Stat 541 Fall 1999
Instructor
Richard Waterman waterman@wharton.upenn.edu
http://www-stat.wharton.upenn.edu/~waterman/homepage.html
Tel. 215.573.3637 Fax 215.898.1280
Department of Statistics, 3025 SH-DH, 3620 Locust Walk,
Philadelphia PA 19104.6302.
Objectives
The course will provide students with an exposure to statistical methods
intended for exploratory and creative data analysis. Students should become
familiar with a range of modern tools and techniques suited to this
task. Methods will be implemented in SPlus, the data analysis tools most
suited to the approach taken in the course. Statistical theory will be
addressed in so far as it guides practice, but not for its own sake.
Resources
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Venables & Ripley. (1994) Modern and Applied Statistics with S-Plus, Springer-Verlag.
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Myers. (1990) Classical and Modern Regression with Applications, Pws Pub Co.
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Frederick Mosteller and John W. Tukey. (1977) Data Analysis and Regression. Addison Wesley. ISBN0-201-04854-X
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Hoaglin, Mosteller and Tukey (Eds.) (1982) Understanding
robust and exploratory data analysis. Wiley
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Stanford Weisberg. (1985) Applied linear regression. Wiley
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Cook and Weisberg. (1994) An introduction to regression graphics. Wiley
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- McCullagh and Nelder. (1989) Generalized Linear Models.
Chapman and Hall
Topics
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Summarizing, massaging and exploring data
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Graphical tools and displays
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Numerical summaries
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Transformations
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Standardization
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Scatterplot smoothing
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Conditioning/Trellis
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- The origin of the data -- or the i.i.d. mantra
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Sampling
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Cluster sampling
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Modeling
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Classical linear models
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/yellowpin.gif)
- Regression
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/yellowpin.gif)
- Anova and multiple comparisons
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Generalized linear models
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/yellowpin.gif)
- Logistic regression
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/yellowpin.gif)
- Poisson regression
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/redpin.gif)
- Model assumptions, diagnostics and graphics
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Model selection - cross-validation and out of sample prediction
![*](http://www-stat.wharton.upenn.edu/~waterman/icons/bluepin.gif)
- Variance estimation - Bootstrap and jackknife
Assignments and grading
There will be four assignments over the semester. Each assignment will
involve analyzing a dataset, with the purpose of applying techniques
learnt in class and interpreting results.
Each assignment will contribute 25.00% toward the final grade.
Richard Waterman
Wed Sep 9 11:30:16 EDT 1999