#### Read in data chemdata <- read.table("C:\\t24.1") chemdatanomiss <- na.omit(chemdata) names(chemdatanomiss) <- c("Tab","Set","Lab1","Lab2", "O1","G1", "O2","G2", "O3","G3", "O4","G4", "O5","G5", "O6","G6", "O7","G7", "O8","G8", "O9","G9", "O10","G10") ### Need to reorganize data for analaysis. Put into a LONG vector ### See what dimensions we are dealing with dim(chemdatanomiss) ### 141 x 24 newdatamat <- matrix(rep(0, 141 *10 * 4),ncol=4) for( i in 1: 141){ for( j in 1:10){ # Read off the yij newdatamat[(i-1) * 10 + j,1] <- chemdatanomiss[i,5 + (j-1) * 2] # Read off lab newdatamat[(i-1) * 10 + j,2] <- chemdatanomiss[i,3] # Read off batch newdatamat[(i-1) * 10 + j,3] <- j # Read off method newdatamat[(i-1) * 10 + j,4] <- chemdatanomiss[i,6 + (j-1) * 2] } print(paste("Iteration ", i)) } dimnames(newdatamat) <- list(NULL,c("Value","Lab","Batch","Method")) boxplot(split(newdatamat[,1],newdatamat[,4]),varwidth=T) as.factor(newdatamat[,2]) as.factor(newdatamat[,3]) as.factor(newdatamat[,4]) is.random(newdatamat[,2]) <- T is.random(newdatamat[,2]) varcomp(newdatamat[,1] ~ newdatamat[,2] + newdatamat[,3] + newdatamat[,4]) varcomp(newdatamat[,1] ~