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Abstract

The distributions of the largest and the smallest eigenvalues of a p-variate sample covariance
matrix S are of great importance in statistics. Focusing on the null case where nS follows the
standard Wishart distribution Wp(I, n), we study the accuracy of their scaling limits under
the setting: n/p → γ ∈ (0,∞) as n → ∞. The limits here are the orthogonal Tracy-Widom
law and its reflection about the origin.

With carefully chosen rescaling constants, the approximation to the rescaled largest eigen-
value distribution by the limit attains accuracy of order O(min(n, p)−2/3). If γ > 1, the same
order of accuracy is obtained for the smallest eigenvalue after incorporating an additional log
transform. Numerical results show that the relative error of approximation at conventional
significance levels is reduced by over 50% in rectangular and over 75% percent in ‘thin’ data
matrix settings, even with min(n, p) as small as 2.

Key Words and Phrases: Eigenvalues of random matrices, Laguerre orthogonal ensem-
ble, principal component analysis, rate of convergence, Tracy-Widom distribution, Wishart
distribution.

1 Introduction

Understanding the behavior of the extreme eigenvalues of a sample covariance matrix S is im-
portant in a large number of multivariate statistical problems. As an example, consider one of
the most common inference problems: testing the null hypothesis that the population covariance
is identity. Roy’s union intersection principle [29] suggests that we reject the null hypothesis
for large values of the largest eigenvalue of S (or for small values of the smallest eigenvalue).
Naturally, the next question is: how should the p-value be calculated?

To address this issue, and many others, it is necessary to examine the null distributions of
the extreme sample eigenvalues. In this paper, we restrict ourselves to the Gaussian framework.
In particular, let X be an n × p data matrix whose row vectors are i.i.d. samples from the
Np(0, I) distribution. The p × p matrix A = X ′X then follows a standard Wishart distribution:
A ∼ Wp(I, n), and is called a (real) white Wishart matrix. The ordered eigenvalues of A are
denoted by λ1 ≥ · · · ≥ λp. Our interest lies in λ1 and λp, as A = nS.

The exact evaluation of the marginal distributions of these eigenvalues is difficult, even in the
null case considered here. See, for example, Muirhead [24, Section 9.7]. An alternative approach
is to approximate them by their asymptotic limits. For the problem we are concerned with,
Anderson [2, Chapter 13] summarized the classical results under the conventional asymptotic
regime: p holds fixed and n tends to infinity.
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However, for a wide range of modern data sets (microarray data, stock prices, weather fore-
casting, etc.), the number of features p is very large while the number of observations n is much
smaller than or just comparable to p. For these situations, the classical asymptotics is not always
appropriate and different asymptotic theories are needed. Borrowing tools from Random Matrix
Theory, especially those established by Tracy and Widom [32, 33, 34], Johnstone [15] showed that
under the asymptotic regime

p→∞, n = n(p)→∞ and n/p→ γ ∈ (0,∞), (1)

the largest eigenvalue λ1 in A has the weak limit

λ1 − µp
σp

D−→ F1 , (2)

where the centering and scaling constants are defined as

µp =
(√
n− 1 +

√
p
)2
, σp =

(√
n− 1 +

√
p
)( 1√

n− 1
+

1
√
p

)1/3

. (3)

Here F1 denotes the orthogonal Tracy-Widom law [33], the scaling limit of the largest eigenvalue
in real Gaussian Wigner matrices. Slightly prior to [15], as a byproduct of his analysis on the
random growth model, Johansson [14] proved that the scaling limit for the largest eigenvalue
in complex white Wishart matrix is the unitary Tracy-Widom law F2. Recently, El Karoui [9]
extended the asymptotic regime (1) to include the cases where n/p → 0 or ∞. For the smallest
eigenvalue, when γ > 1, Baker et al. [3] showed that the reflection of F2 about the origin is the
scaling limit for complex Wishart matrices, and Paul [28] gave the Tracy-Widom limits in the
case where n/p→∞ for both complex and real Wishart matrices.

Although this type of asymptotic result has emerged only recently in the statistics literature,
it has already found its relevance to applications with modern data. For instance, based on
(2), Patterson et al. [27] developed a formal procedure for testing the presence of population
heterogeneity with SNP (single nucleotide polymorphism) data.

From a statistical point of view, to inform the use of any asymptotic result in practice, we
need to understand how closely the asymptotic limit approximates the finite sample distributions.
In the motivating example, this dictates the accuracy of the nominal p-value.

In this paper, we first establish a rate of convergence result for the Tracy-Widom approxima-
tion to the distribution of the rescaled largest eigenvalue, but with more carefully chosen constants
than (3). Set a ∧ b = min(a, b) and m± = m ± 1

2 . We show that modifying the centering and
scaling constants to

µn,p = (
√
n− +

√
p−)2 , σn,p = (

√
n− +

√
p−)

(
1
√
n−

+
1
√
p−

)1/3

(4)

results in better approximation: the difference between the distribution of (λ1 − µn,p)/σn,p and
F1 reduces to ‘second order’, being O((n ∧ p)−2/3) rather than O((n ∧ p)−1/3) that would apply
by using (3). See Theorem 1. Numerical work in Section 2.2.1 suggests that the improvement is
substantial.

Further assuming γ > 1 in (1), we find that, with a log transform, the scaling limit of log λp
is the reflected Tracy-Widom law G1 (defined by G1(s) = 1 − F1(−s)) [28]. Moreover, with
appropriate rescaling constants, the accuracy of the limit also reaches second order: O(p−2/3).
See Theorem 2 and Section 2.2.2.
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In the literature, El Karoui [10] established a parallel result for Johansson’s theorem for the
largest eigenvalue on the complex domain and Choup [6] studied the same problem via an Edge-
worth expansion approach. Recently, Johnstone [16] obtained both scaling limit and convergence
rates for the extreme eigenvalues of an F -matrix, on both complex and real domains. As is usual
in the Random Matrix Theory literature, results on the real domain are founded in part on those
for complex data but require significant additional constructs and arguments: this is explained
for our setting in Sections 3 and 4.

The rest of the paper is organized as follows. In Section 2, we present theorems for both the
largest and the smallest eigenvalues, together with supporting numerical results, related statistical
settings, a real data example and a brief discussion. Section 3 proves the theorem on the largest
eigenvalue, and Section 4 sketches the proof of the one on the smallest eigenvalue. Finally,
Section 5 establishes necessary Laguerre polynomial asymptotics which is first used without proof
in Section 3. Technical details are collected in Appendix.

2 Main Results and Their Applications

In this section, we first state two main theorems of this paper, which are concerned with the
convergence rates of the largest and the smallest eigenvalues in finite Wishart matrices to their
Tracy-Widom limits. The theorems are then complemented and further justified by a series of
numerical experiments, in which the Tracy-Widom approximation is reasonably good even when
n and/or p are as small as 2. After that, we review several related statistical settings and consider
a real data example. Finally, we end the section with a brief discussion.

2.1 Main Theorems

We begin with the largest eigenvalue, for which we have the following rate of convergence result.

Theorem 1. Let A ∼ Wp(I, n) with n 6= p and λ1 its largest eigenvalue. Define (µn,p, σn,p) as
in (4). Under condition (1), for any given s0, there exists an integer N0(s0, γ), such that when
n ∧ p ≥ N0(s0, γ) and is even, for all s ≥ s0,∣∣P{λ1 ≤ µn,p + σn,ps} − F1(s)

∣∣ ≤ C(s0)(n ∧ p)−2/3 exp(−s/2) ,

where C(·) is continuous and non-increasing.

We also obtain an analogous result for the smallest eigenvalue. Refine condition (1) to

p→∞, p+ 1 ≤ n = n(p)→∞ and n/p→ γ ∈ (1,∞). (5)

Define µ−n,p =
(√
n− −

√
p−
)2

, σ−n,p =
(√
n− −

√
p−
) (

1/
√
p− − 1/

√
n−
)1/3

, and let

τ−n,p =
σ−n,p

µ−n,p
, ν−n,p = log(µ−n,p) +

1

8

(
τ−n,p
)2
. (6)

Then, we have the following theorem.

Theorem 2. Let A ∼Wp(I, n) with n− 1 ≥ p and λp its smallest eigenvalue. Define (ν−n,p, τ
−
n,p)

as in (6). Under condition (5), we have

log λp − ν−n,p
τ−n,p

D−→ G1
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with G1(s) = 1− F1(−s) the reflected Tracy-Widom law.
In addition, for any given s0, there exists an integer N0(s0, γ), such that when p ≥ N0(s0, γ)

and is even, for all s ≥ s0,∣∣P{log λp ≤ ν−n,p − τ−n,ps} −G1(−s)
∣∣ ≤ C(s0)p

−2/3 exp(−s/2) ,

where C(·) is continuous and non-increasing.

While we only prove rigorous bounds for even p, numerical experiments show that the approx-
imation works just as well in the odd case, and for the largest eigenvalue, also in the square case.
See Tables 1 and 2.

2.2 Numerical Performance

An important motivation for the current study is to promote practical use of the Tracy-Widom
approximation. To this end, we conduct here a set of experiments to investigate its numerical
quality.

2.2.1 The largest eigenvalue

Distributional approximation. We first computed the empirical cumulative probabilities of
λ1 (after rescaling), at a collection of F1 percentiles, using R = 40, 000 replications. This is done
for three different categories of (n, p) combinations: (1) the square case, where n = p = 2, 5, 25
and 100; (2) the rectangular case, where p = 2, 5, 25 and 100, and n/p is fixed at 4:1; (3) the
‘thin’ case, where p = 5 and 10 but n/p could be as high as 100:1 and 1000:1 1. For comparison
purpose, we rescaled λ1 using both the new constants (4) and the old ones (3). The results are
summarized in Table 1.

Numerical accuracy with the new constants could be viewed from two aspects. First, for
the conventional significance levels of 10%, 5% and 1% which correspond to right tails of the
distributions, the approximation looks good even when p is as small as 2! In addition, it improves
as p becomes larger and starts to match the finite distributions almost exactly when p is no
greater than 25. See the last three columns of Table 1. Second, when p is large, for instance, in
the 100× 100 and 400× 100 cases, F1 provides reasonable approximation over the whole range of
interest.

As regards the comparison between different rescaling constants, neither choice seems superior
to the other in the square cases (see the first block of Table 1). However, when the ratio n/p is
changed to 4:1 or higher (see the second and the third blocks), the improvement by using new
constants (4) is self-evident.

As a remark, better performance on right tails and improvement by using the new constants,
as reflected in this simulation study, agree well with the mathematical statement in Theorem 1.

Approximate percentiles. We can also use F1 to calculate approximate percentiles for the
finite distributions, whose accuracy can be measured by the relative error rα = θTWα /θα−1. Here,
θα is the exact 100α-th percentile of the rescaled largest eigenvalue in the finite n× p model and
θTWα is its counterpart from F1.

In Fig. 1, we plot rα for α = 0.95 and 0.99, with p ranging from 2 to 5 and n from 2 to
50. Although n ∧ p is no greater than 5, the approximation is reasonably satisfactory. For the
95-th percentile, |r0.95| ranges from 5% to 10% for most cases and slightly exceeds 10% only when

1In some sense, this category could also be thought of as in the situation where n/p→∞ as discussed in [9].
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Percentiles −3.8954 −3.1804 −2.7824 −1.9104 −1.2686 −0.5923 0.4501 0.9793 2.0234
TW .01 .05 .10 .30 .50 .70 .90 .95 .99

2× 2 .000 .000 .000 .034 .379 .690 .908 .953 .988
(.000) (.000) (.000) (.015) (.345) (.669) (.902) (.950) (.987)

5× 5 .000 .002 .021 .218 .465 .702 .908 .954 .989
(.000) (.002) (.020) (.213) (.460) (.698) (.907) (.953) (.989)

25× 25 .003 .031 .075 .280 .492 .700 .902 .951 .990
(.003) (.030) (.075) (.280) (.491) (.699) (.902) (.951) (.990)

100× 100 .007 .041 .091 .294 .501 .704 .902 .951 .990
(.007) (.041) (.091) (.294) (.501) (.704) (.902) (.951) (.990)

8× 2 .000 .001 .012 .196 .456 .702 .909 .955 .990
(.000) (.004) (.031) (.270) (.532) (.754) (.928) (.964) (.992)

20× 5 .001 .018 .054 .259 .483 .704 .906 .954 .990
(.002) (.028) (.073) (.303) (.531) (.737) (.921) (.962) (.992)

100× 25 .006 .040 .088 .292 .498 .701 .901 .950 .989
(.008) (.047) (.100) (.314) (.523) (.721) (.910) (.955) (.991)

400× 100 .009 .048 .096 .299 .502 .702 .902 .951 .990
(.010) (.053) (.104) (.312) (.516) (.714) (.908) (.954) (.991)

500× 5 .010 .049 .098 .296 .502 .705 .906 .955 .990
(.020) (.083) (.150) (.385) (.589) (.772) (.933) (.969) (.994)

1000× 10 .010 .051 .101 .300 .504 .707 .902 .952 .991
(.017) (.077) (.138) (.366) (.571) (.757) (.923) (.963) (.994)

5000× 5 .012 .056 .107 .307 .509 .707 .905 .953 .992
(.027) (.097) (.169) (.402) (.602) (.779) (.933) (.969) (.994)

10000× 10 .012 .055 .108 .308 .504 .706 .905 .954 .991
(.021) (.084) (.150) (.378) (.580) (.763) (.929) (.967) (.994)

2× SE .001 .002 .003 .005 .005 .005 .003 .002 .001

Table 1: Simulations for finite n×p vs. Tracy-Widom limit: the largest eigenvalue. For each (n, p)
combination, we show in the first row empirical cumulative probabilities for λ1, rescaled by (4),
and the second row, with parentheses, rescaled by (3), both computed from R = 40, 000 repeated
draws from Wp(n, I) using the method in [7]. Conventional significance levels are highlighted in
bold font and the last row gives approximate standard errors based on binomial sampling. F1 was
computed by the method in [8] with percentiles obtained via inverse interpolation.

p = 2 and the n/p ratio is high. The approximation works even better for the 99-th percentile,
with |r0.99| ≤ 5% for most cases. Due to computational limitation [20], we could not obtain
exact percentiles when n and p are large. We expect the approximate percentiles to become more
accurate as a consequence of better distributional approximation.

2.2.2 The smallest eigenvalue

For the smallest eigenvalue, we perform a simulation study to investigate the distributional ap-
proximation. We chose two n/p ratios: 2:1 and 4:1, both with p = 2, 5, 25 and 100. For each
(n, p) combination, we used R = 40, 000 replications. The simulation results shown in Table
2 demonstrate similar performance as in the case of the largest eigenvalue and agree well with
Theorem 2.
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Figure 1: Plots of relative errors rα for approximate percentiles using F1: (a) 95-th percentile;
(b) 99-th percentile. Exact finite n × p distributions are computed in MATLAB using Koev’s
implementation [20] and F1 is computed using the method in [8]. The percentiles are obtained
from inverse interpolation.

Percentiles 3.8954 3.1804 2.7824 1.9104 1.2686 0.5923 -0.4501 -0.9793 -2.0234
RTW .99 .95 .90 .70 .50 .30 .10 .05 .01

4× 2 1.000 1.000 .998 .893 .625 .326 .087 .041 .009
10× 5 .999 .995 .976 .798 .555 .310 .095 .047 .011
50× 25 .997 .973 .931 .728 .515 .302 .097 .048 .010

200× 100 .993 .960 .913 .713 .509 .306 .103 .050 .010
8× 2 1.000 .992 .969 .792 .554 .314 .095 .046 .010
20× 5 .999 .977 .939 .740 .522 .301 .096 .047 .009

100× 25 .993 .960 .915 .713 .505 .298 .098 .048 .009
400× 100 .992 .954 .904 .701 .500 .298 .100 .049 .010

2× SE .001 .002 .003 .005 .005 .005 .003 .002 .001

Table 2: Simulations for finite n × p vs. Tracy-Widom limit: the smallest eigenvalue. For each
(n, p) combination, empirical cumulative probabilities are computed for (log λp − ν−n,p)/τ−n,p using
R = 40, 000 draws from Wp(I, n). Methods for sampling, computing F1 and obtaining percentiles
are the same as in Table 1. Conventional significance levels are highlighted in bold font and the
last line gives approximate standard errors based on binomial sampling.

2.3 Related Statistical Settings

Here, we review several settings in multivariate statistics to which our results are applicable.
Throughout the subsection, we only use the largest eigenvalue to illustrate.

Principal component analysis. Suppose that X = [X1, · · · , Xn]′ is a Gaussian data matrix.
Write the sample covariance matrix S = (n − 1)−1X ′HX, where H = I − n−111′ is the cen-
tering matrix, principal component analysis (PCA) looks for a sequence of standardized vectors
a1, · · · , ap in Rp, such that ai successively solves the following optimization problem:

max{a′Sa : a′aj = 0, j ≤ i} ,
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where a0 is the zero vector. Then, successive sample eigenvalues ˆ̀
1 ≥ · · · ≥ ˆ̀

p satisfy ˆ̀
i = a′iSai.

One basic question in PCA application is testing the hypothesis of isotropic variation, i.e., the
population covariance matrix Σ = τ2I. For simplicity, assume that τ2 = 1 (otherwise we divide
S by τ2). Then (n− 1)S ∼Wp(I, n− 1). The largest eigenvalue ˆ̀

1 of S is a natural test statistic

under the union intersection principle. Our result applies to (n−1)ˆ̀
1. If τ2 is unknown, we could

estimate it by trS/p. See [25].

Testing that a covariance matrix equals a specified matrix. Suppose thatX = [X1, · · · , Xn]′

has its row vectors i.i.d. samples from the Np(µ,Σ) distribution. We want to test the hypothesis
H0 : Σ = Σ0, where Σ0 is a specified positive definite matrix.

Suppose µ is unknown, and let S = (n − 1)−1X ′HX be the sample covariance matrix. The
union intersection test uses the largest eigenvalue of Σ−10 S, denoted by ˆ̀

1(Σ
−1
0 S), as the test

statistic [23, p.130]. Observe that ˆ̀
1(Σ
−1
0 S) = ˆ̀

1(Σ
−1/2
0 SΣ

−1/2
0 ). UnderH0, (n−1)Σ

−1/2
0 SΣ

−1/2
0 ∼

Wp(I, n− 1). So, our result is available for (n− 1)ˆ̀
1(Σ
−1
0 S).

Singular value decomposition. For X a real n × p matrix, there exist orthogonal matrices
U(n× n) and V (p× p), such that

X = UDV T ,

where D = diag(d1, · · · , dn∧p) ∈ Rn×p, and d1 ≥ · · · ≥ dn∧p ≥ 0. This representation is called
the singular value decomposition of X [13, Theorem 7.3.5], with di the i-th singular value of X.
Theorem 1 then provides an accurate distributional approximation for d21 when the entries of X
are independent standard normal random variables.

2.4 The Score Data Example

We consider now the score data example extracted from [23]. The data set consists of the scores of
88 students on five subjects (mechanics, vectors, algebra, analysis and statistics). Taking account
of centering, we have n = 87 and p = 5.

One might expect that there are several common factors that determine the students’ perfor-
mance on the tests. Moreover, one might assume that the joint effects of the common factors are
observed in isotropic noises, in which case the covariance structure of the scores (after proper diag-
onalization) follows a spiked model Σ = τ2Σm, where τ2 > 0 and Σm = diag(`1, · · · , `m, 1, · · · , 1)
and 0 ≤ m ≤ 4. (Note that the model Σ = τ2Σ4 is the saturated model and is indistinguish-
able from Σ = τ2Σ5.) To determine m, we are led to test a nested sequence of hypotheses
Hk : Σ = τ2Σm with some m ≤ k, for 0 ≤ k ≤ 3.

To compute the p-value of testing Hk, we could (i) estimate τ2 by τ̂2p−k as the mean of the p−k
smallest sample eigenvalues; (ii) construct the test statistic as Tk = (nˆ̀

k+1/σ̂
2
p−k−µn,p−k)/σn,p−k;

(iii) report F1(Tk) as the approximate conservative p-value. Step (iii) is justified as follows. Let
L(λj |n, p,Σ) denote the law of the j-th largest sample eigenvalue of a Wp(n,Σ) matrix. By
the interlacing properties of the eigenvalues [13, Theorem 7.3.9] (see also [15, Proposition 1.2]),
L(λ1|n, p − m, Ip−m) could be used to compute conservative p-value for the null distribution
L(λk+1|n, p,Σm) for all k ≥ m, which is further approximated by F1. We summarize the values
of Tk and the corresponding p-values in Table 3.

From Table 3, we could see a noticeable difference between the values of Tk and the corre-
sponding p-values by using different rescaling constants. The p-values obtained from the new
constants are typically smaller than those from the old constants. Noting that the p-values are
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H0 H1 H2 H3

Tk (new) 14.5934 4.3162 0.4535 1.4949
p-value (new) < 10−6 1.1× 10−4 0.0996 0.0235
Tk (old) 14.4740 4.1155 0.1803 1.1897

p-value (old) < 10−6 1.7× 10−4 0.1376 0.0371

Table 3: The test statistics Tk and the corresponding p-values F1(Tk) calculated using new cen-
tering and scaling constants (4) and old constants (3) for the score data.

already conservative, the new constants (4) prevent further unnecessary conservativeness that
would otherwise be caused by the old constants in this example.

2.5 Discussion

We discuss below two issues related to our results.

Log transform. One notable difference between Theorems 1 and 2 is the logarithmic transfor-
mation of the smallest eigenvalue before scaling.

Indeed, for the largest eigenvalue, a similar O(N−2/3) convergence rate can be obtained for
the distribution of (log λ1− νn,p)/τn,p, with νn,p = log(µn,p) and τn,p = σn,p/µn,p. However, when
n or p is small, its numerical results are not as good as those obtained from direct scaling. In
comparison, for the smallest eigenvalue, the transform yields substantial numerical improvement.
Therefore, we recommend the log transform for the smallest eigenvalue.

As no theoretical analysis justifying the choice of the transform is currently available, we
attempt some heuristics in the following. First, observe that sample covariance matrices are
positive semi-definite. So, for λp, the hard lower bound at 0 truncates the left tail of its density
function on any linear scale, and hence obstructs the asymptotic approximation by G1 which is
supported on the whole real line. However, by a map x 7→ log x, we maps the support to the
whole real line and avoids the ‘hard edge’ effect. The largest eigenvalue does not necessarily
benefit from this transform, for it is on the ‘soft edge’, i.e., the right edge of the covariance matrix
spectrum, which does not have a deterministic upper bound. Such heuristics are supported by
related studies on Gaussian Wigner matrices [17] and F -matrices [16].

Software. There have been works on the numerical evaluation of the Tracy-Widom distributions
[4, 8, 5] and the exact finite n × p distributions of the extreme eigenvalues [19, 20]. In addition,
the author and colleagues have developed an R package RMTstat [18] that is intended to provide
an interface for using the Tracy-Widom approximation in multivariate statistical analysis.

3 The Largest Eigenvalue

This section is devoted to the proof of Theorem 1. We use the operator norm convergence
framework developed in [35], for the joint eigenvalue distribution of white Wishart matrices is
essentially the same as the Laguerre orthogonal ensemble in Random Matrix Theory (RMT).

In the proof, we first give the determinantal representations for the finite and limiting distribu-
tion functions and work out explicit formulas for related kernels, in which Widom’s formula (12)
plays the central role. Then, a Lipschitz type inequality shows that the difference in determinants
is bounded by the difference in kernels. The representation of the finite sample kernel involves
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weighted generalized Laguerre polynomials, while that of the limiting kernel uses Airy function.
A decomposition of the kernel difference then enables us to transfer bounds on convergence of La-
guerre polynomials to Airy function to bounds on the kernel difference, and eventually to bounds
on the difference of the probabilities.

3.1 Determinantal Laws

Following RMT notational convention, we replace the dimension parameter p of a white Wishart
matrix A by N , and use xi instead of λi to denote its eigenvalues. Henceforth, we assume that
N is even, n = n(N) ≥ N + 1 and n/N → γ ∈ [1,∞) as N →∞. The cases γ ∈ (0, 1] are easily
obtained by interchanging n and N .

In the RMT literature, for an integer N ≥ 2 and any α > −1, the Laguerre orthogonal
ensemble with parameters N and α, denoted by LOE(N,α), refer to joint eigenvalue density

p̃N (x1, · · · , xN ) =
1

ZN,α

∏
1≤j<k≤N

(xj − xk)
N∏
j=1

xαj e
−xj/2, (7)

where x1 ≥ · · · ≥ xN ≥ 0. If further α is a non-negative integer, (7) matches the density function
of ordered eigenvalues x1 ≥ · · · ≥ xN ≥ 0 from a white Wishart matrix A ∼WN (I, n), with

α = n−N − 1. (8)

Henceforth, we identify the LOE(N,α) model with eigenvalues of A ∼WN (I, n) by (8). Thinking
of α and n as functions of N , in what follows, we sometimes drop explicit dependence of certain
quantities on them.

For LOE(N,α), [34, Section 9] derived the following determinantal formula

F̃N,1(x
′) = P{x1 ≤ x′} =

√
det(I −KNχ). (9)

Here χ = 1x>x′ and KN is an operator with 2× 2 matrix kernel

KN (x, y) = (LSN,1)(x, y) +Kε(x, y), (10)

where

L =

(
I −∂2
ε1 T

)
, Kε =

(
0 0

−ε(x− y) 0

)
.

In L, ∂2 is the differential operator with respect to the second argument, ε1 is the convolution
operator acting on the first argument with the kernel ε(x − y) = 1

2sgn(x − y) and TK(x, y) =
K(y, x) for any kernel K.

To give explicit formula for SN,1, introduce the generalized Laguerre polynomials {Lαk}∞k=0

[31, Chapter V], which are orthogonal on [0,∞) with weight function xαe−x. The normalized and
weighted versions of them become

φk(x;α) = h
−1/2
k xα/2e−x/2Lαk (x), k = 0, · · · , (11)

with hk =
∫∞
0 Lαk (x)2xαe−xdx = (k + α)!/k!. Widom [36] derived a formula for SN,1, which can

be rewritten in a form more convenient to us [1, Eq.(4.3)] as

SN,1(x, y) = SN,2(x, y) +
N !

4Γ(N + α)
xα/2e−x/2

[
d

dx
LαN (x)

]
×
∫ ∞
0

sgn(y − z)zα/2−1e−z/2[LαN (z)− LαN−1(z)]dz,
(12)
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where SN,2 is the unitary correlation kernel

SN,2(x, y) =

N−1∑
k=0

φk(x;α)φk(y;α).

Let aN =
√
N(N + α), and define as in [10, Section 2] functions

φ(x;α) = (−1)N
√
aN
2
φN (x;α− 1)x−1/21x≥0,

ψ(x;α) = (−1)N−1
√
aN
2
φN−1(x;α+ 1)x−1/21x≥0.

(13)

Write a � b for the operator with kernel (a � b)(x, y) =
∫∞
0 a(x+ z)b(y + z)dz. Then SN,2 has the

integral representation [15, 10]

SN,2(x, y) =

∫ ∞
0

φ(x+ z)ψ(y + z) + ψ(x+ z)φ(y + z)dz = (φ � ψ + ψ � φ)(x, y). (14)

By [31, Eq.(5.1.13), (5.1.14)], the second term on the right side of (12) equals

− N !

4Γ(N + α̃)
xα/2e−x/2Lα+1

N−1(x)

∫ ∞
0

sgn(y − z)zα/2−1e−z/2Lα−1N (z)dz = ψ(x)(εφ)(y).

Hence, we obtain
SN,1(x, y) = SN,2(x, y) + ψ(x)(εφ)(y) (15)

with SN,2(x, y) given in (14). Together with (9) and (10), this gives the determinantal represen-
tation of the finite sample distribution on the original scale.

The Tracy-Widom limit has a corresponding determinantal representation [35]

F1(s
′) =

√
det(I −KGOEf), (16)

where f = 1s>s′ and the operator KGOE has the matrix kernel

KGOE(s, t) =

(
S(s, t) SD(s, t)
IS(s, t) S(t, s)

)
+Kε(s, t).

Introduce the right-tail integration operator ε̃ as in [16], where (ε̃g)(s) =
∫∞
s g(u)du and for

kernel K(s, t), (ε̃1K)(s, t) =
∫∞
s K(u, t)du. Also write a ⊗ b for rank one operator with kernel

(a⊗ b)(s, t) = a(s)b(t). Then the entries of KGOE are

S(s, t) = (SA − 1
2Ai⊗ ε̃Ai)(s, t) + 1

2Ai(s),

SD(s, t) = −∂2(SA(s, t)− 1
2Ai⊗ ε̃Ai)(s, t),

IS(s, t) = −ε̃1(SA − 1
2Ai⊗ ε̃Ai)(s, t)− 1

2(ε̃Ai)(s) + 1
2(ε̃Ai)(t).

(17)

Here SA(s, t) = (Ai�Ai)(s, t) is the Airy kernel, and Ai(·) is the Airy function [26, p.53, Eq.(8.01)].
Let G = 1√

2
Ai, and define matrix operators

L̃ =

(
I −∂2
−ε̃1 T

)
, L1 =

(
I 0
−ε̃1 0

)
, L2 =

(
0 0
ε̃2 I

)
.

We can write KGOE in a compact form as

KGOE = L̃(SA −G⊗ ε̃G) + L1(G⊗ 1√
2
) + L2(

1√
2
⊗G) +Kε. (18)
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3.2 Rescaling the Finite Sample Kernel

Under the current RMT notation, the rescaling constants (4) are translated to

µn,N =
(√

n− +
√
N−

)2
, σn,N =

(√
n− +

√
N−

)( 1
√
n−

+
1√
N−

)1/3

. (19)

Introduce the linear transformation τ(s) = µn,N + sσn,N , and let FN,1(·) = F̃N,1(τ(·)) be the
distribution function of τ−1(x1), i.e. the largest eigenvalue of A ∼WN (I, n), rescaled by (19).

Define the rescaled kernel K̄τ as

K̄τ (s, t) =
√
τ ′(s)τ ′(t)KN (τ(s), τ(t)) = σn,NKN (τ(s), τ(t)). (20)

Since KN and K̄τ share the spectrum, FN,1(s
′) =

√
det(I − K̄τf).

To work out a representation for K̄τ , apply the τ -scaling to φ, ψ and SN,2 to define

φτ (s) = σn,Nφ(µn,N + sσn,N ), ψτ (s) = σn,Nψ(µn,N + sσn,N ) (21)

and

Sτ (s, t) = σn,NSN,2(µn,N + sσn,N , µn,N + tσn,N ) = (φτ � ψτ + ψτ � φτ )(s, t). (22)

Then, we obtain from (15) that

SRτ (s, t) =
√
τ ′(s)τ ′(t)SN,1(τ(s), τ(t)) = Sτ (s, t) + ψτ (s) (εφτ ) (t). (23)

This, together with (10) and (20), leads to

K̄τ (s, t) =

(
I −σ−1n,N · ∂2

σn,N · ε1 T

)
SRτ (s, t) + σn,NK

ε(s, t).

Observe that det(I − K̄τf) remains unchanged if we divide the lower left entry by σn,N and
multiply the upper right entry by σn,N . Thus, we obtain

FN,1(s
′) =

√
det(I −Kτf), (24)

with
Kτ (s, t) = (LSRτ )(s, t) +Kε(s, t). (25)

To match the representation (18) of KGOE , and to facilitate later arguments, it is helpful to
rewrite LSRτ , and hence Kτ , using ε̃. To this end, observe that

∫
ψτ = 0, and let

βN =
1

2

∫ ∞
−∞

φτ (s)ds. (26)

By the identity (εg)(s) = 1
2

∫
g − (ε̃g)(s), we obtain εφτ = βN − ε̃φτ and εψτ = −ε̃ψτ , and so

LSRτ = L(Sτ − ψτ ⊗ ε̃φτ ) + βNL(ψτ ⊗ 1).

Now L = L̃ + E with E =

(
0 0

ε1 + ε̃1 0

)
. Since 2(ε1 + ε̃1) equals integration over R in the first

argument and
∫
ψτ = 0, we obtain

LSRτ = L̃(Sτ − ψτ ⊗ ε̃φτ ) + ESτ + βN L̃(ψτ ⊗ 1)

= L̃(Sτ − ψτ ⊗ ε̃φτ ) + βNL1(ψτ ⊗ 1) + βNL2(1⊗ ψτ ).

The second equality holds, for (ESτ )21 = 1
2

∫∞
−∞ Sτ (u, t)dt = βN

∫∞
0 ψτ (t + z)dz = βN (ε̃ψτ )(t).

Finally, this gives Kτ a similar decomposition to that of KGOE

Kτ = L̃(Sτ − ψτ ⊗ ε̃φτ ) + L1(ψτ ⊗ βN ) + L2(βN ⊗ ψτ ) +Kε. (27)
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3.3 Generalized Fredholm Determinants

For any fixed s0 ∈ R, we are interested in the convergence rate of FN,1(s
′) to F1(s

′) for all s′ ≥ s0.
In what follows, we show that this relies on the operator convergence of Kτ to KGOE .

First, we note that the determinants in (9), (16) and (24) are not the usual Fredholm deter-
minants2, as the ε term on the lower-left position of the matrix kernels is not of trace class. Tracy
and Widom [35] first observed the problem, and proposed a solution by introducing weighted
Hilbert spaces and regularized 2-determinants, which we adopt here.

Consider the determinant in (9). Let ρ̃ be a weight function such that (1) its reciprocal
ρ̃−1 ∈ L1[0,∞); and (2) SN,1 ∈ L2((x′,∞); ρ̃) ∩ L2((x′,∞); ρ̃−1). Then ε: L2((x′,∞); ρ̃) →
L2((x′,∞); ρ̃−1) is Hilbert-Schmidt, and KN can be regarded as a 2 × 2 matrix kernel on the
space L2((x′,∞); ρ̃) ⊕ L2((x′,∞); ρ̃−1). In addition, by the second condition on ρ̃, the diagonal
elements of KN are trace class on L2((x′,∞); ρ̃) and L2((x′,∞); ρ̃−1) respectively.

For a Hilbert-Schmidt operator T with eigenvalues µk, its regularized 2-determinant [12] is
defined as det2(I − T ) ≡

∏
k(1 − µk)eµk . If further the diagonal elements of T are trace class,

then we define generalized Fredholm determinant for T as

det(I − T ) = det2(I − T ) exp(−trT ). (28)

As remarked in [35], the definition (28) is independent of the choice of ρ̃ and allows the derivation
in [34] that yields (9), (10) and eventually (15).

Change the domain to (s′,∞) with s′ = τ−1(x′) and the weight function to ρ = ρ̃ ◦ τ , and
abbreviate L2((s′,∞); %) as L2(%) for any suitable %. Then, Kτ and KGOE are members of the
operator class A of 2× 2 Hilbert-Schmidt operator matrices on L2(ρ)⊕ L2(ρ−1) with trace class
diagonal entries. Definition (28) and previous derivations in Section 3.2 remain valid.

In order to make the later argument more explicit, it is convenient to make a specific choice
of the weight function ρ. In particular, on the s-scale, we choose

ρ(s) = 1 + exp (|s|) . (29)

This implies that on the x-scale, we specify the weight function ρ̃ = ρ ◦ (τ−1) as

ρ̃(x) = 1 + exp (|x− µn,N |/σn,N ) .

It is straightforward to verify that the required conditions are all satisfied.
With rigorous definition of determinants, we now relate the convergence of FN,1 to F1 to that

of Kτ to KGOE . First of all, simple manipulation leads to

|FN,1(s′)− F1(s
′)| ≤

|F 2
N,1(s

′)− F 2
1 (s′)|

F1(s0)
=

1

F1(s0)
|det(I −Kτ )− det(I −KGOE)| . (30)

To bound the difference between the determinants, we have the following Lipschitz-type inequality.
Here and after, ‖ · ‖1 and ‖ · ‖2 denote trace class norm and Hilbert-Schmidt norm respectively.

Proposition 1. Let A,B ∈ A, and det(I − A), det(I − B) defined as in (28). If
∑2

i=1 ‖Aii −
Bii‖1 +

∑
i 6=j ‖Aij −Bij‖2 ≤ 1/2, then

|det(I −A)− det(I −B)| ≤M(B)
(∑2

i=1 ‖Aii −Bii‖1 +
∑

i 6=j ‖Aij −Bij‖2
)
, (31)

where M(B) = 2 |det(I −B)|+ 2 exp[2 (1 + ‖B‖2)2 +
∑

i ‖Bii‖1].
2See, for example, [21] for an introduction to the Fredholm determinant.
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Proof. [16, Proposition 3] established a similar bound to (31), but with M(B) replaced by

C(A,B) =
∣∣e−trA∣∣ exp[12(1 + ‖A‖2 + ‖B‖2)2] + |det2(I −B)| |e

−trA − e−trB|
|trA− trB|

.

We now bound C(A,B) by the above claimed constant M(B).
Observe that for |x| ≤ 1/2, |ex − 1| ≤ 2|x|. Therefore, when

∑2
i=1 ‖Aii −Bii‖1 +

∑
i 6=j ‖Aij −

Bij‖2 ≤ 1/2, we have |trA−trB| ≤
∑2

i=1 ‖Aii−Bii‖1 ≤ 1/2, which in turn implies |e−trA−e−trB| ≤
2|trA− trB||e−trB|. Hence, for the terms in C(A,B), we have∣∣e−trA∣∣ ≤ ∣∣e−trB − e−trA∣∣+

∣∣e−trB∣∣ ≤ ∣∣e−trB∣∣ (2 |trA− trB|+ 1)

≤
∣∣e−trB∣∣ (2∑i ‖Aii −Bii‖1 + 1) ≤ 2 exp(‖B11‖1 + ‖B22‖1);

and

|det2(I −B)| |e
−trA − e−trB|
|trA− trB|

≤ 2|det2(I −B)||e−trB| = 2|det(I −B)|.

Moreover, we observe that

1 + ‖A‖2 + ‖B‖2 ≤ 1 + 2‖B‖2 + ‖A−B‖2
≤ 1 + 2‖B‖2 +

∑2
i=1 ‖Aii −Bii‖1 +

∑
i 6=j ‖Aij −Bij‖2

≤ 2 + 2‖B‖2,

Plugging all these bounds into C(A,B), we obtain the claimed form of M(B).

Remark. Proposition 1 refines [16, Proposition 3] by having the leading constant M(B) of the
bound depend only on B, which is important for deriving properties of the C(s0) function later.

3.4 Decomposition of Kτ −KGOE

By Proposition 1, to prove Theorem 1 is essentially to control the entrywise convergence rate of
Kτ to KGOE . To this end, we construct a telescopic decomposition of Kτ −KGOE into sums of
simpler matrix kernels whose entries are more tractable.

To explain the intuition behind the decomposition, we introduce constants µ̃n,N and σ̃n,N as

µ̃n,N =
(√

n+ +
√
N+

)2
, σ̃n,N =

(√
n+ +

√
N+

)( 1
√
n+

+
1√
N+

)1/3

. (32)

In [10], it was shown that (µn,N , σn,N ) = (µ̃n−1,N−1, σ̃n−1,N−1) is ‘optimal’ for ψτ in the sense
that |ψτ −G| = O(N−2/3), but suboptimal for φτ as |φτ −G| = O(N−1/3). However, later in
Proposition 2, we will show that |φτ −G−∆NG

′| = O(N−2/3) for

∆N =
µ̃n−1,N−1 − µ̃n−2,N

σ̃n−2,N
= O(N−1/3). (33)

[For a proof, see A.1.] These bounds suggest that, in the decomposition, we align ψτ with G, and
φτ with G+ ∆NG

′.
Let GN = G+ ∆NG

′ and SAN = G �GN +GN �G. We obtain

SAN −G⊗ ε̃GN = SA −G⊗ ε̃G,
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for∫ ∞
0

G(s+ z)G′(t+ z) +G′(s+ z)G(t+ z)dz =

∫ ∞
0

d

dz
[G(s+ z)G(t+ z)]dz = −G(s)G(t).

This, together with (18) and (27), leads to the decomposition

Kτ −KGOE = L̃(Sτ − SAN ) + L̃(G⊗ ε̃GN − ψτ ⊗ ε̃φτ )

+ L1(ψτ ⊗ βN −G⊗ 1√
2
) + L2(βN ⊗ ψτ − 1√

2
⊗G).

(34)

3.5 Laguerre Asymptotics and Operator Bounds

Here we collect a set of intermediate results to be used repeatedly in the proof of Theorem 1.
To start with, we consider asymptotics of φτ and ψτ and their derivatives. Recall that G =

1√
2
Ai and GN = G+ ∆NG

′, we have the following

Proposition 2. Let φτ , ψτ and ∆N be defined as in (21) and (33). Assume that (8) holds, and
that as N →∞, n = n(N)→∞ with n/N → γ ∈ [1,∞). Then for any given s0, there exists an
integer N0(s0, γ), such that when N ≥ N0(s0, γ), for all s ≥ s0,

|ψτ (s)| ,
∣∣ψ′τ (s)

∣∣ ≤ C(s0) exp(−s), (35)

|φτ (s)| ,
∣∣φ′τ (s)

∣∣ ≤ C(s0) exp(−s), (36)

|ψτ (s)−G(s)| ,
∣∣ψ′τ (s)−G′(s)

∣∣ ≤ C(s0)N
−2/3 exp(−s), (37)

|φτ (s)−GN (s)| ,
∣∣φ′τ (s)−G′N (s)

∣∣ ≤ C(s0)N
−2/3 exp(−s), (38)

where C(·) is continuous and non-increasing.

Integrating these bounds over [s,∞), we know that they remain valid if we replace ψτ , φτ , G
and GN with ε̃ψτ , ε̃φτ , ε̃G and ε̃GN on the left sides. The proof of Proposition 2 involves careful
Liouville-Green analysis on the solution of certain differential equation and will be discussed in
detail later in Section 5.

On the other hand, for G and GN , we have the following bounds from [26, p.394]. Note that
the bounds for GN and G′N do not depend on N , for ∆N is uniformly bounded.

Lemma 1. Fix β > 0 and k ≥ 0. Then, for all s ≥ s0,

|skG(s)|, |skGN (s)|, |skG′(s)|, |skG′N (s)| ≤ C(s0) exp(−βs),

where C(s0) is continuous and non-increasing.

For a proof of the lemma, see [22]. Integrating the bounds for |G| and |GN | over [s,∞), we
obtain that |ε̃G| and |ε̃GN | are also bounded by C(s0)e

−βs.
For later operator convergence argument, we will need simple bounds for certain norms of

operator D : L2(ρ1) → L2(ρ2) with kernel D(u, v) = α(u)β(v)(a � b)(u, v), where {ρ1, ρ2} ⊂
{ρ, ρ−1} with ρ given in (29). In particular, we have

Lemma 2 ([16]). Let D : L2(ρ1)→ L2(ρ2) have kernel D(u, v) = α(u)β(v)(a � b)(u, v). Suppose
that {ρ1, ρ2} ⊂ {ρ, ρ−1}, and that for u ≥ s′,

|α(u)| ≤ α0e
α1u, |β(u)| ≤ β0eβ1u, |a(u)| ≤ a0e−a1u, |b(u)| ≤ b0e−b1u, (39)

with a1 − α1, b1 − β1 ≥ 1. Then the Hilbert-Schmidt norm satisfies

‖D‖2 ≤ C
α0β0a0b0
a1 + b1

exp
[
−(a1 + b1 − α1 − β1)s′ + |s′|

]
, (40)

where C = C(a1, α1, b1, β1). If ρ1 = ρ2, the trace norm ‖D‖1 satisfies the same bound.
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3.6 Operator Convergence: Proof of Theorem 1

Abbreviate the terms in the decomposition (34) as

Kτ −KGOE = δR + δF0 + δF1 + δF2 .

We work out below entrywise bounds for each of these δ terms and then apply Proposition 1 to
complete the proof of Theorem 1. In what follows, we use the abbreviation D(k)f , k = −1, 0, 1 to
denote ε̃f , f and f ′ respectively. Moreover, the unspecified norm ‖ · ‖ denotes Hilbert-Schmidt
norm ‖ · ‖2 for off-diagonal entries and trace class norm ‖ · ‖1 for diagonal ones.

δR term. Recall that δR = L̃(Sτ−SAN ) with Sτ = φτ �ψτ +ψτ �φτ and SAN = GN �G+G�GN .
Regardless of the signs, we have the following unified expression for the entries of δR:

(δR)ij =D(k)(φτ −GN ) �D(l)ψτ +D(k)GN �D(l)(ψτ −G)

+D(k)(ψτ −G) �D(l)φτ +D(k)G �D(l)(φτ −GN ),
(41)

for i, j ∈ {1, 2}, k ∈ {−1, 0} and l ∈ {0, 1}. By Proposition 2 and Lemma 1, we find that for
any of the four terms in (41), the condition (39) is satisfied with α0 = β0 = 1, α1 = β1 = 0,
a1 = b1 = 1 and {a0, b0} = {C(s0), C(s0)N

−2/3}. So Lemma 2 implies

‖(δR)ij‖ ≤ C(s0)N
−2/3 exp

(
−2s′ + |s′|

)
. (42)

By a simple triangle inequality, we can choose C(s0) in the last display as the sum of products of
continuous and non-increasing functions, which can be seen from the term (α0β0a0b0)/(a1 +b1) in
(40). Moreover, the term C in (40) is a universal constant for fixed a1, α1, b1 and β1 here. Hence,
the final C(s0) function remains continuous and non-increasing.

Finite rank terms. For a rank one operator a ⊗ b : L2(ρ1) → L2(ρ2) with kernel a(s)b(t), its
norm is

‖a⊗ b‖ = ‖a‖2,ρ2‖b‖2,ρ−1
1
.

Here, the norm can be either trace class or Hilbert-Schmidt, for the two agree for rank one
operators. In addition, for any %, ‖a‖22,% =

∫∞
s′ |a(s)|2%(s)ds. Now consider matrices of rank one

operators on L2(ρ) ⊗ L2(ρ−1). Write ‖ · ‖+ and ‖ · ‖− for ‖ · ‖2,ρ and ‖ · ‖2,ρ−1 respectively. [16,
Eq.(213)] gives the following bound(

‖a11 ⊗ b11‖1 ‖a12 ⊗ b12‖2
‖a21 ⊗ b21‖2 ‖a22 ⊗ b22‖1

)
≤
(
‖a11‖+‖b11‖− ‖a12‖+‖b12‖+
‖a21‖−‖b21‖− ‖a22‖−‖b22‖+

)
. (43)

First consider δF0 . We reorganize it as

δF0 = −L̃(ψτ ⊗ ε̃φτ −G⊗ ε̃GN ) = −L̃[ψτ ⊗ ε̃(φτ −GN ) + (ψτ −G)⊗ ε̃GN ] = δF,10 + δF,20 .

The entries of δF,i0 , i = 1, 2, are all of the form a⊗ b, with a and b chosen from D(k)ψτ , D(k)(φτ −
GN ), D(k)(ψτ −G) and D(k)GN , for k ∈ {−1, 0, 1}.

Observe that for η ≥ 2, we have∫ ∞
s′

exp(−ηs)ρ±1(s)ds ≤ 4

η − 1
exp(−ηs′ ± |s′|) ≤ 8

η
exp(−ηs′ + |s′|). (44)
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Together with Proposition 2 and Lemma 1, this implies

‖D(k)ψτ‖2±, ‖D(k)GN‖2± ≤ C(s0) exp(−2s′ + |s′|),
‖D(k)(ψτ −G)‖2±, ‖D(k)(φτ −GN )‖2± ≤ C(s0)N

−4/3 exp(−2s′ + |s′|).

These bounds, together with the triangle inequality and (43), yield

‖(δF0 )11‖1 ≤ ‖ψτ ⊗ ε̃(φτ −GN )‖1 + ‖(ψτ −G)⊗ ε̃GN‖1
≤ ‖ψτ‖+‖ε̃(φτ −GN )‖− + ‖ψτ −G‖+‖ε̃GN‖−
≤ C(s0)N

−2/3 exp(−2s′ + |s′|).

Similarly, we obtain the bounds for the other entries. In summary, we have

‖(δF0 )ij‖ ≤ C(s0)N
−2/3 exp

(
−2s′ + |s′|

)
. (45)

Switch to δF1 and δF2 . Recall that δF1 = L1(ψτ ⊗βN −G⊗ 1√
2
) and δF2 = L2(βN ⊗ψτ − 1√

2
⊗G).

Due to their similarity, we take δF1 as example and the same analysis applies to δF2 with obvious
modification. For δF1 , we further decompose it as

δF1 = L1[(ψτ −G)⊗ βN +G⊗ (βN − 1√
2
)].

By (43), the essential elements we need to bound are ‖D(k)(ψτ −G)‖±, ‖D(k)G‖± and ‖1‖− for
k = −1 and 0. The bounds related to D(k)(ψτ − G) have already been obtained. For the other
two terms, (44) and Lemma 1 give

‖D(k)G‖2± ≤ C(s0) exp
(
−2s′ + |s′|

)
,

and

‖1‖2− =

∫ ∞
s′

[1 + exp(|s|)]−1 ds ≤
∫ ∞
−∞

exp(−|s|)ds ≤ 2.

Since βN − 1√
2

= O(N−1) [for a proof, see A.1], we have

‖(δF1 )11‖1 ≤‖(ψτ −G)⊗ βN‖1 + ‖G⊗ (βN − 1/
√

2)‖1
≤‖(ψτ −G)‖+‖βN‖− + ‖G‖+‖βN − 1/

√
2‖−

≤C(s0)N
−2/3 exp

(
−s′ + |s′|/2

)
+ C(s0)N

−1 exp
(
−s′ + |s′|/2

)
≤C(s0)N

−2/3 exp(−s′/2).

In a similar vein, the same bound can be obtained for ‖(δF1 )12‖2 and entries of δF2 . Therefore, we
conclude that

‖(δF1 )ij‖, ‖(δF2 )ij‖ ≤ C(s0)N
−2/3 exp

(
−s′/2

)
. (46)

Now we prove Theorem 1.

Proof of Theorem 1. By the decomposition (34) and bounds (42), (45) and (46), the triangle
inequality gives the following bound for the norm of each entry in Kτ −KGOE :

‖(Kτ −KGOE)ij‖ ≤ C(s0)N
−2/3 exp(−s′/2).
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We then apply Proposition 1 with A = Kτ and B = KGOE to get

|det(I −Kτ )− det(I −KGOE)| ≤M(KGOE)C(s0)N
−2/3 exp(−s′/2), (47)

where M(KGOE) = 2 det(I −KGOE) + 2 exp{2 (1 + ‖KGOE‖2)2 +
∑

i ‖KGOE,ii‖1}.
For the first term in M(KGOE), we have det(I −KGOE) = F 2

1 (s′) ≤ 1. On the other hand,
we have

‖KGOE‖2 ≤
∑
i,j

‖(KGOE)ij‖2 ≤
∑
i

‖(KGOE)ii‖1 +
∑
i 6=j
‖(KGOE)ij‖2.

In principle, one can show that, for each (i, j), ‖(KGOE)ij‖ ≤ C(s0), with C(s0) continuous and
non-increasing. Take ‖(KGOE)11‖1 as an example. Let Hτ and Gτ be Hilbert-Schmidt operators
with kernels φτ (x+ y) and ψτ (x+ y) respectively, then as an operator

(KGOE)11 = HτGτ +GτHτ +G⊗ 1√
2
−G⊗ ε̃G.

Since ‖AB‖1 ≤ ‖A‖2‖B‖2, we have

‖(KGOE)11‖1 ≤ 2 ‖Hτ‖2‖Gτ‖2 + 1√
2
‖G‖2,ρ ‖1‖2,ρ−1 + ‖G‖2,ρ‖ε̃G‖2,ρ−1 .

Each norm on the right side of the last inequality is the square root of an integral of a positive
function on (s′,∞) or (s′,∞)2 that is bounded by the corresponding integral over (s0,∞) or
(s0,∞)2, which in turn is continuous and non-increasing in s0. Hence, ‖(KGOE)11‖1 ≤ C(s0).
Similar argument applies to other entries. So, we can control M(KGOE) by a continuous and
non-increasing C(s0). Finally, we complete the proof by noting (30) and the fact that 1/F1(s0) is
continuous and non-increasing.

4 The Smallest Eigenvalue

This section is dedicated to the proof of Theorem 2.
Recall that two key components in the proof of Theorem 1 were: (1) determinantal represen-

tations for both the finite and the limiting distributions; (2) a closed form formula for the finite
sample kernel which yields a convenient decomposition of its difference from the limiting kernel.

In what follows, we first establish the rate of convergence for matrices with even dimensions.
This is achieved by working out the above two components in the case of the smallest eigenvalue.
Then, we prove weak convergence for matrices with odd dimensions using an interlacing property
of the singular values.

4.1 Determinantal Formula

As before, we follow RMT notation to replace p with N , and identify LOE(N,α) with eigenvalues
of A ∼WN (I, n) by (8).

Assume that N is even. For the smallest eigenvalue xN , for any x′ ≥ 0, [34] gives

1− F̃N,N (x′) = P{xN > x′} =
√

det(I −KNχ), (48)

where χ = 10≤x≤x′ and KN is given in (10).
Due to a nonlinear transformation to be introduced, the formula (12) that we previously used

to represent SN,1, the key component in KN , is not most appropriate here. Instead, we find an
alternative (yet equivalent) formula given in [1, Proposition 4.2] more convenient. Indeed, let

φ̄k(x;α) = (−1)k
√
aN
2
φk(x;α)x−1/21x≥0, (49)
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with aN =
√
N(N + α), then [1, Proposition 4.2] asserts that

SN,1(x, y;α) =

√
y

x
SN−1,2(x, y;α+ 1) +

√
N − 1

N
φ̄N−1(x;α+ 1)(εφ̄N−2)(y;α+ 1). (50)

We write out the explicit dependence of these kernels on the parameter α as they are different
on the two sides of the equation. As a comparison, the previous representation (15) could be
rewritten as

SN,1(x, y;α) = SN,2(x, y;α) + φ̄N−1(x;α+ 1)(εφ̄N )(y;α− 1).

Its equivalence to (50) is given in [1, Appendix].
Now, introduce the nonlinear transformation

π(s) = exp(ν−n,N − sτ
−
n,N ), (51)

where ν−n,N and τ−n,N are the rescaling constants in (6), with p replaced by N . Incorporating the
transformation into KN , we define

K̄π(s, t) =
√
π′(s)π′(t)KN (π(s), π(t)). (52)

Let FN,N be the distribution of (log xN − ν−n,N )/τ−n,N . Fix s0, for any s′ = π−1(x′) ≥ s0 and

f = 1s≥s′ , since det(I − KNχ) = det(I − K̄πf), we obtain 1 − FN,N (−s′) =
√

det(I − K̄πf).
Thinking of Kπ as a Hilbert-Schmidt operator with trace class diagonal entries on L2([s′,∞); ρ)⊕
L2([s′,∞); ρ−1) for proper weight function ρ, we can drop f .

Now consider the representation of K̄π. For bN =
√

(N − 1)/N , let

φπ(s) = −
√
bNπ

′(s)φ̄N−2(π(s);α+ 1), ψπ(s) =
√
bNπ

′(s)φ̄N−1(π(s);α+ 1). (53)

Using [11, Proposition 5.4.2], we obtain

SN−1,2(π(s), π(t);α+ 1) = (π′(s)π′(t))−1/2(φπ � ψπ + ψπ � φπ)(s, t).

On the other hand, simple manipulation yields that the second term in (50), with x = π(s) and
y = π(t), equals (−π′(s))−1ψπ(s)(εφπ)(t). Thus, SN,1(π(s), π(t)) = (−π′(s))−1SRπ (s, t) with

SRπ (s, t) = (φπ � ψπ + ψπ � φπ)(s, t) + (ψπ ⊗ εφπ)(s, t). (54)

In addition, we have

(−∂2SN,1)(π(s), π(t)) =
−∂tSN,1(π(s), π(t))

∂tπ(t)
=

−1

π′(s)π′(t)
· [−∂2SRπ (s, t)],

(ε1SN,1)(π(s), π(t)) =

∫ ∞
0

ε(π(s)− z)SN,1(z, π(t))dz

=

∫ ∞
−∞

ε(s− u)SN,1(π(u), π(t))π′(u)du = −(ε1S
R
π )(s, t).

Supplying these equations to (10), we obtain that

K̄π(π(s), π(t)) = U(s)(LSRπ +Kε)(s, t)U−1(t)

with U(s) = diag(1/
√
−π′(s),−

√
−π′(s)). Observe that det(I − K̄π) remains unchanged if we

premultiply K̄π with U−1(s0) and postmultiply it with U(s0). Denote the resulting kernel by Kπ,
we obtain that

Kπ(s, t) = QN (s)(LSRπ +Kε)(s, t)Q−1N (t) (55)
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with QN (s) = U−1(s0)U(s) = diag(
√
π′(s0)/π′(s),

√
π′(s)/π′(s0)), and that 1 − FN,N (−s′) =√

det(I −Kπ).
Recall that G1(−s′) = 1 − F1(s

′). So, FN,N (−s′) − G1(−s′) = F1(−s′) − [1 − FN,N (−s′)].
Similar to (30), we obtain

|FN,N (−s′)−G1(−s′)| ≤
1

F1(s0)
|det(I −Kπ)− det(I −KGOE)|.

Thus, as in the case of the largest eigenvalue, by Proposition 1, to prove Theorem 2 is to control
the entrywise norm of Kπ −KGOE . For this purpose, a convenient decomposition of Kπ −KGOE

is crucial, to which we now turn.

4.2 Kernel Difference Decomposition

We derive below a decomposition of Kπ −KGOE . Despite the differences in actual formulas, the
general guideline of the decomposition is the same as that in Section 3.4.

To start with, we rewrite (55) using the right tail integration operator ε̃. To this end, observe
that

∫
ψπ = 0 and that

β̃N =
1

2

∫ ∞
−∞

φπ(s)ds =
(N − 1)1/4(n− 1)1/4

2(n−N)/2(N − 1)

Γ
(
N+1
2

)
Γ
(
n
2

) [
Γ(n− 1)

Γ(N − 1)

]1/2
=

1√
2

+ O(N−1).

By the same argument that leads to (27), we obtain

Kπ(s, t) = QN (s)(KR
π +KF

π,1 +KF
π,2 +Kε)(s, t)Q−1N (t),

with the unspecified components given by

KR
π = L̃(Sπ − ψπ ⊗ ε̃φπ), KF

π,1 = L1(ψπ ⊗ β̃N ), KF
π,2 = L2(β̃N ⊗ ψπ).

Define ∆̃N = (ν−n,N − ν
−
n−1,N−1)/τ

−
n−1,N−1 = O(N−1/3) and G̃N = G + ∆̃NG

′. For S̃AN =

G � G̃N + G̃N �G, we have S̃AN −G⊗ ε̃G̃N = SA −G⊗ ε̃G. Abbreviate the terms in (18) as

KGOE = KR +KF
1 +KF

2 +Kε.

Then,

KR
π −KR = L̃(Sπ − SA − ψπ ⊗ ε̃φπ +G⊗ ε̃G)

= L̃(Sπ − S̃AN )− L̃(ψπ ⊗ ε̃φπ −G⊗ ε̃G̃N ) = δR,I + δF0 .

Further define

δR,D(s, t) = QN (s)KR
π (s, t)Q−1N (t)−KR

π (s, t),

δFi (s, t) = QN (s)KF
π,i(s, t)Q

−1
N (t)−KF

i (s, t), i = 1, 2,

δε(s, t) = QN (s)Kε(s, t)Q−1N (t)−Kε(s, t).

Our final decomposition of Kπ −KGOE is

Kπ −KGOE = δR,D + δR,I + δF0 + δF1 + δF2 + δε. (56)

We remark that Proposition 2 remains valid if we replace φτ and ψτ with φπ and ψπ respec-
tively. The proof is similar to that to be presented in Section 5 for Proposition 2. With these
estimates, for each term in (56), we apply Lemma 2 to bound their entrywise norms as in Section
3.6. This completes the proof of the rate of convergence part in Theorem 2.
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4.3 Weak Convergence in the Odd N Case

We now establish weak convergence to the reflected Tracy-Widom law in the odd N case. This is
achieved by employing an interlacing property of the singular values. The strategy follows from
[30, Remark 5].

Assume thatN is odd and n−1 ≥ N . LetXN+1 be an (n+1)×(N+1) matrix with i.i.d.N(0, 1)
entries and XN the n×N matrix obtained by deleting the last row and the last column of XN+1.
Denote the smallest singular values of XN+1 and XN by ιN+1 and ιN respectively. We apply [13,
Theorem 7.3.9] twice to obtain that ιN ≤ ιN+1. Repeat the deletion operation on XN to obtain
the (n − 1) × (N − 1) matrix XN−1 and denote its smallest singular value by ιN−1. Then we
obtain the ‘sandwich’ relation: ιN−1 ≤ ιN ≤ ιN+1.

Observe that for k = N −1, N and N +1, X ′kXk are white Wishart matrices with the smallest
eigenvalues xk = ι2k. In addition, as N →∞ and n/N → γ > 1,

(ν−n,N − ν
−
n−1,N−1)/τ

−
n−1,N−1 = O(N−1/3) and τ−n,N/τ

−
n−1,N−1 = 1 + O(N−1).

They together imply that the weak limits for the odd N and the even N sequences must be the
same. This completes the proof of Theorem 2.

5 Laguerre Polynomial Asymptotics

In this section, we complete the proof of Proposition 2. The proof has the following components:
first, we take the Liouville-Green approach to analyze an intermediate function that is connected
to both φτ and ψτ . After recollecting some previous results in [10, 15] for ψτ , we give a detailed
analysis of ψ′τ , ψ′τ −G′ and also strengthen a previous bound on ψτ −G. Finally, we transfer the
bounds on quantities related to ψτ to those related to φτ by a change of variable argument.

5.1 Liouville-Green Approach

Recall (µ̃n,N , σ̃n,N ) in (32) and α in (8). We introduce the intermediate function

Fn,N (x) = (−1)N σ̃
−1/2
n,N

√
N !/n! xα/2+1e−x/2Lα+1

N (x) (57)

as in [15, Eq. (5.1)] and [10, Section 2.2.2]3. Then φτ is related to Fn,N as

ψτ (s) =
1√
2

N1/4(n− 1)1/4σ̃
1/2
n−1,N−1σn,N

µ̃n−1,N−1

Fn−1,N−1(µn,N + sσn,N )

(
µ̃n−1,N−1

µn,N + sσn,N

)
.

Replacing the subscripts (n− 1, N − 1) by (n− 2, N) in µ̃n−1,N−1, σ̃n−1,N−1 and Fn−1,N−1 on the
right side, we also obtain the expression for φτ (s).

Due to the close connection of ψτ and φτ to Fn,N , the key element in the proof of Proposition
2 becomes asymptotic analysis of Fn,N and its derivative. To this end, the Liouville-Green (LG)
theory set out in Olver [26, Chapter 11] is useful, for it comes with ready-made bounds on the
difference between Fn,N and the Airy function, and also on the difference between their derivatives.

To start with, we observe that Fn,N satisfies a second order differential equation

F ′′n,N (x) =

{
1

4
− κN

x
+
λ2N − 1/4

x2

}
Fn,N (x), (58)

3Note: α = αN − 1 for the constant αN used in [15] and [10].
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with κN = 1
2(n+N + 1) and λN = 1

2(n−N). By a rescaling x = κNξ, setting wN (ξ) = Fn,N (x),
the equation becomes

w′′N (ξ) =
{
κ2Nf(ξ) + g(ξ)

}
wN (ξ),

where

f(ξ) =
(ξ − ξ−)(ξ − ξ+)

4ξ2
, g(ξ) =

1

4ξ2
.

The zeros of f are given by ξ± = 2 ±
√

4− ω2
N for ωN = 2λN/κN . They are called the turn-

ing points of the differential equation, for each separates an interval in which the solutions are
oscillating from one in which they are of exponential type. The LG approach introduces new
independent variable ζ and dependent variable W as

ζ

(
dζ

dξ

)2

= f(ξ), W =

(
dζ

dξ

)1/2

wN .

Then the differential equation takes the form W ′′(ζ) =
{
κ2Nζ + v(ωN , ζ)

}
W (ζ). Without the

perturbation term v(ωN , ζ), this is the Airy equation having linearly independent solutions in

terms of Airy functions Ai(κ
2/3
N ζ) and Bi(κ

2/3
N ζ). We focus on approximating the recessive solution

Ai(κ
2/3
N ζ).

Let f̂ = f/ζ. [26, Theorem 11.3.1] gives that

wN (ξ) ∝ f̂−1/4(ξ){Ai(κ
2/3
N ζ) + ε2(κN , ξ)},

where uniformly for ξ ∈ [2,∞), the error term ε2 satisfies

|ε2(κN , ξ)| ≤ (M/E)(κ
2/3
N ζ)[exp{ λ0

κN
F (ωN )} − 1], (59)

|∂ξε2(κN , ξ)| ≤ κ
2/3
N f̂1/2(ξ)(N/E)(κ

2/3
N ζ)[exp{ λ0

κN
F (ωN )} − 1]. (60)

In the bounds,M, E are the modulus and weight functions for the Airy function, and N the phase
function for its derivative [26, pp.394-396]. On the real line, E ≥ 1 and is increasing, 0 ≤M ≤ 1
and N ≥ 0. Moreover, for all x,

|Ai(x)| ≤ (M/E)(x), |Ai′(x)| ≤ (N/E)(x). (61)

As x→∞, their asymptotics are given by

E(x) ∼
√

2e
2
3
x3/2 , M(x) ∼ π−1/2x−1/4, N (x) ∼ π−1/2x1/4. (62)

In addition, in the bounds (59) and (60), λ0
.
= 1.04 and the analysis in [10, A.3] shows that,

uniformly for ξ ∈ [2,∞), for large enough N ,

exp{ λ0
κN

F (ωN )} − 1 ≤ N−2/3. (63)

Come back to Fn,N . The alignment in [10, Eq.(5) and A.1] shows that

Fn,N (x) = rNκ
1/6
N σ̃

1/2
n,N f̂

−1/4(ξ){Ai(κ
2/3
N ζ) + ε2(κN , ξ)},
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with rN = 1 + O(N−1). Let RN (ξ) = (ζ ′(ξ)/ζ ′N )−1/2 with ζ ′N = ζ ′(ξ+). As (ζ ′N )−1 = κ
1/3
N σ̃n,N

and f̂(ξ) = ζ ′(ξ)2, we can rewrite Fn,N as

Fn,N (x) = rNRN (ξ){Ai(κ
2/3
N ζ) + ε2(κN , ξ)}. (64)

This representation serves as the starting point for all the subsequent asymptotic analysis on φτ ,
ψτ and their derivatives.

From now on, without notice, all the inequalities are understood to hold uniformly for N ≥
N0(s0, γ).

5.2 Summary of Previous Analysis: Bound for |ψτ (s)|

Here, we summarize some previous analysis of Fn,N in [15, 10], which gives the desired bound for
|ψτ (s)| in (35), and a crude estimate for |ψτ −G|.

Let xn,N (s) = µ̃n,N + sσ̃n,N and define

θn,N (xn,N (s)) = Fn,N (xn,N (s))

(
µ̃n,N
xn,N (s)

)
. (65)

As σ̃
−1/2
n,N N1/6 < 1, we obtain that, for all s ≥ 0,

|Fn,N (xn,N (s))| ≤ |Fn,N (xn,N (s))σ̃
1/2
n,NN

−1/6| ≤ C exp(−s),

where the later inequality was obtained in [15, A.8]. If s0 < 0, then ξ = xn,N (s)/κN ≥ 2 uniformly
for all s ≥ s0. In addition, Lemma 3 later shows that |RN (ξ)| ≤ 1 + CN−2/3|s| for s ∈ [s0, 0].
Therefore, we apply (59), (63) and (64) to obtain that

|Fn,N (xn,N (s))| ≤ 2rN |RN (ξ)|(M/E)(κ
2/3
N ζ) ≤ 4,

uniformly for s ∈ [s0, 0]. Hence, |Fn,N (xn,N (s))| ≤ C exp(−s) for all s ≥ s0. Moreover, we note
that σ̃n,N/µ̃n,N = O(N−2/3). So, when N ≥ N0(s0), for all s ≥ s0,

µ̃n,N/xn,N (s) ≤ (1 + s0σ̃n,N/µ̃n,N )−1 ≤ 2.

Hence, uniformly for s ≥ s0,

|θn,N (xn,N (s))| ≤ C(s0) exp(−s). (66)

Finally, for any %N = 1 + O(N−1), El Karoui [10, Section 3.2] showed that, for all s ≥ s0,

|%Nθn,N (xn,N (s))−Ai(s)| ≤ C(s0)N
−2/3 exp(−s/2).

For ψτ (s), observe that (µn,N , σn,N ) = (µ̃n−1,N−1, σ̃n−1,N−1). Using Sterling’s formula, we
obtain that ψτ (s) = 1√

2
ρNθn−1,N−1(xn−1,N−1(s)) for some ρN = 1 + O(N−1). Then, we apply

the last two displays to obtain

|ψτ (s)| ≤ C(s0) exp(−s), |ψτ (s)−G(s)| ≤ C(s0)N
−2/3 exp(−s/2), (67)

uniformly for s ≥ s0.
Here, the first inequality gives the bound for |ψτ |, while the bound on |ψτ (s) − G(s)| could

be further improved: see (75). Note that we can not apply these results directly to φτ since the
‘optimal’ rescaling constants (µ̃n−2,N , σ̃n−2,N ) for Fn−2,N does not agree with the global constants
(µn,N , σn,N ).
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5.3 Asymptotics of |ψ′τ (s)|, |ψ′τ (s)−G′(s)| and |ψτ (s)−G(s)|

Here, we derive bounds on |ψ′τ | and |ψ′τ −G′|, and refine the bound on |ψτ (s)−G(s)|.

5.3.1 Bound for |ψ′τ (s)|

To obtain bound for |ψ′τ |, we study |∂sθn,N (xn,N (s))|. By the triangle inequality,

|∂sθn,N (xn,N (s))| ≤
∣∣∣∣σ̃n,NF ′n,N (xn,N (s))

µ̃n,N
xn,N (s)

∣∣∣∣+

∣∣∣∣∣σ̃n,NFn,N (xn,N (s))
µ̃n,N
x2n,N (s)

∣∣∣∣∣
= TN,1(s) + TN,2(s).

(68)

In what follows, we deal with the two terms in order.

The TN,1 term. Recall that µ̃n,N/xn,N (s) ≤ 2 for large N . So, we focus on σ̃n,NF
′
n,N , which

can be decomposed as σ̃n,NF
′
n,N =

∑4
i=1D

i
n,N , with

D1
n,N = rN σ̃n,Nκ

−1
N R′N (ξ){Ai(κ

2/3
N ξ) + ε2(κN , ξ)}, D2

n,N = rN [R−1N (ξ)− 1]Ai′(κ
2/3
N ζ),

D3
n,N = rNAi′(κ

2/3
N ζ), D4

n,N = rN σ̃n,Nκ
−1
N RN (ξ)∂ξε2(κN , ξ).

Due to different strategies used for the asymptotics, on the s-scale, we divide [s0,∞) into I1,N ∪
I2,N , with I1,N = [s0, s1N

1/6) and I2,N = [s1N
1/6,∞). The choice of s1 is worked out in A.2. For

here, we note that s1 ≥ 1 and that for s ≥ s1,

E−1(κ2/3N ζ) ≤ C exp(−3s/2) ≤ C exp(−s). (69)

In addition, we will repeatedly use the following facts.

Lemma 3. Under the condition of Proposition 2, when N ≥ N0(s0, γ), for all s ∈ I1,N ,

|R′N (ξ)| ≤ Cγ−1/2(1 + γ), |RN (ξ)− 1| ≤ CN−2/3|s|, |κ2/3N ζ − s| ≤ (CN−2/3s2) ∧ 1
2 |s| ∧ 1.

Proof of Lemma 3 is given in [22].

Case s ∈ I1,N . Consider D1
n,N first. Recall that rN = 1 + O(N−1). Together with Lemma

3, this implies
|rN σ̃n,Nκ−1N R′N (ξ)| ≤ CN−2/3. (70)

On the other hand, as 0 ≤M ≤ 1, (59), (61) and (63) together imply

|Ai(κ
2/3
N ζ) + ε2(κN , ξ)| ≤ C(M/E)(κ

2/3
N ζ) ≤ CE−1(κ2/3N ζ).

For s ≥ 0, Lemma 3 implies κ
2/3
N ζ ≥ s/2. Since E is monotone increasing, by (62),

|Ai(κ
2/3
N ζ) + ε2(κN , ξ)| ≤ CE−1(s/2) ≤ Ce−

1
3
√
2
s3/2 ≤ C exp(−s).

If s0 ≤ 0, we can replace the C on the rightmost side with C(s0) = max{C,maxs∈[3s0/2,0] E−1(s)},
which is continuous and non-increasing in s0. Together with (70), we obtain that4∣∣D1

n,N

∣∣ ≤ C(s0)N
−2/3 exp(−s).

4Here and after, we derive more stringent bounds with the N−2/3 term whenever possible. Although they are
not necessary for bounding |ψ′τ |, they are useful in the later study of |ψ′τ (s)−G′(s)|.

23



For D2
n,N , we first have |rNR−1N (ξ) − 1| ≤ rN |R−1N (ξ) − 1| + |rN − 1|. Lemma 3 implies that

|R−1N (ξ)− 1| ≤ CN−2/3|s|. Observing that |rN − 1| = O(N−1), we obtain

|rNR−1N (ξ)− 1| ≤ CN−2/3|s|.

For |Ai′(κ
2/3
N ζ)|, when s ≥ 0, Lemma 3 gives κ

2/3
N ζ ∈ [s/2, 3s/2]. This, together with Lemma 1,

implies that

|Ai′(κ
2/3
N ζ)| ≤ C exp(−3s/2). (71)

If s0 < 0, we can replace the C on the right side with C(s0) = max{C,max[3s0/2,0] |Ai′(s)|}, which
is continuous and non-increasing. Then, the last two displays give

|D2
n,N | ≤ C(s0)N

−2/3|s| exp(−3s/2) ≤ C(s0)N
−2/3 exp(−s).

For D3
n,N , we recall that rN = 1 + O(N−1). Together with (71), this implies that

|D3
n,N | ≤ C(s0) exp(−s).

For D4
n,N , since rN = 1 + O(N−1), ζ ′(ξ) = f̂1/2(ξ) and ζ ′N = κ

1/3
N /σ̃n,N , (60) and (63) imply

|D4
n,N | = |rN σ̃n,Nκ−1N RN (ξ)∂ξε2(κN , ξ)|

≤ CN−2/3σ̃n,Nκ−1/3N RN (ξ)(N/E)(κ
2/3
N ζ)

= CN−2/3R−1N (ξ)(N/E)(κ
2/3
N ζ).

Lemma 3 implies that R−1N (ξ) ≤ C and κ
2/3
N ζ ∈ [s/2, 3s/2], uniformly on I1,N . So, (62) gives

(N/E)(κ
2/3
N ζ) ≤ Cs1/4e−

1
3
√
2
s3/2 ≤ C exp(−s),

for all s ≥ 0. And if s0 < 0, we can replace the C on the rightmost side with C(s0) =
max{C,maxs∈[3s0/2,0](N/E)(s)}, which is continuous and non-increasing in s0. All these elements
together lead to

|D4
n,N | ≤ C(s0)N

−2/3 exp(−s).

Combining all the bounds on the Di
n,N terms, we obtain that TN,1 ≤ C(s0) exp(−s) on I1,N .

Case s ∈ I2,N . In this case, we define D̃1
n,N = D1

n,N and D̃2
n,N = D2

n,N +D3
n,N +D4

n,N .

Consider D̃1
n,N first. By (59), (61) and (63), we obtain that for N ≥ N0(s0, γ),

|D̃1
n,N | ≤ Cσ̃n,Nκ−1N |R

′
N/RN |(ξ)RN (ξ)(M/E)(κ

2/3
N ζ).

Observe that, uniformly on I2,N ,

σ̃n,Nκ
−1
N |R

′
N/RN |(ξ) ≤ C, RN (ξ)M(κ

2/3
N ζ) ≤ Cs. (72)

For a proof of (72), see [22]. On the other hand, (69) holds on I2,N . Thus,

|D̃1
n,N | ≤ Cs exp(−3s/2) ≤ Cs4 exp(−s) ≤ CN−2/3 exp(−s).

24



For D̃2
n,N , we can write it as D̃2

n,N = rNRN (ξ)[Ai′(κ
2/3
N ζ)R−2N (ξ) + σ̃n,Nκ

−1
N ∂ξε2(κN , ξ)]. By

(60), (61), (63) and the identity R−1N = σ̃
−1/2
n,N κ

1/6
N f̂1/4, we get the bound

|D̃2
n,N | ≤ CR−1N (ξ)(N/E)(κ

2/3
N ζ).

(62) suggests that R−1N (ξ)N (κ
2/3
N ζ) ≤ CR−1N (ξ)κ

1/6
N ζ1/4 = Cf1/4(ξ)σ̃

1/2
n,N ≤ Cσ̃

1/2
n,N . The last

inequality holds as f ≤ 4 for s ∈ I2,N . On the other hand, σ̃n,N ≤ C(γ)N1/3 ≤ Cs4 for large N .

Assembling all the pieces, we obtain R−1N (ξ)N (κ
2/3
N ζ) ≤ Cs2. Together with (69), this implies

|D̃2
n,N | ≤ Cs2 exp(−3s/2) ≤ Cs−4 exp(−s) ≤ CN−2/3 exp(−s).

Therefore, TN,1 ≤ CN−2/3 exp(−s) on I2,N .

The TN,2 term. This term is relatively easy to bound. Note that σ̃n,N/µ̃n,N = O(N−2/3) and
that TN,2(s) = |θn,N (xn,N (s))σ̃n,N/xn,N (s)|. So, for all s ≥ s0, N ≥ N0(s0),

|σ̃n,N/xn,N (s)| = |s+ µ̃n,N/σ̃n,N |−1 ≤ C(s0)N
−2/3.

Together with (66), this implies that for all s ≥ s0, TN,2(s) ≤ C(s0)N
−2/3 exp(−s).

Summing up. By (68), the bounds on TN,1 and TN,2 transfer to

|∂sθn,N (xn,N (s))| ≤ C(s0) exp(−s), (73)

uniformly for s ≥ s0. On the other hand, we note that

ψ′τ (s) = 1√
2
ρN∂sθn−1,N−1(xn−1,N−1(s)),

with ρN = 1 + O(N−1). Thus, (73) implies the desired bound on |ψ′τ | in (35).

5.3.2 Bound for |ψ′τ (s)−G′(s)|

By the triangle inequality, we bound |ψ′τ (s)−G′(s)| as

|ψ′τ (s)−G′(s)| ≤ 1√
2
|ρN − 1||∂sθn−1,N−1(xn−1,N−1(s))|

+ 1√
2
|∂sθn−1,N−1(xn−1,N−1(s))−Ai′(s)|.

(74)

As ρN = 1 + O(N−1), by (73), we bound the first term by C(s0)N
−1 exp(−s). In what follows,

to bound the second term in (74), we focus on |∂sθn,N (xn,N (s))−Ai′(s)|, which can first be split
into two parts as:

|∂sθn,N (xn,N (s))−Ai′(s)|

≤
∣∣∣∣σ̃n,NF ′n,N (xn,N (s))

µ̃n,N
xn,N (s)

−Ai′(s)

∣∣∣∣+

∣∣∣∣∣σ̃n,NFn,N (xn,N (s))
µ̃n,N
x2n,N (s)

∣∣∣∣∣
= TN,1(s) + TN,2(s).

The TN,1(s) term. For this term, we separate the arguments on I1,N = [s0, s1N
1/6) and I2,N =

[s1N
1/6,∞).
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Case s ∈ I1,N . On I1,N , we decompose TN,1(s) as TN,1(s) =
∑5

i=1Din,N , with Din,N =

Di
n,N µ̃n,N/xn,N (s) for i = 1, 2 and 4, and

D3
n,N = rN

µ̃n,N
xn,N (s)

[Ai′(κ
2/3
N ζ)−Ai′(s)], D5

n,N =

[
rN

µ̃n,N
xn,N (s)

− 1

]
Ai′(s).

Observe that |µ̃n,N/xn,N (s)| ≤ 2 on I1,N . Thus, by previous bounds on Di
n,N , we obtain that, for

i = 1, 2 and 4, |Din,N | ≤ C(s0)N
−2/3 exp(−s).

Consider D3
n,N . By the Taylor expansion, for some s∗ between κ

2/3
N ζ and s,

|Ai′(κ
2/3
N ζ)−Ai′(s)| ≤ |Ai′′(s∗)||κ2/3N ζ − s| = |s∗Ai(s∗)||κ2/3N ζ − s|,

where the equality comes from the identity Ai′′(s) = sAi(s). By Lemma 3, we have that |κ2/3N ζ −
s| ≤ CN−2/3s2, and that s∗ lies between 1

2s and 3
2s. The later, together with Lemma 1, implies

that, for s ≥ 0,
|s∗Ai(s∗)| ≤ C exp(−3s/2).

If s0 ≤ 0, we then have s∗ ∈ [32s, 0], and hence we can replace C on the right side with C(s0) =
max{C,maxs∈[3s0/2,0] |sAi(s)|}. Observe that rN = 1 + O(N−1) and that |µ̃n,N/xn,N (s)| ≤ 2. We
thus conclude that

|D3
n,N | ≤ C(s0)N

−2/3s2 exp(−3s/2) ≤ C(s0)N
−2/3 exp(−s).

Switch to D5
n,N . We first note that∣∣∣∣rN µ̃n,N
xn,N (s)

− 1

∣∣∣∣ ≤ rN ∣∣∣∣ µ̃n,N
xn,N (s)

− 1

∣∣∣∣+ |rN − 1|

= rN |s|
∣∣∣∣s+

µ̃n,N
σ̃n,N

∣∣∣∣−1 + |rN − 1| ≤ CN−2/3|s|+ CN−1.

The last inequality holds as σ̃n,N/µ̃n,N = O(N−2/3), rN = 1 + O(N−1), and for large N , |s +
µ̃n,N/σ̃n,N | ≥ 1

2 µ̃n,N/σ̃n,N uniformly for s ∈ I1,N . On the other hand, Lemma 1 implies that
|Ai′(s)| ≤ C(s0) exp (−3s/2). Putting the two parts together, we obtain

|D5
n,N | ≤ C(s0)N

−2/3(|s|+ CN−1/3) exp(−3s/2) ≤ C(s0)N
−2/3 exp(−s).

Assembling all the bounds on the Din,N ’s, we obtain that, on I1,N ,

TN,1(s) ≤ C(s0)N
−2/3 exp(−s).

Case s ∈ I2,N . In this case, we could act more heavy-handedly. In particular, by the
asymptotics of TN,1(s) on I2,N and Lemma 1, we have

TN,1(s) ≤
∣∣∣∣σ̃n,NF ′n,N (xn,N (s))

µ̃n,N
xn,N (s)

∣∣∣∣+
∣∣Ai′(s)

∣∣ ≤ CN−2/3 exp(−s) + C exp(−3s/2)

≤ CN−2/3 exp(−s) + CN−2/3s4 exp(−3s/2) ≤ CN−2/3 exp(−s).

The TN,2(s) term. The TN,2(s) term is the same as TN,2(s) defined previously in the study of
∂sθn,N (xn,N (s)) and hence we quote the bound derived there directly as

TN,2(s) ≤ C(s0)N
−2/3 exp(−s), for all s ≥ s0.
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Summing up. Combining the bounds on TN,1 and TN,2, we have, uniformly for s ≥ s0

|∂sθn,N (xn,N (s))−Ai′(s)| ≤ C(s0)N
−2/3 exp(−s).

By the discussion following (74), we obtain the desired bound on |ψ′τ (s)−G′(s)| in (37).

5.3.3 Improved bound for |ψτ −G|

The bound on |ψ′τ (s)−G′(s)|, together with (67), can lead to a tighter bound for |ψτ (s)−G(s)|
as the following:

|ψτ (s)−G(s)| =
∣∣∣∣∫ 2s

s
[ψ′τ (t)−G′(t)]dt− [ψτ (2s)−G(2s)]

∣∣∣∣
≤
∫ 2s

s

∣∣ψ′τ (t)−G′(t)
∣∣ dt+ |ψτ (2s)−G(2s)|

≤
∫ 2s

s
C(s0)N

−2/3e−tdt+ C(s0)N
−2/3 exp(−s) ≤ C(s0)N

−2/3 exp(−s).

(75)

This is exactly what we have claimed in Proposition 2.

5.4 Asymptotics for Quantities Related to φτ (s)

In this part, we employ a trick in [15] to transfer the bounds on the quantities related to ψτ to
those related to φτ .

Recall that, for ρ̃N = 1 + O(N−1) [see A.1 for its proof],

φτ (s) =
1√
2
ρ̃NFn−2,N (xn−1,N−1(s))

µ̃n−2,N
xn−1,N−1(s)

.

If the xn−1,N−1(s) term on the right side were xn−2,N (s), then all the bounds we have proved for
ψτ would also be valid for φτ . As this is not the case, we introduce a new independent variable
s′ as5:

xn−1,N−1(s) = xn−2,N (s′), (76)

i.e., s′ = (µ̃n−1,N−1 − µ̃n−2,N )/σ̃n−2,N + sσ̃n−1,N−1/σ̃n−2,N . Then, φτ can be rewritten as

φτ (s) =
1√
2
ρ̃NFn−2,N (xn−2,N (s′))

µ̃n−2,N
xn−2,N (s′)

=
1√
2
ρ̃Nθn−2,N (xn−2,N (s′)).

Recall the definition of ∆N in (33), we have s′ − s = ∆N + [σ̃n−1,N−1σ̃
−1
n−2,N ]s, with

∆N = O(N−1/3), 1 ≤ σ̃n−1,N−1σ̃−1n−2,N = 1 + O(N−1). (77)

Bounds for |φτ (s)| and |φ′τ (s)|. Recall previous bounds on |θn,N (xn,N (s))| and |∂sθn,N (xn,N (s))|.
Together with (77), they imply that, for all s ≥ s0,

|φτ (s)| ≤ C(s0) exp(−s′) ≤ C(s0) exp(−s),

and ∣∣φ′τ (s)
∣∣ =

1√
2
ρ̃N
∣∣∂sθn−2,N (xn−2,N (s′))

∣∣ =
1√
2
ρ̃N
∣∣∂s′θn−2,N (xn−2,N (s′))

∣∣ ds′
ds

≤ C(s0) exp(−s′)
σ̃n−1,N−1
σ̃n−2,N

≤ C(s0) exp(−s).

5The readers are expected not to confuse it with the s′ previously appeared in Section 3.1.
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Bounds for |φτ (s) −GN (s)| and |φ′τ (s) −G′N (s)|. We consider |φτ (s) −GN (s)| in detail and
the derivation for the bound on |φ′τ (s)−G′N (s)| is essentially the same.

By the definition of s′ and the identity Ai′′(s) = sAi(s), we obtain the Taylor expansion

G(s′) = G(s) + (s′ − s)G′(s) + 1
2(s′ − s)2G′′(s∗)

= GN (s) + 1√
2

[
σ̃n−1,N−1

σ̃n−2,N
− 1
]
sAi′(s) + 1

2
√
2
(s′ − s)2s∗Ai(s∗),

with s∗ lying in between s and s′. By previous discussion on |ψτ (s)−G(s)|, this leads to

|φτ (s)−GN (s)| ≤ C(s0)N
−2/3 exp(−s′) + CN−1|sAi′(s)|+ C(s′ − s)2|s∗Ai(s∗)|

≤ C(s0)N
−2/3 exp(−s) + C(s′ − s)2|s∗Ai(s∗)|.

(78)

To further bound the last term, we split [s0,∞) into I1,N ∪ I2,N . For s ∈ I1,N ,

(s− s′)2 = [∆N + (
σ̃n−1,N−1

σ̃n−2,N
− 1)s]2 ≤ [CN−1/3 + CN−1s]2 ≤ (CN−2/3) ∧ 1.

So |s∗| ≤ |s|+ 1, and Lemma 1 implies that

C(s− s′)2|s∗Ai(s∗)| ≤ C(s0)N
−2/3 exp(−s).

On I2,N , (77) implies that s′ ≥ s/2, and hence s∗ ≥ s/2. Together with Lemma 1, this implies

C(s′ − s)2|s∗Ai(s∗)| ≤ Cs−4 · |(s∗)7Ai(s∗)| ≤ CN−2/3 exp(−s).

Therefore, we have shown that, for all s ≥ s0, the last term in (78) is further controlled by
C(s0)N

−2/3 exp(−s), which in turn gives the desired bound for |φτ −GN |. It is not hard to check
that all the C(s0) functions in the above analysis could be continuous and non-increasing.
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A Appendix

In the appendix, we collect technical details for that lead to some of the claims previously made
in the main text. A.1 gives proofs to properties of a number of constants. A.2 works out the
details on the choice s1, which was used to decompose the interval [s0,∞) in Section 5.

A.1 Properties of βN , ρN , ρ̃N ,∆N and σ̃n−1,N−1/σ̃n−2,N

Property of βN . We are to show that βN = 1√
2

+ O(N−1). By definition, we know

βN =
1

2

∫ ∞
−∞

φτ (s)ds =
1

2

∫ ∞
0

φ(x;α)dx

=
N1/4(n− 1)1/4Γ1/2(N + 1)

2
√

2Γ1/2(n)
×
∫ ∞
0

x(α−1)/2e−x/2LαN (x)dx

=
2−α/2N1/4(n− 1)1/4Γ1/2(n)Γ(12(N + 3))

(N + 1)Γ1/2(N + 1)Γ(12(n+ 1))
.
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Applying Sterling’s formula Γ(z) = (2π/z)1/2 (z/e)z (1 + O(z−1)), we obtain that

βN =
(2π/n)1/4 (n/e)n/2 [4π/(N + 3)]1/2 [(N + 3)/(2e)](N+3)/2

[2π/(N + 1)]1/4 [(N + 1)/e](N+1)/2 [4π/(n+ 1)]1/2 [(n+ 1)/(2e)](n+1)/2

× 2−α/2N1/4(n− 1)1/4

N + 1
(1 + O(N−1))

=
1√
2e

(
1− 1

n+ 1

)n/2(
1 +

2

N + 1

)(N+1)/2+3/4

(1 + O(N−1))

=
1√
2

+ O(N−1).

Properties ρN and ρ̃N . We want to show that ρN , ρ̃N = 1 + O(N−1). Consider ρN first. By
definition, we have

ρN =
N1/4(n− 1)1/4σ̃

1/2
n−1,N−1σn,N

µn,N
=
N1/4(n− 1)1/4σ̃

3/2
n−1,N−1

µ̃n−1,N−1
.

Plugging in the definition of σ̃n−1,N−1 and µ̃n−1,N−1, we obtain that

ρN = N1/4(n− 1)1/4
(√

N − 1
2 +

√
n− 1

2

)−1/2 1√
N − 1

2

+
1√
n− 1

2

1/2

=

(
N

N − 1
2

)1/4(
n− 1

n− 1
2

)1/4

= 1 + O(N−1).

For ρ̃N , we have

ρ̃N =
N1/4(n− 1)1/4σ̃

1/2
n−2,Nσn,N

µ̃n−2,N
=
σ̃n−1,N−1
σ̃n−2,N

N1/4(n− 1)1/4σ
3/2
n−2,N

µn−2,N

=
σ̃n−1,N−1
σ̃n−2,N

N1/4(n− 1)1/4
(√

N + 1
2 +

√
n− 3

2

)−1/2 1√
N + 1

2

+
1√
n− 3

2

1/2

=
σn−1,N−1
σn−2,N

(
N

N + 1
2

)1/4(
n− 1

n− 3
2

)1/4

= 1 + O(N−1).

The last equality holds since σ̃n−1,N−1/σ̃n−2,N = 1 + O(N−1) as claimed in (33), which is to be
shown below.

Property of ∆N . Recall the definition ∆N = (µ̃n−1,N−1− µ̃n−2,N )/σ̃n−2,N . By [10, A.1.2], the
numerator µ̃n−1,N−1 − µ̃n−2,N = O(1). For the denominator, let γn,N =

(
n− 3

2

)
/
(
N + 1

2

)
, we

then have

1

σ̃n−2,N
=

(√
N + 1

2 +
√
n− 3

2

)−1 1√
N + 1

2

+
1√
n− 3

2

−1/3

=
1

1 + γ
1/2
n,N

(
1 + γ

−1/2
n,N

) (
N + 1

2

)−1/3
= O(N−1/3).
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The last equality holds since γn,N is bounded below for all n > N . Combining the two parts, we
establish that ∆N = O(N−1/3).

Property of σ̃n−1,N−1/σ̃n−2,N . We now switch to prove that

1 ≤ σ̃n−1,N−1/σ̃n−2,N = 1 + O(N−1).

[10, A.1.3] showed that σ̃n−1,N−1/σ̃n−2,N = 1 + O(N−1). On the other hand, we have from the
second last display of [10, A.1.3] that(

σ̃n−1,N−1
σ̃n−2,N

)3

=

[
1 +

√
n/N −

√
N/n

n+N
+ O(n−2)

] [
1 +

1

2

(
1

n
+

1

N

)
+ O(n−2)

]
.

Both terms become greater than 1 when N ≥ N0(γ), and hence σ̃n−1,N−1/σ̃n−2,N ≥ 1 for large
N . Actually, the inequality holds for any n > N ≥ 2. However, what we have proved here is
sufficient for our argument in Section 5.4.

A.2 Choice of s1 and its consequences

The key point in our choice of s1 is to ensure that when s ≥ s1, we have

2

3
κNζ

3/2 ≥ 3

2
s. (79)

To this end, recall that in [15, A.8], one could choose s̃1(γ) = C(γ)(1 + δ) with some δ > 0,
such that when s ≥ s̃1(γ), we have

√
f(ξ) ≥ 2/σ̃n,N and hence if s ≥ 4s̃1(γ),

2

3
κNζ

3/2 = κN

∫ ξ

ξ+

√
f(z)dz ≥ κN

2

σ̃n,N
(s− s̃1(γ))

σ̃n,N
κN

= 2(s− s̃1(γ)) ≥ 3

2
s.

Moreover, by the analysis in [10, A.6.4], s̃1(γ) could be chosen independently of γ and hence we
could define our s1 to be

s1 = 4s̃1

which is independent of γ and such that (79) holds. Moreover, we also require that s1 ≥ 1.
After specifying our choice of s1, we spell out two of its consequences. The first of them is

that when s ≥ s1 ≥ 1,

E−1(κ2/3N ζ) ≤ C exp(−3s/2) ≤ C exp(−s). (80)

This is from the observation that E(x) ≥ C exp(2x3/2/3) and hence

E−1(κ2/3N ζ) ≤ C exp

(
−2

3
κNζ

3/2

)
≤ C exp(−3s/2).

The other consequence is about the behavior of s′ defined in (76) when s ≥ s1. Remembering
that s1 ≥ 1, we then have that when s ≥ s1 and N ≥ N0(γ),

s′ − s

2
= ∆N +

(
σ̃n−1,N−1
σ̃n−2,N

− 1

2

)
s ≥ ∆N +

s1
2
≥ ∆N +

1

2
≥ 0. (81)

The last inequality holds when N ≥ N0(γ), for ∆N = O(N−1/3).
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