement of the theorem.

B.2 Proof of Proposition 9

By standard theory of ODE, we have Y`(t) =
∑n

i=1 e
−tσi(u>i y

(0)
` )ui, where L(αP−Hn) =∑n

i=1 σiuiu
>
i is the eigendecomposition of L(αP −Hn). The final result follows from the

fact that L(αP−Hn) = L(αP)− 1
n−1I + 1

n(n−1)11>, so that L(αP−Hn) and L(αP) share
the same set of eigenvectors, and

σi = αλi −
1

n− 1
, i ∈ {2, ..., n},

and σ1 = αλ1.
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B.3 Proof of Theorem 10

Let U0 ∈ O(n,R) be the matrix whose columns span the null space of L(P∗), and the first
column of U0 is n−1/21. Let U ∈ O(n,R) be the matrix whose columns correspond to the
smallest R eigenvalues of L(P). By standard Davis-Kahan matrix perturbation inequality,
we have

‖U>0⊥U‖ ≤ ‖L(E)‖
λR+1(L(P∗))

, (49)

where E = P−P∗, and λR+1(L(P∗)) is the smallest nonzero eigenvalue of L(P∗). Note that

if we define βt = (βt,1, ..., βt,n) ∈ Rn such that βt,i = e−t(αλi−
1

n−1
)(u>i y

(0)
` ) for i = 2, ..., n

and βt,1 = n−1/21>n y
(0)
` , we can write Y`(t) = Uβt,1:R + U⊥βt,(R+1):n. In particular, we

have

‖Y`(t)‖2 = ‖Uβt,1:R‖2 + ‖U⊥βt,(R+1):n‖2.

Since ‖Y`(t)‖2 . ‖Y`(0)‖2, it follows that

‖U0U
>
0 Y`(t)−Y`(t)‖2
‖Y`(0)‖2

=
‖U0U

>
0 Uβt,1:R −Uβt,1:R‖2
‖Y`(t)‖2

‖Y`(t)‖2
‖Y`(0)‖2

+
‖U0U

>
0 U⊥βt,(R+1):n −U⊥βt,(R+1):n‖2

‖Y`(0)‖2

. ‖(U0U
>
0 − I)UU>‖ ·

‖Uβt,1:R‖2
‖Uβt,1:R‖2 + ‖U⊥βt,(R+1):n‖2

+ ‖(U0U
>
0 − I)U⊥U>⊥‖ ·

‖U⊥βt,(R+1):n‖2
‖Y`(0)‖2

≤ ‖(U0)>⊥U‖+ ‖(U0)>⊥U⊥‖ ·
‖U⊥βt,(R+1):n‖2
‖Y`(0)‖2

≤ ‖(U0)>⊥U‖+
‖U⊥βt,(R+1):n‖2
‖Y`(0)‖2

≤ ‖L(E)‖
λR+1(L(P∗))

+
e−t(αλR+1(L(P))− 1

n−1
)‖U⊥y

(0)
` ‖2

‖y(0)
` ‖2

≤ ‖L(E)‖
λR+1(L(P∗))

+ e−t(αλR+1(L(P))− 1
n−1

).

Therefore, whenever

‖L(E)‖ � λR+1(L(P∗)), αλR+1(L(P))� 1

n
, tαλR+1(L(P))→∞, (50)

we have

lim
(t,n)→∞

‖U0U
>
0 Y`(t)−Y`(t)‖2
‖Y`(0)‖2

= 0.

On the other hand, note that Y`(t) = UΓ1(t)U>y
(0)
` + U⊥Γ2(t)U>⊥y

(0)
` , where Γ1(t) =

diag(1, ..., e−t(αλR(L(P))− 1
n−1

)), and Γ2(t) = diag(e−t(αλR+1(L(P))− 1
n−1

), ..., e−t(αλn(L(P))− 1
n−1

)).
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We have

‖U0U
>
0 Y`(t)−U0U

>
0 Y`(0)‖2

‖Y`(0)‖2
=
‖UΓ1(t)U>Y`(0) + U⊥Γ2(t)U>⊥Y`(0)−U0U

>
0 Y`(0)‖2

‖Y`(0)‖2

≤ ‖UΓ1(t)U>Y`(0)−U0U
>
0 Y`(0)‖2

‖Y`(0)‖2
+
‖U⊥Γ2(t)U>⊥Y`(0)‖2

‖Y`(0)‖2
≤ ‖U(Γ1(t)− IR)U> + UU> −U0U

>
0 ‖+ ‖U⊥Γ2(t)U>⊥‖

≤ ‖Γ1(t)− IR‖+ 2‖U>U0⊥‖+ ‖Γ2(t)‖

≤ |e−t(αλR(L(P))− 1
n−1

) − 1|+ 2‖L(E)‖
λR+1(L(P∗))

+ e−t(αλR+1(L(P))− 1
n−1

),

where we used the inequality ‖UU> − U0U0‖ ≤ 2‖U>U0⊥‖ from Lemma 1 of Cai and
Zhang (2018). Hence, whenever

‖L(E)‖ � λR+1(L(P∗)), αλR+1(L(P))� 1

n
, tαλR+1(L(P))→∞, t

(
αλR(P)− 1

n− 1

)
→ 0,

(51)
we also have

lim
(n,t)→∞

‖U0U
>
0 Y`(t)−U0U

>
0 y

(0)
` ‖2

‖y(0)
` ‖2

= 0.

The second statement can be obtained by noticing that

‖Y`(t)−Oz`‖2
‖Y`(0)‖2

≤ ‖Y`(t)−U0U
>
0 Y`(t)‖2

‖Y`(0)‖2
+
‖U0U

>
0 Y`(t)−U0U

>
0 Y`(0)‖2

‖Y`(0)‖2
,

and that U0U
>
0 Y`(0) = Oz`. To see the above conditions hold under Conditions (I1) (T1.C)

and (T2.C), we note that by Weyl’s inequality, maxi |λi(L(P))−λi(L(P∗))| ≤ ‖L(E)‖. Since
λR+1(L(P)) ≥ λR+1(L(P∗))− ‖L(E)‖, the conditions in (50) can be implied by

‖L(E)‖ � λR+1(L(P∗)), αλR+1(L(P))� 1

n
, tαλR+1(L(P∗))→∞.

On the other hand, the conditions in (51) can be implied by

‖L(E)‖ � λR+1(L(P∗)), αλR+1(L(P))� 1

n
, tαλR+1(L(P∗))→∞,

tα‖L(E)‖ → 0, t/n→ 0.

These are ensured by the conditions of the theorem.
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Appendix C. Analysis of the Embedding Stage

C.1 Proof of Proposition 12

Note that
q
(k)
ij

1+d
(k)
ij

= 1

Z(k)(1+d
(k)
ij )2

=
(1+d

(k)
ij )−2∑

i6=j(1+d
(k)
ij )−1

, where (1 + η(k))−2 ≤ (1 + d
(k)
ij )−2 ≤ 1 for

all i 6= j. It holds that

∣∣∣∣q(k)
ij /(1 + d

(k)
ij )

1/n(n− 1)
− 1

∣∣∣∣ =

∣∣∣∣n(n− 1)(1 + d
(k)
ij )−2∑

i 6=j(1 + d
(k)
ij )−1

− 1

∣∣∣∣
≤
|(1 + d

(k)
ij )−2n(n− 1)−

∑
i 6=j(1 + d

(k)
ij )−1|∑

i 6=j(1 + d
(k)
ij )−1

≤
|(1 + d

(k)
ij )−2n(n− 1)−

∑
i 6=j(1 + d

(k)
ij )−1|

n(n− 1)/(1 + η(k))

≤ max

{ |n(n− 1)−
∑

i 6=j(1 + d
(k)
ij )−1|

n(n− 1)/(1 + η(k))
,
|(1 + η(k))−2n(n− 1)−

∑
i 6=j(1 + d

(k)
ij )−1|

n(n− 1)/(1 + η(k))

}
≤ max

{
|(1 + η(k))−2n(n− 1)− n(n− 1)|

n(n− 1)/(1 + η(k))
,
|n(n− 1)− n(n− 1)(1 + η(k))−1|

n(n− 1)/(1 + η(k))
,

|(1 + η(k))−2n(n− 1)− n(n− 1)(1 + η(k))−1|
n(n− 1)/(1 + η(k))

}
,

where the last two inequalities follows from the fact that |a− b| ≤ max{|c− b|, |d− b|} for
any c < a < d. Therefore, by η(k) = o(1), we have

∣∣∣∣q(k)
ij /(1 + d

(k)
ij )

1/n(n− 1)
− 1

∣∣∣∣ . |(1 + η(k))−2 − 1|+ |(1 + η(k))−1 − 1| . η(k).

Now since pij ≥ 0, we have S
(k)
ij =

pij−q
(k)
ij

1+d
(k)
ij

≥ pij
1+η −

1+O(η(k))
n(n−1) . Similarly, we can obtain

S
(k)
ij =

pij−q
(k)
ij

1+d
(k)
ij

≤ pij − 1+O(η(k))
n(n−1) . Hence, if pij = o(n−2) and η = o(1), we have

S
(k)
ij � −

1 +O(η(k))

n(n− 1)
.

This proves the first statement of the lemma. The second statement can be obtained from
the similar argument.

C.2 Proof of Theorem 13

The proof is divided into two parts.
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Case I: k = K0. By (30), summing up the contribution of all the points with index j 6= i
such that j ∼ i, we have∥∥∥∥ ∑

j:j∼i
S

(k)
ij (y

(k)
j − y

(k)
i )

∥∥∥∥
2

. (n−2 + ‖P∗‖∞ + ‖E‖∞) ·
∑
j:j∼i
‖y(k)
j − y

(k)
i ‖2

.
√
n(n−2 + ‖P∗‖∞)Rn(‖y(0)

1 ‖2 + ‖y(0)
2 ‖2)

where Rn = (1 − κ)k+1 + hk((αn‖P‖∞ + 1/n) ·maxi∈[n],`∈[2] |y
(0)
i` |

2 + α‖L(P∗ − P)‖), the
first inequality follows from Proposition 12, and the second inequality follows from the fact
that,∑
j:j∼i
‖y(k)
j − y

(k)
i ‖2 .

2∑
`=1

‖y(k)
` −Oz`‖1 ≤

√
n

2∑
`=1

‖y(k)
` −Oz`‖2

≤
√
n

2∑
`=1

[‖y(k)
` − (I− hL(αP∗ −Hn))ky

(0)
` ‖2 + ‖(I− hL(αP∗ −Hn))ky

(0)
` −Oz`‖2]

.
√
n[(1− κ)k+1 + hk sup

s<k
‖L(S(s)

α − αP∗ + Hn)‖](‖y(0)
1 ‖2 + ‖y(0)

2 ‖2) (52)

.
√
n[(1− κ)k+1 + hk((αn‖P‖∞ + 1/n) · max

i∈[n],`∈[2]
|y(0)
i` |

2 + α‖L(P∗ −P)‖)](‖y(0)
1 ‖2 + ‖y(0)

2 ‖2)

=
√
nRn(‖y(0)

1 ‖2 + ‖y(0)
2 ‖2) (53)

where (52) follow from Theorems 4 and 5, by assuming κ + h
n−1 < hλR+1(L(αP∗)) ≤

hλn(L(αP∗)) ≤ 1+ h
n−1 , and the last inequality follows from (48), by assuming kh[(nα‖P‖∞+

h1/n) maxi∈[n],`∈[2] |y
(0)
i` |

2 + αh‖L(P∗ −P)‖] = o(1).
On the other hand, we consider the contribution of all the other points j � i. Suppose

i ∈ Hr. Then for any s 6= r, by the fact that S
(k)
ij = 1+O(η(k))

n(n−1) for i � j, we have∥∥∥∥h′ ∑
j∈Hs

S
(k)
ij (y

(k)
j − y

(k)
i )− f (k)

is

∥∥∥∥
2

= h′
∥∥∥∥ ∑
j∈Hs

S
(k)
ij (y

(k)
j − y

(k)
i )− 1

n(n− 1)

∑
j∈Hs

(y
(k)
i − y

(k)
j )

∥∥∥∥
2

.
h′η(k)

n2

∥∥∥∥ ∑
j∈Hs

(y
(k)
i − y

(k)
j )

∥∥∥∥
2

=
h′η(k)

n2
‖[t>y(k)

1 , t>y
(k)
2 ]‖2 ≤

h′nsη
(k)

n2
max
`∈[2]
‖y(k)

` ‖2,

where t = (t1, ..., tn)> such that ti = |Hs| = ns and tj = −1{j ∈ Hs}, and the last inequality

follows from ‖t‖2 . ns. In particular, since ‖y(k)
` ‖2 ≤ ‖I − hL(S

(k−1)
α )‖ · ‖y(k−1)

` ‖2 ≤
‖y(k−1)

` ‖2, whenever h‖S(k−1)
α ‖ < 2, or ‖I− hL(S

(k−1)
α )‖ ≤ 1, we have

‖y(k)
` ‖2 ≤ ‖y

(0)
` ‖2,

whenever sups<k h‖S
(r)
α ‖ < 2. Now since

sup
s<k
‖L(S(s)

α )‖ ≤ sup
s<k
‖L(S(s)

α − αP∗ + Hn)‖+ ‖L(αP∗ −Hn)‖

≤ (αn‖P‖∞ + 1/n) · max
i∈[n],`∈[2]

|y(0)
i` |

2 + α‖L(P∗ −P)‖+ ‖L(αP∗ −Hn)‖,
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it suffices to have h‖L(αP∗ − Hn)‖ ≤ c < 2 for some constant c (the last inequality is
ensured by h‖L(αP∗ −Hn)‖ ≤ h‖L(αP∗)‖ ≤ 1 + h/n in (T1.E)). Hence, combining the
previous arguments, we have

‖εi‖2 .

∥∥∥∥h′∑
j:j∼i

S
(k)
ij (y

(k)
j − y

(k)
i )

∥∥∥∥
2

+R

∥∥∥∥h′ ∑
j∈Hs

S
(k)
ij (y

(k)
j − y

(k)
i )− f (k)

is

∥∥∥∥
2

.

[√
nh′(‖P∗‖∞ + n−2)Rn +

h′η(k)

n

]
max
`∈[2]
‖y(0)

` ‖2.

On the other hand, define Drs = zr − zs. Then∥∥∥∥f (k)
is −

h′ns
n(n− 1)

Drs

∥∥∥∥
2

=

∥∥∥∥ h′ns
n(n− 1)

(
y

(k)
i −

1

ns

∑
j∈Hs

y
(k)
j

)
− h′ns
n(n− 1)

Drs

∥∥∥∥
2

=
h′

n(n− 1)

∥∥∥∥ ∑
j∈Hs

(y
(k)
i − y

(k)
j )− ns(zr − zs)

∥∥∥∥
2

=
h′

n(n− 1)

∥∥∥∥[t>(y
(k)
1 −Oz1), t>(y

(k)
2 −Oz2)]
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.
h′ns
n2

max
`∈[2]
‖y(k)

` −Oz`‖∞ .
h′ns
n2

max
`∈[2]
‖y(k)

` −Oz`‖2 .
h′ns
n2

Rn max
`∈[2]
‖y(0)

` ‖2,

For sufficiently large n, assuming ‖y(0)
1 ‖2 � ‖y

(0)
2 ‖2,

‖Drs‖2
max`∈[2] ‖y

(0)
` ‖2

& min
`∈[2]

minr 6=s |z`r − z`r|
‖y(0)

` ‖2
≥ c

n
, (54)

Consequently, if nRn = o(1),

‖f (k)
is ‖2 ≥

h′ns
n2
‖Drs‖2 −

h′nsRn
n2

max
`∈[2]
‖y(0)

` ‖2 & [
h′ns
n3
− h′nsRn

n2
] max
`∈[2]
‖y(0)

` ‖2 &
h′ns
n3

max
`∈[2]
‖y(0)

` ‖2.

If in addition (‖P∗‖∞+n−2)Rnn7/2

ns
→ 0 and n2η(k)/ns → 0 (this is implied by Proposition 3

and
√
nmaxi∈[n],`∈[2] |y

(0)
i` | → 0), we have

‖εi‖2/‖f (k)
is ‖2 .

[
√
nh′(‖P∗‖∞ + n−2)Rn + h′η(k)/n]n3

h′ns
=

(‖P∗‖∞ + n−2)Rnn
7/2

ns
+n2η(k)/ns = o(1).

This completes the proof for k = K0.

Case II. k > K0. In order to show that the above results still hold for k > k0, we show
that (i) as n→∞

sup
k0≤k≤K

max
(i,j):i∼j

‖y(k)
i − y

(k)
j ‖2 . Vn, (55)

and (ii) as n→∞
inf

k0≤k≤K
min

(i,j):i�j
‖y(k)
i − y

(k)
j ‖2 & Bn. (56)

For any r, s ∈ {1, ..., R} and r 6= s, we choose c(r) and c(s) such that c(r) ∈ Hr and
c(s) ∈ Hs, and define

D(k)
rs = y

(k)
c(r) − y

(k)
c(s).
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In particular, by (55), as n → ∞, the choices of specific c(r) and c(s) are unimportant.
Now By (56), for each k0 ≤ k ≤ K, we have

‖f (k)
is ‖2 =

∥∥∥∥ h′ns
n(n− 1)

(
y

(k)
i −

1

ns

∑
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Hence,

‖fis‖2 &
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, (57)

whenever Bn � Vn. On the other hand, for the error term, we have
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where we used the key inequality

max
i,j∈[n]

‖y(k)
i − y
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j ‖2 . Bn. (58)

Hence, it follows that
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′Vn +
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and
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whenever (‖P∗‖∞+n−2)Vnn
2/Bn → 0 and η(k) → 0. In fact, we will show in the next part

that Vn = Rn max`∈[2] ‖y
(0)
` ‖2 and Bn = n−1 max`∈[2] ‖y

(0)
` ‖2, so these conditions become

‖P∗‖∞Rnn3 → 0 and η(k) = o(1), and both are true under (I3) and (T1.E).
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Proof of (55), (56) and (58). To show these two inequalities, we need to obtain a
general iteration formula over the embedding stage. Note that for any i, j ∈ [n],
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Hence, we have the key iteration formula
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Similarly, for i � j, we also have
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By the above arguments, we only need to show that
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hold for k = K0. Then it suffices to set Vn = Rn max`∈[2] ‖y
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and Bn � Vn holds naturally.
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‖y(0)

` ‖2,

which implies (71) and Vn = Rn max`∈[2] ‖y
(0)
` ‖2 by previous assumption nRn = o(1).
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To see (72), note that for i � j such that i ∈ Hr and j ∈ Hs,

‖y(k)
i − y

(k)
j ‖2/max

`∈[2]
‖y(0)

` ‖2 ≥ ‖Drs‖2/max
`∈[2]
‖y(0)

` ‖2 − ‖y
(k)
i − y

(k)
j −Drs‖2/max

`∈[2]
‖y(0)

` ‖2 ≥ cn
−1,

and that Bn = n−1 max`∈[2] ‖y
(0)
` ‖2, where the last inequality follows from (54) and

‖y(k)
i − y

(k)
j −Drs‖2/max

`∈[2]
‖y(0)

` ‖2 . max
`∈[2]
‖y(k)

` −Oz`‖∞/max
`∈[2]
‖y(0)

` ‖2 = o(n−1)

Finally, to see (58), based on a similar argument we have

max
i,j∈[n]

‖y(k)
i −y

(k)
j ‖2/max

`∈[2]
‖y(0)

` ‖2 ≤ ‖Drs‖2/max
`∈[2]
‖y(0)

` ‖2+‖y(k)
i −y

(k)
j −Drs‖2/max

`∈[2]
‖y(0)

` ‖2 ≤ cn
−1,

where i ∈ Hs and j ∈ Hr.

C.3 Proof of Theorem 14

By construction, we have ‖y(0)
1 ‖2 = ‖y(0)

2 ‖2 = σn, and

max
i∈[n],`∈[2]

|y(0)
i` | .

σnΦ(1− δ)√
n

= o(n−1/2) (73)

with probability at least 1− δ. Finally, note that by Theorem 7,

z`r = θ>r y
(0)
` /
√
nr =

1

nr

∑
i∈Hr

y
(0)
i` . (74)

Then

n|z`i−z`j |/‖y
(0)
` ‖2 = σ−1

n n

∣∣∣∣ 1

ni

∑
k∈Hi

y
(0)
k` −

1

nj

∑
k∈Hj

y
(0)
k`

∣∣∣∣ = n

∣∣∣∣ 1

ni

∑
k∈Hi

g
(0)
k` −

1

nj

∑
k∈Hj

g
(0)
k`

∣∣∣∣/‖g`‖2.
Note that

√
n
ni

∑
k∈Hi g

(0)
k` and

√
n
nj

∑
k∈Hj g

(0)
k` are independent centered random variables

with variances n2/n2
i and n2/n2

j respectively. There exist some constants (C, δ) such that

C−1 ≤
∣∣∣∣√nni ∑

k∈Hi

g
(0)
k` −

√
n

nj

∑
k∈Hj

g
(0)
k`

∣∣∣∣ ≤ C,
with probability at least 1 − δ. Now since 1/2 ≤ ‖g`‖22/n ≤ 2 with probability at least
1− n−c. Then by combining the above two results, for sufficiently large n, we have

1

C
√

2
≤ n|z`i − z`j |/‖y

(0)
` ‖2 ≤ C

√
2 (75)

with probability at least 1− 2δ. This proves the theorem.
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C.4 Proof of Theorem 15

Define i
(k)
0 = arg maxi y

(k)
i1 and i

(k)
1 = arg mini y

(k)
i1 . For simplicity, we drop the superscript

(k) in i0 and i1 when there is no risk of confusion. In general, it suffices to show that

y
(k+1)
i0`

> y
(k)
i0`
, y

(k+1)
i1`

< y
(k)
i1`

(76)

for ` = 1, 2, at each iteration. Without loss of generality, we only show that y
(k+1)
i01 > y

(k)
i01

as the proofs of the other results are the same. Note that

y
(k+1)
i01 = y

(k)
i01 + h′

∑
j:j�i0

S
(k)
i0j

(y
(k)
j1 − y

(k)
i01) + h′

∑
j:j∼i0

S
(k)
i0j

(y
(k)
j1 − y

(k)
i01)

≡ y(k)
i01 + F

(k)
i01 + E

(k)
i01 . (77)

By definition of i0 and Proposition 12, we have y
(k)
j1 − y

(k)
i01 < 0 and S

(k)
i0j

< 0 for all j � i, so

that F
(t)
i01 > 0. Moreover, since

F
(k)
i01 &

h′

n
min
j�i
|y(k)
j1 − y

(k)
i1 |,

and

|E(t)
i01| . max

j 6=i0
j∼i0

|y(k)
j1 − y

(k)
i01| · h

′
∑
j 6=i0
j∼i0

S
(k)
i0j

. h′n‖P∗‖∞max
i∼j
|y(k)
j1 − y

(k)
i1 |,

by the same argument that leads to (55) and (56) in the proof of Theorem 13, we have

maxi∼j |y(k)
j1 − y

(k)
i1 | � minj�i |y(k)

j1 − y
(k)
i1 |. Then, in equation (77), we have F

(t)
i01 � |E

(t)
i01|

under the condition that ‖P∗‖∞ . n−2.

Appendix D. Analysis of Two Examples

D.1 Proofs of the Gaussian Mixture Model

For given {zi}1≤i≤n, we define the equivalence relationship over [n] such that i ∼ j whenever
zi = zj . Thus, for given {Xi}1≤i≤n, we can define the symmetric matrix P∗ = (p∗ij) ∈ Rn×n
such that p∗ij = pij if i ∼ j, and p∗ij = 0 otherwise. The following proposition concerns
properties of the similarity matrix P under the Gaussian mixture model.

Proposition 22 Under conditions of Corollary 17, we have

P

(
‖P‖∞ .

1

n2

)
≥ 1− 1

nc
, (78)

and the following events

B1 =

{
‖L(P−P∗)‖ . 1

n
e−cρ

2/p, ‖P−P∗‖∞ .
1

n2
e−cρ

2/p

}
, (79)

B2 =

{
min
i∼j

p∗ij &
1

n2
, λR+1(L(P∗)) � ‖L(P∗)‖ � 1

n

}
, (80)

hold with probability at least 1− n−c.
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Proof Firstly, we define the Gaussian kernel matrix associated with the data points
{Xi}1≤i≤n as

K = (K(Xi, Xj))1≤i,j≤n, K(Xi, Xj) = exp

(
− ‖Xi −Xj‖22

2τ2
i

)
. (81)

Let Kij be the (i, j)-th entry of K. By the definition of pij , for each pair {i, j} ⊂ {1, ..., n}
such that i 6= j, we define the map Fij : Rn×n+ → (0, 1) where

pij = Fij(K) =
Kij

2n
∑

` 6=iKi`
+

Kji

2n
∑

`6=jKj`
.

To show (78), it suffices to show
∑

` 6=iKi` & n, with high probability, as by definition
Kij ≤ 1. This is done in the following lemma.

Lemma 23 Under conditions of Corollary 17, for any i ∼ j,

P
(

min{Kij ,EKij} & c′
)
≥ 1− n−c, (82)

and, for any given i ∈ {1, ..., n},

P (|{s ∈ {1, ..., n} : s ∼ i}| ≥ c′n) ≥ 1− e−cn. (83)

Next, to show (79), we only need to obtain an upper bound for maxi�jKij , or a lower
bound for maxi�j ‖Xi −Xj‖22. We write Xi = µzi + Σ1/2Wi where Wi ∼ N(0, Ip) so that

‖Xi −Xj‖22 = ‖µzi − µzj‖22 + (Wi −Wj)
>Σ(Wi −Wj) + 2(µzi − µzj )>Σ1/2(Wi −Wj).

On the one hand, by the Hanson-Wright inequality (Rudelson and Vershynin, 2013), we
have, for t & p,

P (|(Wi −Wj)
>Σ(Wi −Wj)− 2tr(Σ)| > t) ≤ 2e−ct.

On the other hand, standard concentration inequality for sub-Gaussian random variables
indicates

P (|2(µzi − µzj )>Σ1/2(Wi −Wj)| > C‖µzi − µzj‖2
√
t) ≤ 2e−ct.

By choosing t = C max{p, log n} in the above inequalities, we have

P (‖Xi −Xj‖22 ≥ [‖µzi − µzj‖2 + C max{√p,
√

log n}]2) ≤ n−c.

Now since ρ2 & max{p, log n}, we have P (‖Xi − Xj‖22 ≥ ‖µzi − µzj‖22) ≤ n−c. In other
words, under the same event, we have

P
(

max
i�j

Kij . e−cρ
2/max{p,logn}) ≥ 1− n−c.

Finally, to show (80), we define the matrix P0 ∈ Rn×n such that p0,ij = p∗ij for i � j,
and p0,ij = Fij(E[K|z1, ..., zn]) otherwise. Conditional on {zi}, P0 is a block-wise constant
matrix. Then λR+1(L(P0)) = ‖L(P0)‖ � n−1. To see this, we need the following lemma.
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Lemma 24 Under conditions of Corollary 17, for any pair {i, j} ⊂ {1, ..., p} such that
i ∼ j, we have

p0,ij �
1

n2
, (84)

with probability at least 1− e−cn.

The following lemma concerns the relation between P∗ and P0.

Lemma 25 Under conditions of Corollary 17, with probability at least 1 − n−c − n2e−cn

for some constant c > 0, we have

‖P∗ −P0‖∞ .
1

n2
‖K− E[K|z1, ..., zn]‖∞. (85)

Moreover, with probability at least 1− n2(n−c + e−cn + 2e−t
2
), we have

‖P∗ −P0‖∞ .
t

n2 max{√p,
√

log n}
. (86)

Consequently, we have

P

(
‖P∗ −P0‖∞ .

√
log n

n2 max{√p,
√

log n}

)
≥ 1− n−c (87)

Finally, in order to show (80), it suffices to use Weyl’s inequality |λR+1(L(P0)) −
λR+1(L(P∗))| ≤ ‖L(P0)− L(P∗)‖. This proves the proposition.

The verification of (T1.D) and (T2.D) is straightforward. To check (T1.E) (T2.E) and
(T3.E), we note that αhK0‖L(P∗−P)‖ . K0e

−cρ2/max{p,logn}. Hence, for (T1.E) to hold, we

need K0ne
−cρ2/max{p,logn} = o(1). Moreover, the condition diam({y(K0+K1)

i }1≤i≤n) = o(1)
follows from Theorem 15 and the condition h′K1 = O(n).

D.2 Proof of the Noisy Nested Sphere Model

Similarly, we define the symmetric matrix P∗ = (p∗ij) ∈ Rn×n such that p∗ij = pij if i ∼ j,
and p∗ij = 0 otherwise. The following proposition concerns properties of the similarity
matrix P under the noisy nested sphere model.

Proposition 26 Under the conditions of Corollary 19, we have

P

(
‖P‖∞ .

1

γn2

})
≥ 1− 1

nc′
, (88)

P

(
‖P−P∗‖∞ .

1

γn2
exp

{
− min
r∈[R−1]

c(ρr+1 − ρr)2

γρ2
r+1

})
≥ 1− 1

nc′
, (89)

P

(
‖L(P−P∗)‖ . 1

γn
exp

{
− min
r∈[R−1]

c(ρr+1 − ρr)2

γρ2
r+1

})
≥ 1− 1

nc′
. (90)
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Proof As in the proof of Proposition 22, we note that pij = Fij(K) =
Kij

2n
∑
6̀=iKi`

+

Kji
2n

∑
` 6=j Kj`

. Then we need to find lower bound for
∑

`6=jKj` and
∑

` 6=iKi`, as Kij ≤ 1.

Lemma 27 Under the conditions of Corollary 19, conditional on the event in (83), for any
i ∈ [1 : n]

P

(∑
j:j∼i

min{Kij ,EKij} ≥ Cγn
)
≥ 1− n−c. (91)

Now, for i � j, we have

‖Xi −Xj‖2 =

∥∥∥∥µi − µj +
µi
‖µi‖2

ξi −
µj
‖µj‖2

ξj

∥∥∥∥
2

= ‖θi(ρzi + ξi)− θj(ρzj + ξj)‖2
≥ |(ρzi + ξi)− (ρzj + ξj)|
≥ |ρzi − ρzj | − |ξi − ξj |

≥ |ρzi − ρzj | − σ
√

log n

Now as long as mini�j |ρzi − ρzj | ≥ Cσ
√

log n for some sufficiently large C, we have

‖Xi −Xj‖2 ≥ C|ρzi − ρzj |.

Hence, with probability at least 1− n−c, we have

max
i�j

(Kij +Kji) . exp

(
−
C(ρzi − ρzj )2

τ2
i

)
+ exp

(
−
C(ρzi − ρzj )2

τ2
j

)
(92)

. exp

(
−
C(ρzi − ρzj )2

max{τ2
i , τ

2
j }

)
(93)

so that under the same event, for i � j, we have

pij .
Kij +Kji

γn2
.

1

γn2
exp

(
−
C(ρzi − ρzj )2

max{τ2
i , τ

2
j }

)
,

or (89). Finally, note that for C ′ ≤ C/c,

min
i�j

C(ρzi − ρzj )2

max{τ2
i , τ

2
j }

= min
i�j

C(ρzi − ρzj )2

C ′γmax{ρ2
zi , ρ

2
zj}
≥ min

r∈[R−1]

c(ρr+1 − ρr)2

γρ2
r+1

.

This along with the fact ‖L(P∗ −P)‖ . n‖P∗ −P‖∞ implies (90).

Now we check (T1.D) and (T2.D). Specifically, we needK0 →∞, K0h = o(n), nhα‖P‖∞ =
O(1), K0hα‖L(P − P∗)‖ = o(1), 1/2 + h/n ≤ hαλR+1(L(P∗)) ≤ hα‖L(P∗)‖ ≤ 1 + h/n

and K0h(nα‖P‖∞ + 1/n) maxi∈[n],`∈[2] |y
(0)
i` |

2 = o(1). To have these conditions hold with
probability at least 1− n−c, by Proposition 26, we need

K0h = o(n),
hα

γn
= O(1),

K0hα

γn
exp

{
− min
r∈[R−1]

c(ρr+1 − ρr)2

γρ2
r+1

}
= o(1),
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0.5 ≤ hαλR+1(L(P)) ≤ hα

γn
≤ 1.5, (94)

and
K0h(α/γ + 1)σ2

n log n = o(n2), K0 →∞.

This proves the first statement. To show (T1.E) (T2.E) and (T3.E) hold, we only need to
check the following conditions

n(1− κ)K0 + hK0[(αn‖P∗‖∞ + 1/n)σ2
n log n+ αn‖L(P∗ −P)‖](1 + n2‖P∗‖∞) = o(1),

and
K1h

′(n‖P∗‖∞ + 1/n) = O(1), n2‖P−P∗‖∞ = o(1).

Again, by Proposition 26, the above conditions hold with probability at least 1 − n−c if
K0 � log n,

n(1−κ)K0 +hK0

[
(α/γ+1)σ2

n log n/n+
α

γ
exp

{
− min
r∈[R−1]

c(ρr+1 − ρr)2

γρ2
r+1

}]
(1+1/γ) = o(1),

and

K1h
′(1/γ + 1) = O(n),

1

γ
exp

{
− min
r∈[R−1]

c(ρr+1 − ρr)2

γρ2
r+1

}
= o(1).

This completes the proof of the corollary.

Appendix E. Proof of Auxiliary Lemmas

E.1 Proof of Lemma 21

Note that L(αP−Hn) = L(αP)−L(Hn) = L(αP)+ 1
n(n−1)11>− 1

n−1In, and the Laplacian

L(αP) is positive semi-definite (as a result of the Geršgorin circle theorem (Varga, 2010)
and that L(αP) is a symmetric diagonally dominant matrix with real non-negative diagonal
entries) and has the smallest eigenvalue λ1 = 0 with an eigenvector n−1/21. Then, if
λ1 ≤ ... ≤ λn are the eigenvalues of L(αP), the eigenvalues of L(αP −Hn) are (λ1, λ2 −
(n − 1)−1, ..., λn − (n − 1)−1). Consequently, the smallest eigenvalue of hL(αP − Hn) is
min{0, h(λ2− (n−1)−1)} ∈

[
− h

n−1 , 0
]
. On the other hand, we also have ‖hL(αP−Hn)‖ ≤

‖hL(αP)‖ < 2. Then, it follows that 1 ≤ ‖I− hL(αP−Hn)‖ ≤ 1 + h
n−1 .

E.2 Proof of Lemma 23

Proof of (82). On the one hand, if we let Σ = UΛU> be the eigen-decomposition of Σ,
where Λ = diag(λ1, ..., λp), then in light of (98) below,

A =
1

4
U(

2

τ2
I + Λ−1)U> =

1

4
Udiag

(
2/τ2 + λ−1

1 , ..., 2/τ2 + λ−1
p

)
U>, (95)

and therefore

|2A| · |2Σ| =
p∏
i=1

(
1

τ2
+

1

2λi

)
(2λi) =

p∏
i=1

(
2λi
τ2

+ 1

)
≤
(

2λ1

τ2
+ 1

)p
.

(
C

p
+ 1

)p
≤ C ′.
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In other words, we have shown

EKij & c′, if i ∼ j. (96)

On the other hand, we show that

P

(
‖Xi −Xj‖22

2τ2
≤ C

)
≤ 1− n−c, if i ∼ j. (97)

To see (97), note that Xi − Xj ∼ N(0, 2Σ), by the Hanson-Wright inequality (Rudelson
and Vershynin, 2013), for t & ‖Σ‖2F /‖Σ‖2 � p, we have P

(
‖Xi −Xj‖22 ≥ C(tr(Σ) + t)

)
≤

e−ct/‖Σ‖2 . Whenever tr(Σ) . p and ‖Σ‖2 ≤ C, by setting t � max{p, log n}, we have
P (‖Xi − Xj‖22 ≥ C(p + log n)) ≤ n−c. This implies (97) if we choose τ2 � max{p, log n}.
Combining (96) and (97), we have (82).

Proof of (83). It is equivalent to show that, for any xi
i.i.d.∼ Bernoulli(η) where i = 1, ..., n

and p ∈ (0, 1), with probability at least 1−e−cn, we have
∑n

i=1 xi ≥ c′n, for some constants

c, c′ > 0. By Hoeffding’s inequality, for any t ≥ 0, P
(

1
n

∑n
i=1 xi − η ≥ t

)
≤ e−2nt2 , which

implies P

(∑n
i=1 xi ≥ (1− η)n

)
≤ e−2n, if we set t = 1. This proves (83).

E.3 Proof of Lemma 24

Let µi = EXi and µj = EXj . Since Zij = Xi −Xj ∼ N(µi − µj , 2Σ), we have

EKij = E exp(−Z>ijZij/2τ2)

=
1

(2π)p/2|2Σ|1/2

∫
exp(−Z>ijZij/2τ2) exp(−(Zij − µi + µj)

>Σ−1(zij − µi + µj)/4)dZij

=
1

(2π)p/2|2Σ|1/2

∫
exp(−Z>ijZij/2τ2 − (Zij − µi + µj)

>Σ−1(Zij − µi + µj)/4)dZij

=
1

(2π)p/2|2Σ|1/2

∫
exp(−Z>ij (

2

τ2
I + Σ−1)Zij/4 + Z>ijΣ

−1∆ij/2−∆>ijΣ
−1∆ij/4)dZij

=
1

(2π)p/2|2Σ|1/2
exp(b>A−1b/4−∆>ijΣ

−1∆ij/4)

∫
exp(−(Zij −A−1b)>A(Zij −A−1b))dZij

=
1

|2A|1/2|2Σ|1/2
exp(b>A−1b/4−∆>ijΣ

−1∆ij/4) (98)

where A = ( 2
τ2

I + Σ−1)/4 and b = Σ−1∆ij/2. The results follows by noting that ∆ij = 0.
On the one hand, by (95), we have

|2A| · |2Σ| =
p∏
i=1

(
1

τ2
+

1

2λi

)
(2λi) =

p∏
i=1

(
2λi
τ2

+ 1

)
≤
(

2λ1

τ2
+ 1

)p
.

(
C

p
+ 1

)p
≤ C ′.

On the other hand,

|2A| · |2Σ| =
p∏
i=1

(
1

τ2
+

1

2λi

)
(2λi) =

p∏
i=1

(
2λi
τ2

+ 1

)
≥ 1.

This implies EKij � 1.
To obtain bounds for p0,ij , it suffices to see that P

(∑
`6=i EK`i & n

)
≥ 1− e−cn, which

follows from (83).
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E.4 Proof of Lemma 25

We start with the proof of (85). For any {i, j} ⊂ {1, ..., n} such that i 6= j, we have

∂Fij(K)

∂Kk`
=



∑
s/∈{i,j}Kis

2n(
∑
s 6=iKis)

2 +
∑
s/∈{i,j}Kjs

2n(
∑
s 6=j Kjs)

2 , if {k, `} = {i, j}
− Kk`

2n(
∑
s 6=iKis)

2 , if i ∈ {k, `}, j /∈ {k, `}
− Kk`

2n(
∑
s 6=j Kjs)

2 , if j ∈ {k, `}, i /∈ {k, `}
0, otherwise

. (99)

For any K1,K2 ∈ Rn×n+ and any {i, j} ⊂ {1, ..., p} such that i 6= j, we have

Fij(K1)− Fij(K2) =
∑

1≤k 6=`≤n

∂Fij(K
∗)

∂Kk`
([K1]k` − [K2]k`) ≤ ‖K1 −K2‖∞

∑
1≤k 6=`≤n

∣∣∣∣∂Fij(K∗)∂Kk`

∣∣∣∣,
where K∗ = tK1 + (1− t)K2 for some t ∈ (0, 1).

In the following, we show that for K1 = K and K2 = E[K|z1, ..., zn], for given i 6= j, it
holds that ∣∣∣∣∂Fij(K∗)∂Kk`

∣∣∣∣ . 1

n2
, for {k, `} = {i, j}, (100)

and ∣∣∣∣∂Fij(K∗)∂Kk`

∣∣∣∣ . 1

n3
, for j ∈ {k, `}, i /∈ {k, `} or i ∈ {k, `}, j /∈ {k, `}, (101)

with probability at least 1− e−cp − e−cn for some constant c > 0, and conclude that∑
1≤k 6=`≤n

∣∣∣∣∂Fij(K∗)∂Kk`

∣∣∣∣ . 1

n2
, (102)

under the same event. This along with a union bound argument leads to (85). To show
(100), we note that∣∣∣∣∂Fij(K)

∂Kij

∣∣∣∣ =

∑
s/∈{i,j}Kis

2n(
∑

s 6=iKis)2
+

∑
s/∈{i,j}Kjs

2n(
∑

s 6=jKjs)2
≤ 1

2n
∑

s 6=iKis
+

1

2n
∑

s 6=jKjs
.

Note that by (82), we have

1∑
s 6=iK

∗
is

+
1∑

s 6=jK
∗
js

.
1

n
,

with probability at least 1 − e−cp − e−cn for some constant c > 0. Therefore (100) holds
with high probability. On the other hand, to show (101), it suffices to see that, for j ∈
{k, `}, i /∈ {k, `}, ∣∣∣∣∂Fij(K∗)∂Kk`

∣∣∣∣ . 1

n(
∑

s 6=iK
∗
is)

2
.

1

n3

with probability at least 1− e−cp − e−cn. This completes the proof of (85).
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Next we prove (86). The proof follows directly from

P (‖K− E[K|z1, ..., zn]‖∞ ≥ t/max{√p,
√

log n}) ≤ 2n2e−t
2
. (103)

Note that, the kernel function K(Xi, Xj) : R2p → R is L-Liptschitz with respect to the `2

norm on R2p, with L =
√

2
eτ �

1
max{√p,

√
logn} . By the concentration inequality for Liptschitz

continuous functions (see, e.g., Theorem 4 of Amini and Razaee (2021)), it holds that

P (|K(Xi, Xj)− EK(Xi, Xj)| ≥ Ct/max{√p,
√

log n}) ≤ 2e−ct
2
.

By applying the union bound, we have

P (‖K− E[K|z1, ..., zn]‖∞ ≥ Ct/
√
p) = P

(
max

1≤i 6=j≤n
|K(Xi, Xj)− EK(Xi, Xj)| ≥ Ct/max{√p,

√
log n}

)
≤ 2n2e−ct

2
.

This completes the proof.

E.5 Proof of Lemma 27

Suppose {zi} and {µi} are given. Let Si(γ) = {j ∈ [n] : j ∼ i,
µ>i µj

‖µi‖2‖µj‖2 ≥ 1− γ} for some

γ ∈ (0, 1). We show that for some properly chosen {τi},

min{Kij ,EKij} ≥ C, for any j ∈ Si(γ), (104)

for some constant C > 0 with probability at least 1 − n−c. Apparently, this leads to∑
j:j∼i min{Kij ,EKij} ≥

∑
j∈Si(γ) min{Kij ,EKij} ≥ C|Si(γ)|, and we only need to show

that |Si(γ)| ≥ γn with the claimed probability. We first show (104). Since for any j ∈ Si(γ),
if we denote θi = µi/‖µi‖2, we have

‖Xi −Xj‖22 . ‖θi − θj‖22ρ2
zi + |ξi + ξj |2

. (1− θ>i θj)ρ2
zi + σ2 log n

. γρ2
zi + σ2 log n

with probability at least 1− n−c. Here we used the tail bound P (|ξi + ξj | ≤ Cσ
√

log n) ≥
1− n−c, In particular, if γminr∈[R] ρ

2
r � σ2 log n, the above argument leads to

P

(
min{Kij ,EKij} & exp

{
− C

γρ2
zi

τ2
i

})
≥ 1− n−c. (105)

Therefore, if we choose τi such that τ2
i & γρ2

zi , we have (104).
Secondly, we obtain lower bound for |Si(γ)|. Note that {θi} are uniformly drawn on

Sp−1. It follows from the spherical area formula that |Si(γ)| is a binomial random variable

with distribution Bin(n, γ/2), so that P
(∣∣∣∣|Si|− nγ

2

∣∣∣∣ . t
√
γ(1− γ)n

)
≥ 1−e−t2 . By choosing

t = C
√

log n, we have P (|Si| ≥ nγ/2 − C
√
γn log n) ≥ 1 − n−c. If γ & log n/n, we have

P (|Si| & nγ) ≥ 1− n−c. This proves the lemma.
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Appendix F. Supplementary Figures

This section includes additional figures from the numerical studies presented in Sections 4
and 5. Specifically, Figure 7 contains the final t-SNE embeddings of the model-generated
samples as described in Section 4, but with different tuning parameters where δ = 1/2.
Figure 8 shows that when the separation condition ρ2 � p is slightly violated, t-SNE is
still able to visualize clusters from the Gaussian mixture model, which demonstrates the
robustness of t-SNE with respect to the separation condition.

Figure 7: The final t-SNE embeddings of the model-generated samples as described in Sec-
tion 4, using the tuning parameters with δ = 1/2.

Figure 8: The final t-SNE embeddings of the samples generated from the Gaussian mixture
model with separation ρ2 = p2/3 (left) and ρ2 = p4/5 (right), using the tuning
parameters with δ = 1/3.

Figure 9 is a heatmap of the similarity matrix P for the n = 1600 MNIST samples
corresponding to digits “2,” “4,” “6,” and “8,” analyzed in Section 5. It justifies our as-
sumption on the approximate block structure on P. Figure 10 contains t-SNE visualizations
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Figure 9: A heatmap of the similarity matrix P for the n = 1600 MNIST samples corre-
sponding to digits “2,” “4,” “6,” and “8,” analyzed in Section 5. The color bars
represent the cluster labels of the columns and rows.

Figure 10: t-SNE visualizations of n = 2400 MNIST samples with an identical random
initialization but different values of δ for the tuning parameters in (39).

of n = 2400 MNIST samples with an identical random initialization but different values of δ
for the tuning parameters in (39). The similarity in the cluster patterns indicates robustness
and flexibility of our theory-guided choices for the tuning parameters.
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