
Class 7. Prediction, Transformation and Multiple Regression.

1 Today’s material

Prediction

Transformation

Multiple regression

Robust regression

Bootstrap

2 Prediction

Two types corresponding to the “data = signal + noise” paradigm.

Prediction of just the signal or prediction that also includes the noise.

Prediction in the range of the data (interpolation) is pretty safe.

Prediction out of the range of the data (extrapolation) is extremely danger-
ous.

Prediction for a new observation has 3 sources of uncertainty.

The fit is not quite right – uncertainty in the true regression line.

There’s variability about the regression line – noise.

There is uncertainty because this may not be the correct model –
model misspecification.

3 Transformation

3.1 Why transform?

Upside: make life easy both practically (problems may evaporate, e.g. out-
liers become less severe) and theoretically (normal theory results, t-
tests, p-values are credible)
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Downside: may be hard to interpret

Rationale:

Symmetry – “middle” well defined

Easier to compare with normal (ie heavy tailed).

Methodology may require symmetry (ie normal theory)

Facilitates comparisons between observations that are on the same
scale but far apart, (ie changes in Microsoft sales and changes in
Apple’s).

May be more interpretable – aid in decision making. Unit costs rather
than total costs.

May put data onto a more useful scale, ie transform proportions with
a logit transform.

Can make comparisons easier by stabilizing variance

Can transform to obtain additivity (ie Cobb-Douglas)

Interaction may only be present due to modeling on the wrong scale,
so that transformation erases the need for interaction.

3.2 The power family of transformations

Stretching the axis differentially.
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Unfortunately does not include ln.
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Take the limit as p→ 0 and you get ln(z).
Need to know the shape of these curves.
The most commonly used is probably the log-transform.
Reasons:

Good interpretability in terms of percentage changes.

Turns multiplicative relationships into additive ones.
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3.3 Percent change interpretation

Understand interpretations on the log scale, why log transforms result in
percentage change interpretations.

Key facts: The log of a product is the sum of the logs.
ln(1 + δ) ∼ δ for small δ.

Take a log (natural) regression.

ln(y) = β0 + β1ln(x).

Increase x by δ percent, how does ln(y) shift?

ln(y∗) = β0 + β1ln(x× (1 + δ)).

ln(y∗) = β0 + β1ln(x) + β1ln(1 + δ).

ln(y∗) ∼ β0 + β1ln(x) + β1δ.

How much did ln(y) shift?

ln(y∗)− ln(y) ∼ β1δ.

ln(y∗/y) ∼ β1δ.

ln(y/y + (y∗ − y)/y) ∼ β1δ.

ln(1 + (y∗ − y)/y) ∼ β1δ.

(y∗ − y)/y ∼ β1δ.

Finally: percentage change in y is β1δ.

4 Multiple regression

4.1 The game plan

1. Model learning curves

2. Model production functions

3. Model costs associated with production function

4. Specialize cost function to include the learning curve model as a special
case
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4.2 Learning curves

The motivation

Unit costs decrease as cumulative output increases.

Strategic implications for pricing and marketing strategy

Formulation

ct = c1n
αc
t e

ut ,

where

• ct is unit cost in time period t (adjusted for inflation)

• c1 is unit cost in initial time period

• nt cumulative production up to but not including time t

• αc is unit cost elasticity with respect to unit volume

• ut stochastic disturbance term (our εt)

Note. Response is unit cost. A multiplicative model.

Make linear by taking logs.

ln(ct) = ln(c1) + αc ln(nt) + ut.

Estimate αt from a simple regression.

4.3 Cobb Douglas production function.

Model:
y = A× xα1

1 × xα2
2 × xα3

3 ,

where

• y is the output

• A denotes the state of technical knowledge

• xi denotes the quantity of input i

• αi is the parameter to be estimated (like an elasticity of output
with respect to input i)

4



Note: the response is output. Another multiplicative model.

Define returns to scale as r =
∑
αi.

4.4 The cost function

The cost function is C =
∑
i pixi.

Just the quantity of inputs times their prices.

Relates the minimum cost of producing a level of output y to the prices of
the inputs and the state of technical knowledge.

Objective; Find the input levels that minimize the production cost for a
given level of output. (Cost minimizer assumption.)

This is an optimization problem, in particular choose input levels to min-
imize costs. But subject to a constraint: the inputs must produce a given
level of output, y.

Mathematical technique for solution of constrained optimization: La-
grange multipliers.

It turns out that, assuming the Cobb Douglas production function, then
the optimal level of inputs produce a COST FUNCTION of the form

C = k y1/rp
α1/r
1 p

α2/r
2 p

α3/r
3 ,

where
k = r(Aαα1

1 αα2
2 αα3

3 )−1/r.

It looks a mess, but notice that it is multiplicative, so taking logs will
achieve a linear expression ready for regression.

Further, using the fact that α3 = r − α1 − α2 the logged version can be
rewritten as

ln(C∗) = β0 + βy ln(y) + β1 ln(p∗1) + β2 ln(p∗2),

where

• ln(C∗) = ln(C)− ln(p3)

• ln(p∗1) = ln(p1)− ln(p3)

• ln(p∗2) = ln(p2)− ln(p3)

5



• β0 = ln(k)

• βy = 1/r

• β1 = α1/r

• β2 = α2/r

From this lot we can get at what’s of interest, r, α1, α2, α3.

4.5 Putting together the Learning Curve and the Cost
Function

Objective: make assumptions that incorporate the learning curve into the
cost function as a special case.

• Recall that the learning curve equation can be written as

ln(ct) = ln(c1) + αc ln(nt) + ut.

• And the cost equation as

ln(C) = ln(k)+(1/r) ln(y)+(α1/r) ln(p1)+(α2/r) ln(p2)+(α3/r) ln(p3)+vt.

Then the question becomes can we put restrictions and assumptions on
the cost function so that the learning curve is a special case?

Here’s how it goes.

• Define the state of knowledge At as At = n−αct .

• Assume that effects of the input prices are captured by a GNP deflator,
ie

GNPDt = (α1/r) ln( p1) + (α2/r) ln( p2) + (α3/r) ln( p3).

This leads to a simpler equation:

ln(C ′t) = ln(k′) + (αc/r) ln(nt) + 1/r ln(yt) + ut.

6



Here C ′t is a real total cost because it as been adjusted by the GNP
deflator.

Finally move to unit real costs rather than total real costs and you obtain

ln(ct) = ln(k′) + (αc/r) ln(nt) + ((1− r)/r) ln(yt) + ut,

which for r = 1 is the learning curve model.
How much sense does the previous equation make?
It says that the log of your average real cost at time t depends on two

things. 1, how much you have produced up to time t which surrogates for
how much knowledge you have and 2, how much you produce at time t as
denoted by yt. If you produce more and your returns to scale are greater
than 1 (r 1) then your average cost should decrease – which makes sense.

4.6 Summary

We have seen a variety of econometric models in action.

• There were all multiplicative.

• Their functional form was convenient to work with.

• They involved some very strong assumptions.

• Criticism should be tempered by the objective of the modeling.

• They provide a framework and language for discussion rather than a
dinner party conversation.
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