#### Demonstrate the difference between + , / and *. #### Call the overall mean mu mu <- 1 a <- 4 b <- 8 nreps <- 10 sigsqa <- 2 sigsqb <- 3 #### First we will do "+" --- the ADDITIVE model. #### Factor 1 is "w" having "a" levels with sigmsqa = 2. w <- rnorm(a) * sqrt(sigsqa) names(w) <- paste("W",1:a,sep = "") #### Factor 2 is "x" having "b" levels x <- rnorm(b) * sqrt(sigsqb) names(x) <- paste("X",1:b,sep = "") #### The additive model says that muij = mu + wi + xj #### So create the means like this muij <- mu + rep(w,rep(b,a)) + rep(x,a) muijk <- rep(muij,rep(nreps,a*b)) #### Take within group variance as 1. data <- muijk + rnorm(a * b * nreps) #### Create covariate columns factor1 <- as.factor(rep(rep(names(w),rep(b,a)),rep(nreps,a*b))) factor2 <- as.factor(rep(rep(names(x),a),rep(nreps,a*b))) is.random(factor1) <- T is.random(factor2) <- T summary(varcomp(data ~ factor1 + factor2,method="ml")) summary(raov(data ~ factor1 + factor2)) varcomp(data ~ factor1/factor2,method="ml") summary(raov(data ~ factor1 / factor2)) varcomp(data ~ factor1*factor2,method="ml") summary(raov(data ~ factor1*factor2))