next up previous
Next: 5. Up: 4. Previous: 4.3

4.4 ** Derivation of the sum

Summation notation introduction.


\begin{displaymath}S_t = \sum_{i=0}^t P_0 \theta^i = P_0 \sum_{i=0}^t \theta^i.\end{displaymath}


\begin{displaymath}S_t = P_0 \sum_{i=0}^t \theta^i.\end{displaymath}

How to find out what St is?

\begin{eqnarray*}S_t &=& P_0 \left(1 + \theta^1 + \theta^2 + \theta^3 + \cdots +...
... \\
S_t &=& P_0 \frac{(1 - \theta^{t + 1})}{1 - \theta}. \\
\end{eqnarray*}


Always check this sort of formula with an example calculation:

Take P0 = 1, $\theta = 0.5$ and t = 3.

Then

\begin{displaymath}1 \times (\theta^0 + \theta^1 + \theta^2 + \theta^3) \end{displaymath}


0.50 + 0.51 + 0.52 + 0.53


1 + 0.5 + 0.25 + 0.125 = 1.875

The formula gives

\begin{displaymath}1 \times \frac{(1 - 0.5^4)}{1 - 0.5} = \frac{1 - 0.0625}{1 - 0.5} = 1.875.\end{displaymath}

Recall the formula for the sum of the first t+1 terms is


\begin{displaymath}S_t = P_0 \frac{(1 - \theta^{t + 1})}{1 - \theta}. \end{displaymath}

What about the limit of this series as $t \rightarrow \infty$?

Answer is that it depends on the magnitude of $\theta$, converges for $\theta < 1$.


next up previous
Next: 5. Up: 4. Previous: 4.3
Richard Waterman
1999-05-14