Simulation modeling for cost estimation

BY RICHARD WATERMAN Department of Statistics, University of Pennsylvania, and DONALD RUBIN Department of Statistics, Harvard University, and **NEAL THOMAS** Datametrics Research Inc. and ANDREW GELMAN Department of Statistics, Columbia University. June 23th 1999

Outline

- Context for the simulation model.
- Objectives.
- The types questions it answers.
- How it works, it's scope and requirements.
- Insights and benefits.

Context I, ABC.

- Ch.5, Cooper & Kaplan. The Design of Cost Management Systems.
- Introduce the idea of an *optimal cost system*.
- One that trades off between

(A) The cost of errors. (B) The cost of measurement.

- Error consequences include:
 - * Poor product related decisions.
 - * Poor product design decisions.
 - * Poor capital investment decisions.
 - * Inaccurate budgeting decisions.

Context II

- US Postal Service Data Quality Study (June 1997 April 1999).
- Part of the study mandate:

... provided sufficiently (1) complete and (2) accurate data for rate making, ...

- First level question: *what are costs?*
- Second level question: how well are costs estimated?
- Simulation model addresses the second question.

Simulation model objectives

- Examine how well costs are estimated.
- Establish the impact of measurement errors.
- Explore consequences of competing viewpoints.
- Prioritize information sources.
- Take a holistic view of the cost estimation process.

A flavor of the questions addressed

- What is the uncertainty in overall Marginal Cost estimates?
- How do cost elasticity assumptions impact MC estimates of products?
- What impact would halving data collection resources have on cost estimates?
- Which costpool contributes more **uncertainty** to overall MC estimates? Delivery or Transportation?
- Where are the strongest/weakest links in the chain of cost estimate components?

Why it's a hard problem

- Magnitude: multiple products (i), multiple cost drivers (j).
- **Complexity** of estimation equation.
- Multiple information sources.
- Inter-related data inputs.
- Spheres of influence. Accountants, Economists and Statisticians.

Schematic of the Marginal Cost estimation equation.

Simulation model description

- Take an established theoretical basis and combine this with best available data.
- Trade analytical complexity for computational intensity.
- Incorporate **uncertainty**, potential bias and dependencies in all input elements.
- Measure **uncertainty** in outputs (Marginal Cost estimates).
- Reflect system wide uncertainty, not just component level uncertainty.

Model Scope

- 8 mail subclasses.
- 29 Cost pools.
- Estimates Unit Volume Variable Cost/ Marginal Cost.
- Incorporates 4000 separate data inputs.
- Combines inputs from econometric studies, sample surveys and expert judgment – multiple data sources.
- Requires up to date data inputs to remain useful.

Cost estimation system evaluation

- How good a measuring stick do we have?
- Need to know "truth", to judge how far we are from truth.
- Generate *Hypothetical Worlds*, use these as testbeds.
- Benchmark *Hypothetical Worlds* against FY96 data to enhance credibility.
- Test measuring procedures (SEP's) against these Hypothetical Worlds.

How it works: an individual volume element

Uncertainty components

Summary of the sampling variability in the UVVC estimates for the 8 products used in the simulation model.

			Subclass cv when a specific					
Subclass	UVVC	SEP	subsystem is "turned off"					
	mean	CV	RPW	IOCS	TRACS	CCS	ELAS	SS
First Class	11.60	1.26	1.24	1.19	1.14	*1.30	1.24	0.81
Letters Flats								
& IPPs								
Periodicals	3.38	10.09	*10.23	1.30	*10.14	10.06	10.07	10.02
within County								
Periodicals	10.04	2.51	2.51	2.05	1.53	2.51	2.47	*2.52
Regular Rate								
Standard A	3.07	8.00	7.90	*8.14	*8.04	8.00	8.06	1.32
Enhanced								
Carrier Route								
Standard A	8.52	2.11	2.00	1.88	2.03	2.06	2.05	1.04
Regular Rate								
Standard A	6.65	2.70	2.64	2.22	2.57	*2.73	2.67	1.76
Non-profit								
Standard B	146.17	4.59	4.25	4.14	3.75	*4.71	*4.64	3.85
Parcel Post								
Standard B	96.33	13.48	8.79	11.46	12.49	13.26	*13.49	13.24
Library								

Summary and benefits

- It is feasible to assess cost uncertainty.
- A first step toward understanding the cost of errors.
- Model forces assumptions to be explicit.
- Provides a framework/language for discussion.
- Platform for investigating impacts of diverse viewpoints.
- By looking at the whole picture, it can pinpoint which errors have the most serious impact.