next up previous
Next: 6. Up: 5. Previous: 5.3

5.4 ** The continuous compounding formula derivation

Where does the continuous compounding formula come from?

\begin{displaymath}\fbox{$\lim_{m \rightarrow \infty} P_0 \left(1 + \frac{r}{m}\right)^{m\, t} =
P_0 \, e^{r\,t}.$ }\end{displaymath}

Assume the limit exists, and call it L, then:


\begin{displaymath}L = \lim_{m \rightarrow \infty} P_0 \left(1 + \frac{r}{m}\right)^{m\, t}.\end{displaymath}

So

\begin{displaymath}ln(L) = ln \left(\lim_{m \rightarrow \infty} P_0 \left(1 + \frac{r}{m}\right)^{m\, t}\right).\end{displaymath}

If we are allowed ...

\begin{displaymath}ln(L) = \lim_{m \rightarrow \infty} ln\left(P_0 \left(1 + \frac{r}{m}\right)^{m\, t}\right).\end{displaymath}

Now, log of a product is the sum of the logs ...

\begin{displaymath}ln(L) = \lim_{m \rightarrow \infty}\left(ln(P_0) + ln \left[\left(1 + \frac{r}{m}\right)^{m\, t}\right]\right).\end{displaymath}

Use log rules:

\begin{displaymath}ln(L) = \lim_{m \rightarrow \infty}\left(ln(P_0) +(m\,t)\, ln \left(1 + \frac{r}{m}\right)\right).\end{displaymath}

But as m gets large, so $\frac{r}{m}$ gets really small, so can use the log approximation $ln(1 + h) \sim h$, to get

\begin{displaymath}ln(L) = \lim_{m \rightarrow \infty}\left(ln(P_0) +(m\,t)\, \frac{r}{m}\right).\end{displaymath}

Cancel to get

\begin{displaymath}ln(L) = \lim_{m\rightarrow \infty}\left(ln(P_0) + r\,t \right).\end{displaymath}

Now exp both sides to get

\begin{displaymath}L = P_0\, e^{r\,t}.\end{displaymath}


next up previous
Next: 6. Up: 5. Previous: 5.3
Richard Waterman
1999-05-14