next up previous
Next: 5. Up: 4. Previous: 4.1

4.2 Variances

Variance measures how spread out a distribution is. It is the key ,easure of risk. It is defined by

\begin{displaymath}\fbox{$Var(X) = E(X^2) - E(X) E(X)$ .}\end{displaymath}

How do we find the average of X2?


 
Table 3: Returns squared distribution for Air.com
Return.Squared 9 4 1 0 1 4 9
Probability 0.2 0.1 0.05 0.05 0.1 0.2 0.3


\begin{eqnarray*}E(X^2) & = & \textcolor{red}{0.2} \times \textcolor{blue}{9}\qu...
...tcolor{red}{0.3} \times \textcolor{blue}{9}\quad \\
& = & 5.85
\end{eqnarray*}


This implies that the variance is given by

\begin{displaymath}Var(X) = 5.85 - 0.55 \times 0.55 = 5.5475.
\end{displaymath}

What happens to a multiplicative constant, times our variable of interest? Here is an example where we look at 3 times the variable.


\begin{eqnarray*}Var (3\,X) &=& E((3X)^2) - E(3 X) E(3 X) \\
Var (3\,X) &=& E(9...
... (3\,X) &=& 9 ( E(X^2) - E(X) E( X))\\
Var (3\,X) &=& 9 Var (X)
\end{eqnarray*}


So in general, with a weight w we have

\begin{displaymath}Var (w\,X) = w^2\,Var(X).
\end{displaymath}

You find the mean and variance of Bricks.


next up previous
Next: 5. Up: 4. Previous: 4.1
Richard Waterman
1999-06-11