next up previous
Next: 3.3 Up: 3. Previous: 3.1

3.2 Definitions and rules

The ideas of raising to a power (initially geometric):
*
n1 is just n
*
$n^2 = n \times n$ or n-squared
*
$n^3= n \times n \times n$ or n-cubed

Some examples of power relationships. Where is this useful to know?

*
How many comparisons between 4 test products - pairwise comparisons?
*
How many pairwise relationships between 198 stocks in a portfolio - covariances?

Both of these depend on square of the number of items (products/stocks) - parabolic.

Defining ym.

The base is y and the exponent is m.

For m an integer (whole number)

\begin{displaymath}\fbox{$y^m = \underbrace{y \times y \times \cdots \times y }_{\mbox{\rm m times}}.$ }\end{displaymath}

Example:


\begin{displaymath}\fbox{$ 3^4 = \underbrace{3 \times 3\times 3 \time 3 \times 3 }_{\mbox{\rm 4 times}} = 81.$ }\end{displaymath}

From this simple definition we get

\begin{displaymath}\fbox{$y^m \, y^n = \underbrace{y \times y \times \cdots \tim...
...imes \cdots \times y }_{\mbox{\rm m + n times}} = y^{(m+n)}.$ }\end{displaymath}

Example:


\begin{displaymath}\fbox{$ 2^2 \times 2^3 = 2^{2 + 3} = 2^5 = 32.$ }\end{displaymath}

Key fact: multiplication of numbers becomes addition of their exponents.

A special case:

\begin{displaymath}\fbox{$y^m \times y^0 = y^{m + 0} = y^m.$ }\end{displaymath}

It follows that y0 must be equal to 1.

Golden rule: anything raised to the power 0 equals 1.


\begin{displaymath}\fbox{$y^m \times y^{-m} = y^{m + (-m)} = y^0 = 1,$ }\end{displaymath}

so that y-m must equal $\frac{1}{y^m}$.

Fractional exponents:

\begin{displaymath}\fbox{$y^{\frac{1}{2}} \times y^{\frac{1}{2}} = y^{\frac{1}{2} + \frac{1}{2}}\ = y^{1} = y,$ }\end{displaymath}

$y^{\frac{1}{2}}$ is the number which when multiplied by itself gets you back y - the definition of the square root.

In general $y^{\frac{1}{m}}$ is called the m-th root of y.

Recall cellular phones again where we used a fourth root transformation.

*
Cell phone subscribers
*
Transformed subscribers.

More rules:

\begin{displaymath}\fbox{$(y^m)^n = \underbrace{
\underbrace{y \times y \times \...
...cdots \times y }_{\mbox{\rm m times}}}_{\mbox{\rm n times}},$ }\end{displaymath}

so that

\begin{displaymath}\fbox{$(y^{m})^n = y^{m\,n}.$ }\end{displaymath}

Example

\begin{displaymath}\fbox{$(2^3)^2 = \underbrace{
\underbrace{2 \times 2 \times 2...
...rm 3 times}}}_{\mbox{\rm 2 times}} = 8 \times 8 = 64 = 2^{6}$ }\end{displaymath}

Finally

\begin{displaymath}y^{\frac{n}{m}} = (y^{n})^{\frac{1}{m}}.\end{displaymath}

Golden rules for exponents:

1.
ym yn = y(m + n).
2.
$y^{-m} = \frac{1}{y^m}.$
3.
$\frac{y^m}{y^n} = y^m y^{-n} = y^{m - n}$.
4.
$(y^m)^n = y^{m\,n}.$
5.
$(y\, x)^m = y^m x ^m$.
6.
$ (\frac{y}{x})^m = \frac{y^m}{x^m}.$


next up previous
Next: 3.3 Up: 3. Previous: 3.1
Richard Waterman
1999-05-06