References from The Cauchy Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities

This file was created with the Adobe tool for converting PDF files to HTML. The translation does not work very well and this will be replaced shortly. For the moment, it is best to look at the original PDF, or head back to the CSMC home, or even to Steele's home.

Aczel, J. (1961/1962). Ungleichungen und ihre Verwendung zur elementaren Losung von Maximum-und Minimumaufgaben, L’Enseigne-ment Math. 2, 214–219.

Alexanderson, G. (2000). The Random Walks of George P´olya, Math. Assoc. America, Washington,

D.C. Andreescu, T. and Feng, Z. (2000). Mathematical Olympiads: Problems and Solutions from Around the World, Mathematical Association of America, Washington, DC.

Andrica, D. and Badea, C. (1988). Gruss’ inequality for positive linear functional, Period. Math. Hungar., 19, 155–167.

Artin, E. (1927). Uber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5, 100-115.

Bak, J. and Newman, D.J. (1997). Complex Analysis, 2nd Edition, Springer-Verlag, Berlin.

Ball, K. (1997). An elementary introduction to modern convex geometry, in Flavors of Geometry (S. Levy, ed.), MSRI Publications 31 1–58, Cambridge University Press, Cambridge, UK.

Bashmakova, I.G. (1997). Diophantus and Diophantine Equations (trans lated by Abe Shenitzer, originally published by Nauka, Moscow, 1972), Mathematical Association of America, Washington

D.C. Beckenbach, E.F. and Bellman, R. (1965). Inequalities (2nd revised printing), Springer-Verlag, Berlin.

Bennett, C. and Sharpley, R. (1988). Interpolation of Operators, Academic Press, Orlando, FL. Bradley, D. (2000). Using integral transforms to estimate higher order derivatives, Amer. Math. Monthly, 107, 923–931.

Bombieri, E. (1974). Le grand crible dans la th´eorie analytique des nombres, 2nd Edition, Ast´erisque, 18, Soc. Math. de France, Paris.

Bouniakowsky, V. (1859). Sur quelques in´egalit´es concernant les int´egrales ordinaires et les int´egrales aux diff´erences finies. M´emoires de l’Acad. de St.-P´etersbourg (ser. 7) 1, No. 9.

Bullen P.S., Mitrinovi´c, D.S., and Vasi´c, P.M. (1988). Means and Their Inequalities, Reidel Publishers, Boston.

Burago, Yu. D. and Zalgaller, V.A. (1988). Geometric Inequalities, Springer-Verlag, Berlin.

Bush, L.E. (1957). The William Lowell Putnam Mathematical Competition, Amer. Math. Monthly, 64, 649–654.

Bushell, P. J. (1994). Shapiro’s “Cyclic Sums,” Bulletin of the London Math. Soc., 26, 564–574.

Buzano, M.L. (1971/1973). Generalizzazione della disegualianza di Cauchy–Schwarz, Rend. Sem. Mat. Univ. e Politech. Trimo, 31, 405– 409.

Cartan, H. (1995). Elementary Theory of Analytic Functions of One or Several Complex Variables (translation of Th´el´eorie ´ementaire des fonctions analytiques d’une ou plusieurs vairable complexes, Hermann, Paris, 1961) reprinted by Dover Publications, Mineola, New York.

Carleman, T. (1923). Sur les fonctions quasi-analytiques, in the Proc. of the 5th Scand. Math. Congress, 181–196, Helsinki, Finland.

Carleson, L. (1954). A proof of an inequality of Carleman, Proc. Amer. Math. Soc., 5, 932–933. ´

Cauchy, A. (1821). Cours d’analyse de l’Ecole Royale Polytechnique, Premi`ere Partie. Analyse alg´ebrique, Debure fr`eres, Paris. (Also in Oeuvres compl`etes d’Augustin Cauchy, S´erie 2, Tome 3, Gauthier-Villars et Fils, Paris, 1897.)

Cauchy, A. (1829). Le¸con sur le calcul di´etermierentiel, Note sur la d´nation approximative des racine d’une ´equation alg´ebrique ou transcen-dante.(Also in Oeuvres compl`etes d’Augustin Cauchy (S´erie 2, Tome 4), 573–609, Gauthier-Villars et Fils, Paris, 1897.)

Chong, K.-M. (1969). An inductive proof of the A.M.–G.M. inequality, Amer. Math. Monthly, 83, 369.

Chung, F.R.K., Hajela, D., and Seymour, P.D. (1988). Self-organizing sequential search and Hilbert’s inequalities, J. Computing and Systems Science, 36, 148–157.

Clevenson, M.L., and Watkins, W. (1991). Majorization and the Birthday Problem, Math. Magazine, 64, 183–188. D’Angelo, J.P. (2002). Inequalities from Complex Analysis, Mathematical Association of America, Washington,

D.C. de Bruijn, N.G. and Wilf, H.S. (1962). On Hilbert’s inequality in n dimensions, Bull. Amer. Math. Soc., 69, 70–73. Davis, P.J. (1989). The Thread: A Mathematical Yarn, 2nd Edition, Harcourt, Brace, Javonovich, New York. Diaz, J.B. and Metcalf, R.T. (1963). Stronger forms of a class of in equalities of G. P´olya–G. Szeg˝ o, and L.V. Kantorovich, Bulletin of the Amer. Math. Soc., 69, 415–418. Diaz, J.B. and Metcalf, R.T. (1966). A complementary triangle inequal ity in Hilbert and Banach spaces, Proc. Amer. Math. Soc., 17, 88–97 Dragomir, S.S. (2000). On the Cauchy–Buniakowsky–Schwarz inequal ity for sequences in inner product spaces, Math. Inequalities Appl., 3, 385–398. Dragomir, S.S. (2003). A Survey on Cauchy–Buniakowsky–Schwarz Type Discrete Inequalities, School of Computer Science and Mathematics, Vic toria University, Melbourne, Australia (monograph preprint). Duncan, J. and McGregor, M.A. (2003). Carleman’s inequality, Amer. Math. Monthly, 101 424–431. Dubeau, F. (1990). Cauchy–Bunyakowski–Schwarz Revisited, Amer. Math. Monthly, 97, 419–421. Dunham, W. (1990). Journey Through Genius: The Great Theorems of Mathematics, John Wiley and Sons, New York. Elliot, E.B. (1926). A simple extension of some recently proved facts as to convergency, J. London Math. Soc., 1, 93–96. Engle, A. (1998). Problem-Solving Strategies, Springer-Verlag, Berlin. Erd˝

os, P. (1961). Problems and results on the theory of interpolation II, Acta Math. Acad. Sci. Hungar., 12, 235–244. ¨

Flor, P. (1965). Uber eine Ungleichung von S.S. Wagner, Elem. Math., 20, 165. Fujii, M. and Kubo, F. (1993). Buzano’s inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117, 359–361. George, C. (1984). Exercises in Integration, Springer-Verlag, New York. Grosse-Erdmann, K.-G. (1998). The Blocking Technique, Weighted Mean Operators, and Hardy’s Inequality, Lecture Notes in Mathematics No. 1679, Springer-Verlag, Berlin. Halmos, P.R. and Vaughan, H.E. (1950). The Marriage Problem, Amer. J. Math., 72, 214–215. Hammer, D. and Shen, A. (2002). A Strange Application of Kolmogorov Complexity, Technical Report, Institute of Problems of Information Technology, Moscow, Russia. Hardy, G.H. (1920). Note on a theorem of Hilbert, Math. Zeitschr., 6, 314–317. Hardy, G.H. (1925). Notes on some points in the integral calculus (LX), Messenger of Math., 54, 150–156. Hardy, G.H. (1936). A Note on Two Inequalities, J. London Math. Soc., 11, 167–170. Hardy, G.H. and Littlewood, J.E. (1928). Remarks on three recent notes in the Journal, J. London Math. Soc., 3, 166–169. Hardy, G.H., Littlewood, J.E., and P´ olya, G. (1928/1929). Some simple inequalities satisfied by convex functions, Messenger of Math., 58, 145– 152. Hardy G.H., Littlewood, J.E., and P´olya, G. (1952). Inequalities,2nd Edition, Cambridge University Press, Cambridge, UK. Havil, J. (2003). Gamma: Exploring Euler’s Constant, Princeton Uni versity Press, Princeton, NJ. Henrici, P. (1961). Two remarks on the Kantorovich inequality, Amer. Math. Monthly, 68, 904–906. Hewitt, E. and Stromberg, K. (1969). Real and Abstract Analysis, Springer-Verlag, Berlin. ¨ Hilbert, D. (1888). Uber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32, 342–350. (Also in Gesammelte Abhandlungen, Volume 2, 154–161, Springer-Verlag, Berlin, 1933; reprinted by Chelsea Publishing, New York, 1981.) Hilbert, D. (1901). Mathematische Probleme, Arch. Math. Phys., 3, 4463, 213–237. (Also in Gesammelte Abhandlungen, 3, 290–329, Springer-Verlag, Berlin, 1935; reprinted by Chelsea, New York, 1981; translated by M.W. Newson in Bull. Amer. Math. Soc., 1902, 8, 427–479.) ¨ H¨older, O. (1889). Uber einen Mittelwerthssatz, Nachr. Akad. Wiss. G¨ottingen Math.-Phys. Kl. 38–47. Jensen, J.L.W.V. (1906). Sur les fonctions convexes et les in´egalit´es entre les valeurs moyennes, Acta Math., 30, 175–193. Joag-Dev, K. and Proschan, F. (1992). Birthday problem with unlike probabilities, Amer. Math. Monthly, 99, 10–12. ¨ Kaijser, J., Persson, L-E., and Orberg, A. (2003). On Carleman’s and Knopp’s inequalities, Technical Report, Department of Mathematics, Uppsala University. Kaczmarz, S. and Steinhaus, H. (1951). Theorie der Orthogonalreihen, second Edition, Chelsea Publishing, New York (1st Edition, Warsaw, 1935). Kedlaya, K. (1999). A<B (A is less than B), manuscript based on notes for the Math Olympiad Program, MIT, Cambridge MA. Koml´ os, J. and Simomovits, M. (1996). Szemeredi’s regularity lemma and its applications in graph theory, in Combinatorics, Paul Erd˝os is Eighty, Vol. II (D. Mikl´onyi, eds.), 295–352, os, V.T. Sos, and T. Sz˝J´

anos Bolyai Mathematical Society, Budapest. Knuth, D. (1969). The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, Addison Wesley, Menlo Park, CA. ¨

Knopp, K. (1928). Uber Reihen mit positive Gliedern, J. London Math. Soc., 3, 205–211. Lagrange, J. (1773). Solutions analytiques de quelques probl`

emes sur les pyramides triangulaires, Acad. Sci. Berlin. ¨

Landau, E. (1907). Uber einen Konvergenzsatz, ottinger Nachrichten, 25–27. Landau, E. (1909). Handbuch der Lehre von der Verteilung der Primzahl en, Leipzig, Germany. (Reprinted 1953, Chelsea, New York). Lee, H. (2002). Note on Muirhead’s Theorem, Technical Report, De partment of Mathematics, Kwangwoon University, Seoul, Korea. Littlewood, J.E. (1988). Littlewood’s Miscellany (B. Bollob´ as, ed.), Cambridge University Press, Cambridge, UK. Lov´asz, L. and Plummer M.D. (1986). Matching Theory, North-Holland Mathematics Studies, Annals of Discrete Mathematics, vol. 29, Elsevier Science Publishers, Amsterdam, and Akad´emiai Kiad´o, Budapest. Lozansky, E. and Rousseau, C. (1996). Winning Solutions, Springer- Verlag, Berlin. Love, E.R. (1991). Inequalities related to Carleman’s inequality, in In equalities: Fifty Years on from Hardy, Littlewood, and P´olya (W.N. Everitt, ed.), Chapter 8, Marcel Decker, New York. Lyusternik, L.A. (1966). Convex Figures and Polyhedra (translated from the 1st Russian edition, 1956, by D.L. Barnett), D.C. Heath and Company, Boston. Macdonald, I.G. (1995). Symmetric Functions and Hall Polynomials, 2nd Edition, Clarendon Press, Oxford. Maclaurin, C. (1729). A second letter to Martin Folkes, Esq.; concerning the roots of equations, with the demonstration of other rules in algebra, Phil. Transactions, 36, 59–96. Magiropoulos, M. and Karayannakis, D. (2002). A “Double” Cauchy– Schwarz type inequality, Technical Report, Technical and Educational Institute of Crete, Heraklion, Greece. Maligranda, L. (1998). Why H¨older’s inequality should be called Rogers’ inequality, Mathematical Inequalities and Applications, 1, 69–83. Maligranda, L. (2000). Equivalence of the H¨ older–Rogers and Minkowski inequalities, Mathematical Inequalities and Applications, 4, 203–207. Maligranda, L. and Persson, L.E (1992). On Clarkson’s inequalities and interpolation, Math. Nachr., 155, 187–197. Maligranda, L. and Persson, L.E (1993). Inequalities and Interpolation, Collect. Math., 44, 181–199. Maor, E. (1998). Trigonometric Delights, Princeton University Press, Princeton, NJ. Matouˇsek, J. (1999). Geometric Discrepancy — An Illustrated Guide, Springer-Verlag, Berlin. Mazur, M. (2002). Problem Number 10944, Amer. Math. Monthly, 109, 475. McConnell, T.R. (2001). An inequality related to the birthday problem. Technical Report, Department of Mathematics, University of Syracuse. Menchoff, D. (1923). Sur les s´eries de fonctions orthogonales (premi` ere partie), Fundamenta Mathematicae, 4, 82–105. Mignotte, M. and Sanescu, S. (1999). Polynomials: An Algorithmic ¸tef˘Approach, Springer-Verlag, Berlin. Mingzhe, G. and Bichen, Y. (1998). On the extended Hilbert’s inequal ity, Proc. Amer. Math. Soc., 126, 751–759. Mitrinovi´c, D.S. and Vasi´c, P.M. (1974). History, variations and gener alizations of the ˇCebyˇsev inequality and the question of some priorities, Univ. Beograd Publ. Electrotehn. Fak. Ser. Mat. Fiz., 461, 1–30. Mitrinovi´c, D.S. (with Vasi´c, P.M.) (1970). Analytic Inequalities, Springer-Verlag, Berlin. Montgomery, H.L. (1994). Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Con ference Number 84, Conference Board of the Mathematical Sciences, American Mathematical Society, Providence, RI. Motzkin, T.S. (1967). The arithmetic-geometric inequality, in Inequali ties (O. Shisha, ed.), 483–489, Academic Press, Boston. Nakhash, A. (2003). Solution of a Problem 10940 proposed by Y. Niev ergelt, Amer. Math. Monthly, 110, 546–547. Needham, T. (1997). Visual Complex Analysis, Oxford University Press, Oxford, UK. Nesbitt, A.M. (1903). Problem 15114, Educational Times, 2, 37–38. Niculescu, C.P. (2000). A new look at Newton’s inequalities, J. Inequal ities in Pure and Appl. Math., 1, 1–14. Niven, I. and Zuckerman, H.S. (1951). On the definition of normal numbers, Pacific J. Math., 1, 103–109. Nivergelt, Y. (2002). Problem 10940 The complex geometric mean, Amer. Math. Monthly, 109, 393. Norris, N. (1935). Inequalities among averages, Ann. Math. Statistics, 6, 27–29. Oleszkiewicz, K. (1993). An elementary proof of Hilbert’s inequality, Amer. Math. Monthly, 100, 276–280. Olkin, I. and Marshall, A.W. (1979). Inequalities:Theory of Majorization and Its Applications, Academic Press, New York. Opic, B. and Kufner, A. (1990). Hardy-Type Inequalities, Longman- Harlow, New York. Petrovitch, M. (1917). Module d’une somme, L’Enseignement Math., 19, 53–56. Peˇcari´ c, J.E., Proschan, F., and Tong, Y.L. (1992). Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, New York. Peˇcari´c, J.E. and Stolarsky, K.B. (2001). Carleman’s inequality: history and new generalizations, Aequationes Math., 61, 49–62. Pitman, J. (1997). Probability, Springer-Verlag, Berlin. P´

olya, G. (1926). Proof of an inequality, Proc. London Math. Soc., 24,

57. P´

olya, G. (1949). With, or without, motivation, Amer. Math. Monthly, 56, 684–691, 1949. P´olya, G. (1950). On the harmonic mean of two numbers, Amer. Math. Monthly, 57, 26–28. P´atze aus der Analolya, G. and Szeg˝o, G. (1954). Aufgaben und Lehrs¨ysis, Vol. I, 2nd edition, Springer-Verlag, Berlin. Polya, G. (1957). How to Solve It, 2nd edition, Princeton University Press, Princeton, NJ. Prestel, A. and Delzell, C.N. (2001). Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra, Springer-Verlag, Berlin. Rademacher, H. (1922). Einige S¨uber Reihen von allgemeinen Or

atze ¨

thogonalfunktionen, Math. Annalen, 87, 112–138. Rajwade, A.R. (1993). Squares, London Mathematical Lecture Series, 171, Cambridge University Press, Cambridge, UK. Richberg, R. (1993). Hardy’s inequality for geometric series (solution of a problem by Walther Janous), Amer. Math. Monthly, 100, 592–593. Riesz, F. (1909). Sur les suites de fonctions mesurables, C. R. Acad. Sci. Paris, 148, 1303–1305. Riesz, F. (1910). Untersuchungen uber Systeme integrierbare Funktio


nen, Math. Annalen, 69, 449–497. Riesz, M. (1927). Sur les maxima des formes bilin´eaires et sur les fonc tionnelles lin´eaires, Acta Math., 49, 465–487. Roberts, A.W. and Varberg, D.E. (1973). Convex Functions, Academic Press, New York. Rogers, L.J. (1888). An extension of a certain theorem in inequalities, Messenger of Math., 17, 145–150. Rosset, S. (1989). Normalized symmetric functions, Newton’s inequali ties, and a new set of stronger inequalities, Amer. Math. Monthly, 96, 815–819. Rudin, W. (1987). Real and Complex Analysis, 3rd edition, McGraw- Hill, Boston. Rudin, W. (2000). Sums of Squares of Polynomials, Amer. Math. Monthly, 107, 813–821. Schur, I. (1911). Bemerkungen zur Theorie der beschr¨ankten Bilinearformen mit unendlich vielen Ver¨

anderlichen, J. Mathematik, 140, 1–28. Schneider, R. (1993). Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, UK. ¨

Schwarz, H.A. (1885). Uber ein die Fl¨acheninhalts achen kleinsten Fl¨betreffendes Problem der Variationsrechnung. Acta Soc. Scient. Fenn., 15, 315–362. Shklarsky, D.O., Chentzov, N.N., and Yaglom, I.M. (1993). The USSR Olympiad Problem Book: Selected Problems and Theorems of Elementary Mathematics, Dover Publications, Mineola, N.Y. Sigillito, V.G. (1968). An application of Schwarz inequality, Amer. Math. Monthly, 75, 656–658. Shparlinski, I.E. (2002). Exponential Sums in Coding Theory, Cryptol ogy, and Algorithms, in Coding Theory and Cryptology (H. Niederreiter, ed.), Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. I., World Scientific Publishing, Singapore. Siegel, C.L. (1989). Lectures on the Geometry of Numbers (Notes by B. Friedman rewritten by K. Chandrasekharan with assistance of R. Suter), Springer-Verlag, Berlin. Steiger, W. L. (1969). On a generalization of the Cauchy–Schwarz in equality, Amer. Math. Monthly, 76, 815–816. Szeg˝o, G. (1914). L¨olya, Archiv f¨ osung eine Aufgabe von G. P´ur Mathematik u. Physik, Ser. 3, 22, 361–362. Sz´osekeley, G.J., editor (1996). Contests in Higher Mathematics: Mikl´Schweitzer Competition 1962–1991, Springer-Verlag, Berlin. Tiskin, A. (2002). A generalization of the Cauchy and Loomis–Whitney inequalities, Technical Report, Oxford University Computing Laboratory, Oxford, UK. Toeplitz, O. (1910). Zur Theorie der quadratischen Formen von unendlische vielen Ver¨ottinger Nach., 489–506. anderlichen, Treibergs, A. (2002). Inequalities that Imply the Isoperimetric Inequal ity, Technical Report, Department of Mathematics, University of Utah. van Dam, E.R. (1998). A Cauchy–Khinchin matrix inequality, Linear Algebra and its Applications, 280, 163–172. van Lint, J.H. and Wilson, R.M. (1992). A Course in Combinatorics, Cambridge University Press, Cambridge, UK. Vince, A. (1990). A rearrangement inequality and the permutahedron, Amer. Math. Monthly, 97, 319–323. Wagner, S.S. (1965). Untitled, Notices Amer. Math. Soc., 12, 20. Waterhouse, W. (1983). Do symmetric problems have symmetric solutions? Amer. Math. Monthly, 90, 378–387. ¨ Weyl, H. (1909). Uber die Konvergenz von Reihen, die nach Orthogonalfunktionen fortschreiten, Math. Ann., 67, 225–245. ¨ Weyl, H. (1916). Uber die Gleichverteilung von Zahlen mod Eins, Math. Ann., 77, 312–352. Weyl, H. (1949). Almost periodic invariant vector sets in a metric vector space, Amer. J. Math., 71, 178–205. Wilf, H.S. (1963). Some applications of the inequality of arithmetic and geometric means to polynomial equations, Proc. Amer. Math. Soc., 14, 263–265. Wilf, H.S. (1970). Finite Sections of Some Classical Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, 52, Springer-Verlag, Berlin. Zukav, G. (1979). The Dancing Wu Li Masters: An Overview of the New Physics, William Morrow and Company, New York. van der Corput, J.G. (1931). Diophantische Ungleichungen I. Zur Gle

icheverteilung Modulo Eins, Acta Math., 56, 373–456. Vinogradov, I.M. (1954). Elements of Number Theory (translated by Saul Kravetz from the 5th revised Russian edition, 1949), Dover Publications, New York.