Statistics 111 - Lecture 27
Final review

Administrative Notes

- Final Exam is **Tuesday, May 10th (3-5pm)**
 - Covers Chapters 1-8 and 10 in textbook
 - Bring ID cards to final!
 - Allowed: Calculators, **double-sided 8.5 x 11 cheat sheet**
- Exam Rooms:
<table>
<thead>
<tr>
<th>Stat 111 Lecture</th>
<th>Last Name</th>
<th>Final Exam Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>11am – 12pm</td>
<td>Everyone</td>
<td>MEYERSON HALL B1</td>
</tr>
<tr>
<td>2 – 3pm</td>
<td>Everyone</td>
<td>COHEN HALL G17</td>
</tr>
</tbody>
</table>

- Office hours will be held throughout the exam period up until the final exam on May 10th
- List of additional textbook study problems from second half of the course will be also be posted on the course website

Outline

- Collecting Data (Chapter 3)
- Exploring Data - One variable (Chapter 1)
- Exploring Data - Two variables (Chapter 2)
- Probability (Chapter 4)
- Sampling Distributions (Chapter 5)
- Introduction to Inference (Chapter 6)
- Inference for Population Means (Chapter 7)
- Inference for Population Proportions (Chapter 8)
- Inference for Regression (Chapter 10)
- Urban Analytics Case Study

Experiments

- Try to establish the **causal effect** of a treatment
- Key is reducing presence of **confounding** variables
- **Matching**: ensure treatment/control groups are very similar on observed variables eg. race, gender, age
- **Randomization**: randomly dividing into treatment or control leads to groups that are similar on observed and unobserved confounding variables
- **Double-Blinding**: both subjects and evaluators don’t know who is in treatment group vs. control group

Sampling and Surveys

- Just like in experiments, we must be cautious of potential sources of bias in our sampling results
- Voluntary response samples, undercoverage, non-response, untrue-response, wording of questions
- **Simple Random Sampling**: less biased since each individual in the population has an equal chance of being included in the sample
Different Types of Graphs
• A **distribution** describes what values a variable takes and how frequently these values occur
• Boxplots are good for **center**, **spread**, and **outliers** but don’t indicate shape of a distribution
• Histograms much more effective at displaying the **shape** of a distribution

Measures of Center and Spread
• **Center:** Mean
 \[\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \]

 • **Spread:** Standard Deviation
 \[s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}} \]

 • For outliers or asymmetry, median/IQR are better
 - **Center:** Median - “middle number in distribution”
 - **Spread:** Inter-Quartile Range \(IQR = Q3 - Q1 \)

 • We use mean and SD more since most distributions are symmetric with no outliers (eg. Normal)

Relationships between continuous var.
• Scatterplot examines relationship between **response** variable \(Y \) and a **explanatory** variable \(X \):

 - Positive vs. negative associations
 - Correlation is a measure of the strength of linear relationship between variables \(X \) and \(Y \)
 - \(r \) near 1 or -1 means strong linear relationship
 - \(r \) near 0 means weak linear relationship
 - Linear Regression: come back to later…

Probability
• **Random** process: outcome not known exactly, but have **probability distribution** of possible outcomes

 • **Event:** outcome of random process with prob. \(P(A) \)

 • **Probability calculations:** combinations of rules
 - Equally likely outcomes rule
 - Complement rule
 - Additive rule for disjoint events
 - Multiplication rule for independent events

 • **Random variable:** a numerical outcome or summary of a random process
 - Discrete r.v. has a finite number of distinct values
 - Continuous r.v. has a non-countable number of values
 - Linear transformations of variables

The Normal Distribution
• The Normal distribution has center \(\mu \) and spread \(\sigma^2 \)

 • Have tables for any probability from the standard normal distribution \(\mu = 0 \) and \(\sigma^2 = 1 \)

 • Standardization: converting \(X \) which has a \(N(\mu, \sigma^2) \) distribution to \(Z \) which has a \(N(0,1) \) distribution:
 \[Z = \frac{X - \mu}{\sigma} \]

 • **Reverse standardization:** converting a standard normal \(Z \) into a non-standard normal \(X \)
 \[X = \sigma \cdot Z + \mu \]

Inference using Samples
• Continuous: pop. mean estimated by sample mean
 - **Sampling Distributions:** Distribution of values taken by statistic in all possible samples from the same population

 • Discrete: pop. proportion estimated by sample proportion

 • Key for inference: **Sampling Distributions**

 • Continuous: pop. mean estimated by sample mean
 - **Sampling Distributions:** Distribution of values taken by statistic in all possible samples from the same population

 • Discrete: pop. proportion estimated by sample proportion
 - **Sampling Distributions:** Distribution of values taken by statistic in all possible samples from the same population
Sampling Distribution of Sample Mean

- The center of the sampling distribution of the sample mean is the population mean: $	ext{E}(ar{X}) = \mu$
- Over all samples, the sample mean will, on average, be equal to the population mean (no guarantees for 1 sample)
- The standard deviation of the sampling distribution of the sample mean is
 \[
 \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}
 \]
- As sample size increases, standard deviation of the sample mean decreases!
- Central Limit Theorem: if the sample size is large enough, then the sample mean \bar{X} has an approximately Normal distribution

Binomial/Normal Dist. For Proportions

- Sample count Y follows Binomial distribution which we can calculate from Binomial tables in small samples
- If the sample size is large (np and $n(1-p)$ ≥ 10), sample count Y follows a Normal distribution:
 \[
 \text{mean}(Y) = np
 \]
 \[
 \text{SD}(Y) = \sqrt{np(1-p)}
 \]
- If the sample size is large, the sample proportion also approximately follows a Normal distribution:
 \[
 \text{mean}(\hat{p}) = p
 \]
 \[
 \text{SD}(\hat{p}) = \frac{p(1-p)}{n}
 \]

Summary of Sampling Distribution

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Unknown Parameter</th>
<th>Statistic</th>
<th>Variability of Statistic</th>
<th>Distribution of Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>μ</td>
<td>\bar{X}</td>
<td>$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$</td>
<td>Normal (if n large)</td>
</tr>
<tr>
<td>Count $X_i = 0$ or 1</td>
<td>p</td>
<td>\hat{p}</td>
<td>$\text{SD}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$</td>
<td>Binomial (if n small)</td>
</tr>
</tbody>
</table>

Introduction to Inference

- Use sample estimate as center of a confidence interval of likely values for population parameter
- All confidence intervals have the same form:
 \[
 \text{Estimate} \pm \text{Margin of Error}
 \]
- The margin of error is always some multiple of the standard deviation (or standard error) of statistic
- Hypothesis test: data supports specific hypothesis?
 1. Formulate your Null and Alternative Hypotheses
 2. Calculate the test statistic: difference between data and your null hypothesis
 3. Find the p-value for the test statistic: how probable is your data if the null hypothesis is true?

Inference: Single Population Mean μ

- Known SD σ: confidence intervals and test statistics involve standard deviation and normal critical values
 \[
 \left(\bar{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)
 \]
 \[
 Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}
 \]
- Unknown SD σ: confidence intervals and test statistics involve standard error and critical values from a t distribution with $n-1$ degrees of freedom
 \[

 \left(\bar{X} - t_{n-1, \alpha/2} \cdot \frac{s}{\sqrt{n}}, \bar{X} + t_{n-1, \alpha/2} \cdot \frac{s}{\sqrt{n}}\right)
 \]
 \[
 T = \frac{\bar{X} - \mu}{s / \sqrt{n}}
 \]
- t distribution has wider tails (more conservative)

Inference: Comparing Means μ_1 and μ_2

- Known σ_1 and σ_2: two-sample Z statistic uses normal distribution
 \[
 Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
 \]
- Unknown σ_1 and σ_2: two-sample T statistic uses t distribution with $\min(n_1-1, n_2-1)$ degrees of freedom
 \[
 T = \frac{\bar{X}_1 - \bar{X}_2}{s_p \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}
 \]
 \[
 s_p^2 = \frac{\left(n_1 - 1 \right) s_1^2 + \left(n_2 - 1 \right) s_2^2}{n_1 + n_2 - 2}
 \]
- Matched pairs: instead of difference of two samples X_1 and X_2, do a one-sample test on the difference d
 \[
 T = \frac{\bar{X} - 0}{s' / \sqrt{n'}}
 \]
 \[
 s'^2 = \frac{\left(n_1 - 1 \right) s_1^2}{n_1}
 \]
Inference: Population Proportion p

- **Confidence interval** for p uses the Normal distribution and the *sample proportion*:
 \[
 \hat{p} \pm Z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
 \]

- **Hypothesis test** for $p = p_0$ also uses the Normal distribution and the *sample proportion*:
 \[
 Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}
 \]

Inference: Comparing Proportions p_1 and p_2

- **Hypothesis test** for $p_1 - p_2 = 0$ uses Normal distribution and complicated test statistic
 \[
 Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}
 \]
 \[
 Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}
 \]

 Pooled standard error:
 \[
 SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}
 \]

- **Confidence interval** for $p_1 = p_2$ also uses Normal distribution and sample proportions
 \[
 \left[\hat{p}_1 - Z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}}, \hat{p}_1 + Z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}}\right]
 \]

Linear Regression

- Use *best fit line* to summarize linear relationship between two continuous variables X and Y:
 \[
 Y_i = \alpha + \beta \cdot X_i
 \]
 \[
 Y_i = \alpha + \beta \cdot X_i
 \]
- The slope ($\beta = \frac{\sum X - \bar{X} \cdot \sum Y - \bar{Y}}{\sum X^2 - n \bar{X}^2}$): average change you get in the Y variable if you increased the X variable by one
- The intercept ($\alpha = \bar{Y} - \bar{X} \cdot \beta$): average value of the Y variable when the X variable is equal to zero
- Linear equation can be used to predict response variable Y for a value of our explanatory variable X

Significance in Linear Regression

- Does the regression line show a significant linear relationship between the two variables? $H_0: \beta = 0$ versus $H_1: \beta \neq 0$
- Uses the *t distribution* with $n-2$ degrees of freedom and a test statistic calculated from JMP output
 \[
 T = \frac{b}{SE(b)}
 \]
- Can also calculate *confidence intervals* using JMP output and t distribution with $n-2$ degrees of freedom
 \[
 \left(b \pm t \cdot SE(b)\right) \quad \left(a \pm t \cdot SE(a)\right)
 \]

Urban Analytics in Philadelphia

- Quantitative analysis of the economic and social functioning of local areas within large cities
- Philadelphia is an interesting case study for contemporary issues in urban revival and gentrification
- Creating empirical measures for concepts like *urban vibrancy* that have been difficult to quantify
- Examined associations between crime, poverty, demographics and land use
- It is important to do quantitative analysis of large cities carefully and at the correct level of resolution
 \[
 \text{What we see when we look at the city in the aggregate can be quite different than specific neighborhoods}
 \]
- Both sides of the classic Jane Jacobs vs. Urban renewal fight were based on empirical arguments
- Jacobs’ key innovation was basing her observations at a high resolution: individual streets and blocks rather than aggregating over entire cities
Last Class!

- Thanks everyone for a great semester!
- See you on May 10th for the final exam!